Deadline: lecture Thursday (2017-06-01)

- 1. (2 points) Calculate the length of the transition dipole moment of the $2p_z \rightarrow 2s$ transition between two hydrogen like states with the nuclear charge Z = 2. Assuming that $|\vec{\mu}|$ can be interpreted as the product of the electrical charge and an effective distance over which the electron is moved by the state transition, how long is the distance?
- 2. (6 points) Interaction of atoms with electromagnetic radiation
 - (a) Prove that

$$(\vec{\mathbf{k}}\cdot\vec{\mathbf{r}})(\widehat{\epsilon}\cdot\vec{\mathbf{p}}) = \frac{1}{2}\left[(\vec{\mathbf{k}}\cdot\vec{\mathbf{r}})(\widehat{\epsilon}\cdot\vec{\mathbf{p}}) + (\widehat{\epsilon}\cdot\vec{\mathbf{r}})(\vec{\mathbf{k}}\cdot\vec{\mathbf{p}})\right] + \frac{1}{2}\left[(\vec{\mathbf{k}}\times\widehat{\epsilon})(\vec{\mathbf{r}}\times\vec{\mathbf{p}})\right]$$

(b) Show that

$$\frac{1}{2}\left[(\vec{\mathbf{k}}\cdot\vec{\mathbf{r}})(\widehat{\epsilon}\cdot\vec{\mathbf{p}})+(\widehat{\epsilon}\cdot\vec{\mathbf{r}})(\vec{\mathbf{k}}\cdot\vec{\mathbf{p}})\right]$$

evaluates to the electronic quadrupole transition dipole moment Q_{ij} . Note: Use $\vec{\mathbf{p}} = \frac{im}{\hbar} [H_0, \vec{\mathbf{r}}]$ and that Ψ_m and Ψ_k are eigenfunctions of H_0 . Additionally note that: $\vec{\mathbf{k}} \cdot \hat{\boldsymbol{\epsilon}} = 0$.

- (c) Starting with Q_{ij} , derive the transition rules for electronic quadrupole transitions (as in the lecture, calculate Δm , apply the parity operator and use the result to get $\Delta \ell$).
- (d) The derivation of the transition rules for magnetic transition is simpler, since the initial and the final state are eigenfunctions of L^2 and L_z . For L_x and L_y it is advisable to use L_+ and L_- . What are the transition rules for magnetic dipole transitions?
- 3. (1 point) Show that the squared absolute value $\kappa = |\hat{\varepsilon} \cdot \vec{\mu}|^2$, with the linear polarisation $\hat{\varepsilon} = (0, 0, 1)$ and isotropic distribution of the $\vec{\mu}$ vectors in space, evaluates to:

$$\overline{\kappa} = \frac{1}{3}.$$

Here, $\overline{\kappa}$ is the average over all directions of ϑ and φ . Don't forget the normalisation factor.