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Ultrafast intraband carrier relaxation in carbon nano-
tubes can be described by Carbon Nanotube Bloch Equa-
tions (CNBE) treating the Coulomb interaction beyond
the Hartree-Fock level to include carrier-carrier scatter-
ing. We obtain equations of motion for carrier densities
and two-particle carrier correlations that are solved nu-
merically. The complex non-Markovian relaxation dy-
namics of hot electrons is calculated for various carbon
nanotubes of different diameter and chirality.

All calculated nanotubes show an ultrafast relaxation
to equilibrium within approximately 100 femtoseconds.
The observed relaxation is only weakly dependent on
chirality, but depends on the diameter of the nanotube.
With increasing diameter of the CNT the relaxation is
slowed down, because of the weaker Coulomb interac-
tion in larger diameter CNT. Additionally, we find os-
cillations of the electron plasma that are due to memory
effects in the electron equilibration.

1 Introduction Single wall carbon nanotubes are
quasi-onedimensional systems that have unique optical
and electronic properties. They are promising candidates
for applications in nanoscale electronic devices [1,2]. A
sound and fundamental understanding of ultrafast and non-
linear properties of these nanoscale systems is necessary
to build future (opto-)electronic devices. In recent years
several time-domain spectroscopic studies have been car-
ried out [3–5], but a complete (theoretical) understanding is
lacking and there are still several controversial results in ul-
trafast spectroscopy (see [6] and references therein). In this
contribution, as a first step towards a microscopic theory of
ultrafast processes in carbon nanotubes (CNTs), we present
an analysis of the electronic intraband relaxation dynamics
in CNTs. We obtain the Coulomb scattering induced intra-
band relaxation of excited carriers within the framework of
density matrix theory [7,8]. The Carbon Nanotube Bloch
Equations (CNBEs) approach [9–11] is extended beyond
the Hartree-Fock level to include Coulomb correlation ef-
fects that lead to carrier relaxation and plasma screening.
In Ref. [9] we have already addressed linear and non-linear
properties of CNTs on the Hartree-Fock level suitable for

off-resonant and not too strong optical excitation. Here, we
extend the calculation by treating a non-Markovian second
order Born description of Coulomb correlations. Within
a one-band model we find that an initial non-equilibrium
carrier distribution relaxes to a quasi-equilibrium on a 100
fs timescale, i.e. carrier-carrier intraband thermalization is
relatively fast (depending on density) and electron-phonon
scattering acts on longer timescales [4]. We performed
calculations for the CNTs of the 2n1 + n2 = 29 branch
and find only a minor chirality dependence in the car-
rier dynamics (Section 3). However, we predict a more
pronounced dependence on the diameter of the CNT.

2 Theoretical background Interaction mecha-
nisms such as electron-electron or electron-phonon scat-
tering are responsible for ultrafast intra- and inter-subband
relaxation of excited electronic states, typically on a pico-
to femtosecond timescale. These processes cannot be de-
scribed within a mean-field theory [9]. Density matrix
theory is an ideal candidate to describe ultrafast non-linear
dynamics [12] in semiconductor materials as it can be
easily extended beyond the Hartree-Fock level. Starting
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point of the theory is the Heisenberg equation of motion
(EOM) ˙〈O〉 = i

�
〈[H,O ]〉, where the expectation value

of an observable O is computed with the density matrix
ρ: 〈O〉 = Tr {Oρ}. When computing the dynamics of
microscopic quantities (expressed in terms of creation and
annihilation operators a†

λk and aλk) such as occupation
probabilities nλ

k = 〈a†
λkaλk〉 in band λ = c, v or transition

probability amplitudes pk = 〈a†
vkack〉 the commutator

with the Hamiltonian must be evaluated. The computation
leads to an infinite hierarchy of higher order quantities
that can be truncated in a systematic way [7]. In Sections
2.1 and 2.2 we introduce the system Hamiltonian and the
resulting EOMs for nk and density correlations C12

34 .

