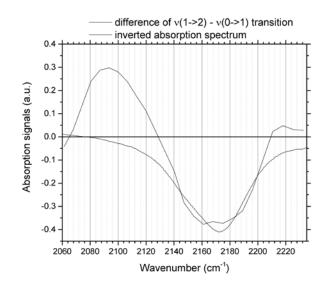

Deadline: lecture Thursday (2017-06-22)


- 1. The rotational-vibrational transitions of ${}^{12}C^{16}O_2$ give rise to a multitude of IR-absorption bands. In the figures below, a zoom into the spectral window of the P-branch is given: Simple asymmetric stretching vibrations $(00^{0}0) \rightarrow (00^{0}1)$ together with hot band transitions (with excited bending vibrations) $(01^{1}0) \rightarrow (01^{1}1)$ are visible in the graphs. The rovib transition $(00^{0}0) \rightarrow (00^{0}1)$ is found at 2349.917 cm⁻¹ (K=2 \rightarrow K=0), and the hot ro-vib transition $(01^{1}0) \rightarrow (01^{1}1)$ is found at 2350.332 cm⁻¹ (K=19 \rightarrow K=18). The frequency of both transitions is nearly identical, but with a difference in total energy of Δ E=801.2 cm⁻¹ due to the excited bending vibration (additional internal energy) for the hot ro-vib transition.
 - (a) (2 points) Show that the absorption of peak A2 and A3 show different behavior upon increasing the temperature from 293 K to 393 K (use the formula from the lecture).
 - (b) (3 points) The absorption A of a single band changes with temperature. By comparing the ratio R(T) of two absorption bands $R(T)=A_2/A_3$ at different temperatures (R(T) and $R_{ref}(T)$), the unknown temperature T can be determined.

$$R(T) = R(T_{ref})e^{-\frac{\Delta E}{kT}\left(\frac{-1}{T} + \frac{1}{T_{ref}}\right)}$$

Determine the unknown temperature T with errors given by the errors of the areas of the absorption bands. The unknown temperature T was measured with an alternative and slow method to be (343.0 ± 0.5) K. Discuss your results with this value.

- 2. The anharmonicity β of a vibration is experimentally measured. Using the model of a Morse potential, one can estimate the following parameters: D₀, D_e, and v_{max}.
 - (a) (1 point) Determine the anharmonicity constant from the figure below. Presented are two vibrational transition bands, the negative $v=0\rightarrow 1$, and the positive $v=1\rightarrow 2$ transition. In comparison, the inverted absorption spectrum is shown.

(b) (1 point) Determine D_0 , D_e , and v_{max} from the anharmonicity constant.