Advanced Solid State Physics Winter semester 2014/2015 10th exercise sheet

<u>Submission:</u> Tuesday, 06. January 2015, before the lecture (or drop until 10 o'clock of the same day in mailbox between rooms 1.2.38 and 1.2.40)

27. Photoemission with high kinetic energies (*)

Calculate the angle resolution of the electron detector that is necessary to obtain a resolution in k_{\parallel} in angle-resolved photoemission of 1% of the Brillouin zone (1/100 of the distance between Γ and X) in [100] direction of Ni (fcc, a = 3.52 Å) in the two cases described under a) and b). Assume 4.5 eV as work function of sample and detector and consider states close to the Fermi energy for near-normal emission.

a) Photon energy $\hbar \omega = 21.2$ eV (He-I UV lamp),

b) photon energy $\hbar \omega = 1253.6 \text{ eV} (\text{Mg-K}_{\alpha} \text{X-ray tube}).$

28. Spin-resolved photoemission (**)

In a spin-resolving electron analyser, an incoming electron with spin down is scattered at a solid and reaches with a probability T r the right detector, with a probability T(1-r) the left detector $(1/2 \le r \le 1)$, and is lost with a probability 1-T. (Typical values: $T \approx 10^{-3}$, $r \approx 0.65$.) Electrons with spin up scatter oppositely.

- a) Calculate the asymmetry A_{Sherman} of the detector output signals $(I_{\text{left}}-I_{\text{right}})/(I_{\text{left}}+I_{\text{right}})$ for a fully spin-polarized input signal (only electrons with spin up are entering the spin detector).
- b) Which asymmetry A of the two detector output signals is measured if the input signal has a spin polarization P_0 defined as $P_0 = (I_{\uparrow} I_{\downarrow})/(I_{\uparrow} + I_{\downarrow})$, where $I_{\uparrow} + I_{\downarrow}$ is the total input current of electrons?
- b) Express the input currents of spin up and spin down electrons I_{\uparrow} and I_{\downarrow} as functions of the measured detector signals I_{left} and I_{right} , assuming that A_{Sherman} and T are known.

29. Quantum well states (**)

(4 points)

We want to look at quantum well states of nearly free electrons in an ultrathin film with fcc lattice and (001) surface orientation. To simplify, we consider phase jumps of π upon reflection of the electronic wave function at both interfaces, like in an infinitely high potential well.

- a) Calculate the Fermi wave vector $k_{\rm F}$ for free electrons in three dimensions under the assumption of $N_{\rm el} = 1.3$ electrons per atom.
- b) Calculate the thickness period (in atomic monolayers) at which quantum well state peaks shift across the Fermi level upon increasing the film thickness. The width of the quantum well is d = va/2, with *a* being the lattice constant of the fcc crystal, and v an integer number (film thickness in units of atomic monolayers). Make sure to take into account the larger period due to the discrete thickness values of such films compared to a quantum well with continuously increasing width if **k** is in the second half of the Brillouin zone.

Prof. Dr. W. Kuch

(4 points)

(4 points)