2.1 Hamilton operator The full Hamilton operator
of the CNT system H = Hf + Hee consists of a free con-
tribution Hf and a Coulomb interaction term Hee. The free
part Hf includes the single-particle Hamiltonian with the
tight binding band structure E(1) := Eλ1(k1) (with tight-
binding parameters: γ0 = −2.84 eV, a0 = 0.2461 nm,
only on-site interaction [13]) and the electron light interac-
tion (in second quantization):

Hf =
∑
1

E(1)a†
1a1 −

e0�

im0
At ·

∑
1,2

M12a
†
1a2. (1)

Here, we use the compound quantum number 1 =
(λ1,k1), where k1 is the two-dimensional electron mo-
mentum in zone-folding approximation. M12 are the opti-
cal matrix elements [14]. m0 is the free electron mass and
e0 the elementary charge. The Coulomb Hamilton operator
Hee has the form:

Hee =
1
2

∑
1,2,3,4

V 12
34 a†

1a
†
2a4a3 (2)

with Coulomb matrix elements V 12
34 = 〈1|〈2|V (r −

r′)|3〉|4〉, the regularized Coulomb potential V (r − r′)
and the single-particle tight binding wave functions 〈r|1〉
[9].

2.2 Carrier densities and electron correlations
In the Heisenberg EOM, the elements of the one-particle
density matrix f12 := 〈a†

1a2〉 couple to two-particle den-
sity matrices S12

34 := 〈a†
1a

†
2a3a4〉. When going beyond

the Hartree-Fock level the two-particle quantities S12
34 are

not factorized into one-particle quantities, but calculated
dynamically. The two-particle quantities couple to three-
particle quantities, that are factorized into two- and one--
particle contributions [15]. In order to analyze the influ-
ence of the higher order contributions in comparison to
the Hartree-Fock results, the Coulomb correlations are in-
troduced as the deviations of the two-particle density ma-
trix from the Hartree-Fock factorized parts: C12

34 := S12
34 −

f14f23 + f13f24. These quantities are the source terms for

n(k||,t) [%]
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Figure 1 Carrier dynamics n(k� , t) of the (11,6) CNT for σt =
28 fs and σE = 12 meV. The generation rate is energetically
centered at E0 = 0.715 meV corresponding to k� ≈ 0.18 1/nm.

the population dynamics:

ṅk|corr =
2
�

Im

⎧⎨
⎩

∑
k′,q

V(k+q,k′)C(k+q,k′)

⎫⎬
⎭ . (3)

The correlations dynamics are given by (for a one-band
model we can drop the single band quantum number λ = c
for the conduction band):

Ċ(k+q,k′) = iω(k+q,k′)C(k+q,k′) + A1. (4)

For reasons of clarity we introduced the abbreviation:
X(k+q,k′) := Xk+q,k′

k,k′+q and ω(k+q,k′) := (Ec(k + q) +
Ec(k′) − Ec(k) − Ec(k′ + q))/�. A1 is the Boltzmann
like scattering contribution that is the driving force of the
Coulomb correlation:

A1 = W(k′+q,k) [nk+qnk′(1 − nk)(1 − nk′+q)−
nk′+qnk(1 − nk′)(1 − nk+q)] (5)

with W(k′+q,k) = V(k′+q,k) − V k,k′+q
k′,k+q . The first and the

second term describe in and out scattering events from
electron states with momentum k + q and k′ to states
with momentum k and k′ + q, respectively. The mem-
ory effects contained in these coupled equations (Eqs. (3)
and (4)) can be understood when formally integrating Eq.
(4). In combination with Eq. ((3)) one obtains an integro-
differential equation for the populations clearly showing
the non-Markovian character of the theory. Note, that the
description of screening effects [16] or polarization relax-
ation [15] are beyond the scope of this paper but will be
addressed in future work. Screening of the Coulomb in-
teraction by an external dielectric constant would lead to
less effective scattering and slower themalization of the
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Figure 2 Carrier population of the (11,6) CNT at three different
times for the same excitation conditions as in Fig. 1 (with total
electron density of n = 1.9 · 10−31/nm). After 200 fs the carrier
distribution has almost reached its equilibrium (short-dashed line)
with electronic temperature T ≈ 560 K and chemical potential of
μ ≈ 0.2 eV.

