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We derive an analytic expression for the optical matrix elements of carbon nanotubes and calculate their
optical absorption spectra within the tight-binding approximation. For zigzag nanotubes we present an analyti-
cal result for the absorption coefficient. Metallic nanotubes have an optical band gap regardless of their chiral
angle. The optical absorption intensity increases by up to 10% from zigzag to armchair nanotubes. This trend
is in agreement with experiment, although its magnitude is underestimated. We predict a strong absorption
peak in the high-energy spectra of certain zigzag nanotubes that can be used to identify the tubes
experimentally.
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I. INTRODUCTION

Optical spectroscopies—absorption, photoluminescence,
Rayleigh, and Raman scattering—are among the most impor-
tant characterization techniques for single-walled carbon
nanotubes.1–5 They allow the identification of the nanotube
microscopic structure or chirality of isolated tubes as well as
for samples containing millions of tubes. It has also been
attempted to measure the abundance of nanotube chiralities
from the intensities of the optical spectra.1 For this we need
to know how the optical cross section varies with nanotube
chirality.

The optical excitations of carbon nanotubes are excitons,
because the exciton binding energy ��0.2–0.4 eV� is much
larger than the thermal energy at room temperature.6,7 Al-
though many calculations studied excitons in single-walled
carbon nanotubes,8–10 a systematic dependence of the exciton
absorption strength on chirality has proven to be too difficult
so far. Chirality-dependent studies, therefore, concentrated
on the band-to-band transition model—i.e., the excitation of
an electron from the valence into the conduction band.11–13

Band-to-band transitions can also give good insight when
comparing the optical properties as a function of chirality,
because the excitonic absorption follows the oscillator
strength found for uncorrelated electron-hole pairs. This as-
sumption might fail if the exciton binding energy varies
strongly from one tube to the other or if the lifetime of the
excitons depends strongly on the type of tube.14,15 Neverthe-
less, the band-to-band transition picture is still an important
starting point when studying optical processes in carbon
nanotubes.

The electronic properties of single-walled carbon nano-
tubes within the single-particle approximation are often de-
scribed by the tight-binding approximation.13,16–19 The
beauty of this approach is its simplicity. When combined
with a zone-folding approximation to relate the electronic
properties of carbon nanotubes to the properties of graphene,
the tight-binding approximation yields analytic expressions
for the nanotube electronic band structure.16,19,20 The tight-
binding approximation was also used to model the optical
properties of carbon tubes,11–13 but surprisingly, all calcula-
tions reported so far have been performed numerically.

In this paper we study the optical spectra of carbon nano-
tubes using the tight-binding approximation. We derive ana-
lytic expressions for the optical matrix elements of arbitrary
�n1 ,n2� nanotubes and Eii transition energies. For the special
case of zigzag tubes even the optical absorption coefficient
can be given analytically. We discuss selection rules in car-
bon nanotubes, the nanotube family behavior, and the influ-
ence of trigonal warping on the optical absorption intensities.

This paper is organized as follows. In Sec. II we describe
the theoretical background and derive analytic expressions
for the optical matrix elements and for the absorption coef-
ficient of zigzag tubes. The matrix elements are analyzed and
discussed as a function of nanotube chirality and transition
index in Sec. III. In Sec. IV we discuss the optical absorption
spectra of various nanotubes, their dependence on nanotube
family, chiral angle, etc. Section V contains our conclusions.

II. THEORY

In this section, we show how to calculate the optical ab-
sorption spectra of carbon nanotubes using the tight-binding
approximation for the optical matrix elements. The latter are
given analytically for arbitrary �n1 ,n2� nanotubes. We also
obtain an analytic expression for the absorption spectra of
zigzag tubes.

We calculate the optical absorption coefficient ���� for
incoming light with a frequency �. Starting from the well-
known expression P���=����E��� with the optical suscep-
tibility ���� as the complex coefficient between the macro-
scopic polarization P��� and the electrical field E��� we
obtain the absorption coefficient21,22

���� � � Im ���� = Im�j���/�A���� , �1�

where j��� is the macroscopic current density. We applied

the relations j�t�= Ṗ�t� and E�t�=−Ȧ�t� which can be derived
from the Maxwell equations �applying the Coulomb gauge
and assuming that the scalar potential is zero�. The macro-
scopic current density j��� depends on the microscopic po-
larization, which can be calculated using the Bloch
equations.22 We are interested in the linear absorption spectra
of carbon nanotubes; i.e., we assume that the driving field
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A��� is so weak that it does not affect the occupation prob-
abilities of the electronic states. Furthermore, the fast-
oscillating terms in the macroscopic current density j��� are
neglected according to the rotating-wave approximation.22,23

This yields

���� �
�e0

2

m0
2�

�
k

�M�k��2
�

�� − �cv�2 + �2 , �2�

with �cv=�c−�v �c and v denote the conduction and va-
lence bands, respectively�. The parameter � contains all ne-
glected interactions, such as electron-phonon coupling. They
lead to a broadening of the spectra. M�k� is the optical ma-
trix element. It contains all selection rules and describes the
strength of an optical transition as a function of the wave
vector k.

