SFB 450, WS 02/03

Quantum dynamics, Dissipation, Control

Lecture component:

- from experimentalists for experimentalists;
- **basic concepts** and formulation for **practical use**,
- i.e. demonstration with small program

1. Harmonic Oscillator in the Bloch limit:

impulsive excitation, difference between wavefunction and density evolution, dipole correlation function, representation of Hamiltonian as Liouville operator.

2. IVR in the Harmonic Oscillator

extension to Redfield relaxation tensor, mechanisms for IVR population relaxation and dephasing. Brownian oscillator vs colored noise.

3. Control: General Concept and application to Harmonic Oscillator

4. Electron transfer between two coupled diabatic electronic states Vibronic Hamiltonian, wavefunction evolution after impulsive excitation, IVR and electron transfer

5. Control for two coupled diabatic electrobnic states

- 6. Coupling between a high-frequency and a low-frequency mode different coupling mechanisms evolution of the system after impulsive excitation
- Lineshape Theory
 Brownian Oscillator model
 Kubo model
 Connections bewteen BO and Kubo model.

8. Control of coupled Harmonic Oscillators