initial non-equilibrium electron distribution. The polariza-
tion dephasing times are expected to be in the same or-
der of magnitude as the present relaxation dynamics. The
impact of electron-phonon scattering on the ultrafast dy-
namics can be neglected here, since the intrasubband ther-
malization due to carrier-carrier scattering takes place on a
shorter time scale at sufficiently low temperatures [4,17].
In order to model the generation of carriers by an optical
field, a semiclassical generation rate is included into Eq.
(4). This ensures a continuous build-up of the correlation,
as opposed to a fixed initial carrier distribution [18]. The
generation rate is assumed to be Gaussian in time and re-
ciprocal space:

ṅk|gen = g0e
− t2

2σ2
t e

− (Ek−E0)2

2σ2
E . (6)

This ansatz for a non-equilibrium pumping mechanism is
necessary as only the unexcited CNT has vanishing carrier
densities (nk|corr = 0) and correlations (C(k+q,k′) = 0).

3 Results The above EOM for the correlations
C(k+q,k′) and carrier densities nk are solved numeri-
cally for various CNTs. The numerical convergence of the
shown results was tested with respect to the discretization
in time (typically 0.1 fs) and reciprocal space (typically
10−3/nm) as well as with respect to the size of the consid-
ered subband. Figure 1 shows the carrier density dynamics
nk(t) of a (11,6) CNT within the first 400 fs after a car-
rier generation with σt = 28 fs and σE = 12 meV (cp. Eq.
(6)). The initial non-equilibrium carrier distribution peaked
at k� �= 0 rapidly evolves into an equilibrium Fermi-like
funtion centered around k� ≈ 0. Furthermore, we observe
temporal and wave number related oscillations in the elec-
tron plasma distribution. Such oscillations are connected
to the wave like properties of the electron plasma beyond
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Figure 3 Carrier occupation n(k� = const., t) of the (11,6)
CNT over time for three different values of the wave vector k� .
An exponential fit yields a relaxation time τex ≈ 26 fs (long-
dashed line) and τmin ≈ 60 fs (solid line). The short-dashed line
is non-exponential.

a Markovian approximation. Figure 2 shows the carrier
population nk at different times after the carrier genera-
tion in more detail. Note that, the minimum of the band
ωc(k) is located at k� ≈ 0. Initially, the carrier distribution
at the band minimum is low compared to the maximum
occupation at higher energies in the band. As time evolves,
due to carrier-carrier scattering the initial sharp electron
distribution (t = 0 fs) is broadened and the carriers are
transferred to the band minimum. After 100-200 fs the
thermalization of the non-equilibrium carrier distribution
is completed. This is in good agreement with experimen-
tal findings [4] predicting an intraband relaxation time of
130 fs. A least-square fit of the final equilibrium carrier
distribution gives an electronic temperature of T ≈ 560 K
and chemical potential of μ ≈ 0.2 eV. As we see from
Fig. 1, the non-linear carrier relaxation dynamics of an
excited CNT can not be described by a single relaxation
time τ . To give at least a simplified description of the dy-
namics we introduce two relaxation times τex and τmin. τex

is the exponential relaxation time at wavevector k� = kex
�

where the excitation is centered (20 meV above the band
minimum troughout this work). τmin is the exponential
relaxation time at wavevector k� = kmin

�
where the band

minimum is located. The relaxation times are obtained by
a least-square fit of an exponential fitting function. In Fig.
3 the relaxation dynamics at k� = kmin

�
(solid line) and

at k� = kex
� (long-dashed line) are compared: τex ≈ 26 fs

and τmin ≈ 60 fs are found. Note also, that the relaxation
dynamics for some nk(t) are strongly non-exponential
(short-dashed line in Fig. 3). This complex behavior does
not only result from the non-Markovian EOM, but also
occurs because the relaxation dynamics depend on the car-
rier density generated in the band. In Fig. 4 we compare
the relaxation dynamics of the (11,6) CNT at k� = kex

� for
different amplitudes g0 of the generation rate ṅk|gen (Eq.
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Figure 4 Carrier dynamics of the (11,6) CNT at k� = kex
� for dif-

ferent generation rate amplitudes g0. With increasing amplitude
from g0 = 3 · 10−41/ fs to g0 = 1.5 · 10−31/ fs the decay time
decreases from τex = 38 fs to τex = 24 fs, while the period of the
oscillations Tex decreases from Tex = 120 fs to Tex = 50 fs.

(6)). When the generation rate amplitude is varied from
g0 = 0.3/ps to g0 = 1.5/ps (Fig. 4) the generation is
enhanced and consequently the relaxation times decrease
(more scattering partners are present) from τex = 38 fs to
τex = 24 fs. Furthermore, the periods of the carrier oscil-
lations Tex decrease as g0 is increased. At g0 = 0.3/ps we
find a period of Tex = 120 fs that is more than twice as
long as Tex = 50 fs for g0 = 1.5/ps.
We have done similar calculations for all CNTs of the

2n1 + n2 = 29 branch (Table 1). The qualitative behav-
ior of the relaxation dynamics is very similar to that of
the (11,6) CNT (cp. Fig. 1). Within the branch the relax-
ation times (τex ∼ 23 fs,τmin ∼ 45 fs) and the oscillation
periods Tex ∼ 80 fs are nearly independent of chirality.
While relaxation dynamics seem not to strongly depend

Table 1 Relaxation times τex and τmin and periods of plasma
oscillations Tex for CNTs (diameter d, chiral angle θ) of the
2n1 + n2 = 29 branch and the (11,6), (22,12) and (44,24) CNTs
of same chirality.
n1 n2 d [nm] θ[◦] τex [fs] τmin [fs] Tex [fs]
10 9 1.29 28.3 23 45 76
11 7 1.23 22.7 24 45 75
12 5 1.19 16.6 23 45 80
13 3 1.15 10.2 23 45 80
14 1 1.14 3.4 23 45 80
11 6 1.17 20.4 23 49 81
22 12 2.34 20.4 36 56 97
44 24 4.68 20.4 51 37 137

on chirality we find a dependence of the relaxation times
and oscillation period on the diameter of the CNT. We
have done calculations for the (11,6), (22,12) and (44,24),
which all have the same chirality of θ = 20.4◦ but di-
ameters ranging from ∼ 1.2 nm to ∼ 4.7 nm (Table 1).
For the same excitation conditions as above we find that

the relaxation time τex increases with diameter (Table 1).
This is due to the weaker Coulomb interaction in larger
diameter CNTs (matrix element V(k+q,k′) decreases with
increasing diameter).

4 Conclusions In summary, we have calculated the
ultrafast intraband relaxation dynamics of excited carri-
ers in CNTs. We employed the Carbon Nanotube Bloch
Equation (CNBE) approach [9], including non-Markovian
second-order Born correlation effects that lead to carrier-
carrier scattering. Typically, we find an ultrafast thermal-
ization of carriers on a timescale of 100 fs for various
CNTs of different chirality and diameter. This result agrees
well with recent experiments of Lauret et al. [4]. From
our studies we find nearly no chirality but a consider-
able diameter dependence for the calculated CNTs. Non-
Markovian features are manifested in oscillations of the
electron plasma occupation. We find oscillations with peri-
ods in the range of 70-140 fs. A next step, to analyze opti-
cal properties, is to consider the formation of excitons [9]
and their Coulomb quantum kinetics within the CNBEs.
Further studies could also investigate the influence of the
length of the generating pulse on the relaxation dynamics
to deconvolve relaxation and pulse contributions to the dy-
namics.
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[14] E. Malić, M. Hirtschulz, F. Milde, A. Knorr, and S. Reich,
Phys. Rev. B 74(19), 195431 (2006).

[15] M. Lindberg and S. W. Koch, Phys. Rev. B 38(5), 3342–
3350 (1988).

[16] E. Heiner, phys. stat. sol. (b) 153(1), 295 (1989).
[17] B. Habenicht, H. Kamisaka, K. Yamashita, and O. Prezhdo,

Nano Lett. 7(11), 3260 (2007).
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