The interband optical matrix element for transitions from
a state in valence band �−�k ,r� to a state in the conduction
band �+�k ,r� is given by22,24

M̂opt�k� = −
�e0

im0
A�kph� · 	�+�k,r�����−�k,r�
 , �3�

when using the p ·A light-matter interaction Hamiltonian.25

e0 is the elementary charge, m0 the electron mass, A�kph� the
vector potential, and p= �

i � the linear momentum operator.
The vector potential can be separated from the expectation
value assuming that the photon wave vector kph is negligible
compared to the electronic wave vector k �dipole approxima-
tion�. In the following, we refer to

M�k� = 	�+�k,r�����−�k,r�
 �4�

as the optical matrix element. In this work, we focus on light
polarized parallel to the nanotube axis �z axis�; therefore,
only the z component of the optical matrix element, Mz�k�, is
of interest.

To calculate Mz�k� we use the tight-binding approxima-
tion. Within this approximation, the eigenfunctions of the
Hamiltonian of graphene are expressed as a linear combina-
tion of Bloch functions 	 j�k ,r� consisting of the two atoms
A and B in the 2-dim graphene unit cell:12,16

�±�k,r� = �
A,B

Cj
±�k�	 j�k,r� = �

A,B
Cj

±�k�
1

�Nc
�
Rj

Nc

eik·Rj	�r − R j� .

�5�

Nc is the number of unit cells, and R j are the lattice vectors.
�+�k ,r� and �−�k ,r� are the wave functions describing the
conduction and valence bands, respectively. The Bloch func-
tions 	 j�k ,r� are expressed as a linear combination of atomic
wave functions 	�r−R j� of the 2pz orbitals centered at r
=R j. The coefficients Cj

±�k� are found by solving the
Schrödinger equation H�±�k ,r�=E±�±�k ,r�:

CA
± = 
 CB

± e�k�
�e�k��

, �6�

where e�k�=�i=1
3 exp�ik ·bi�. The vectors bi connect the atom

located at r0 with its three first neighbors at ri �i=1,2 ,3�.
Inserting the wave functions �±�k ,r� into Eq. �4� and using

the orthogonal first-neighbor approximation we obtain

Mz�k� =
1

Nc
�
A,B

�
Rj,Rj�

Nc

eik·�Rj�−Rj�Cj�
− �k�Cj

+�k�

�		�r − R j����	�r − R j��


=
�3Mc

a0�e�k��
Re�e*�k��

i=1

3

eik·bibi,z
 , �7�

where a0=0.2461 nm is the lattice constant of graphene. Mc
denotes the constant optical matrix element for the two
nearest-neighbor atoms, Mc=		�r+Ri�� �

�z �	�r�
.12

Equation �7� implies a zone-folding approach to describe
optical absorption in carbon nanotubes. We assume that the
wave functions of graphene remain unaltered when rolling
up the tube. Considering only the z-polarized light accounts
for the depolarization effect that strongly suppresses light
polarized perpendicular to the nanotube axis.26 Another dif-
ference between nanotubes and graphene is the existence of
periodic boundary conditions around the nanotube circumfer-
ence. They restrict the allowed wave vectors knt to lines in
the graphene Brillouin zone.

To evaluate Eq. �7� we need an expression for bi,z for
arbitrary �n1 ,n2� nanotubes. They are found by expressing
the atomic positions of a tube in cylindrical
coordinates16,20,27 and calculating the distance between
neighboring atoms along the tube axis:

bi,z = −
�3a0

6�N
�2n1 − 2n2 − 3ti� , �8�

with t1=−n2, t2=n1, t3=n1−n2, and N=n1
2+n2

2+n1n2. Insert-
ing Eq. �8� into Eq. �7� yields

Mz�k� =
Mc

2�N�e�k��
��n1 − n2�cos�k · �a1 − a2��

− �2n1 + n2�cos�k · a1� + �n1 + 2n2�cos�k · a2�� ,

�9�

with the two graphene basis vectors a1 and a2.
As mentioned above, the allowed wave vectors of a nano-

tube are quantized due to the periodic bounding conditions
around the tube. The allowed wave vectors knt of a nanotube
are completely expressed by a quantized wave vector mk�,
where m labels the bands, and a continuous wave vector kz
along the nanotube axis,16,27

knt = m�2n1 + n2

2N
k1 +

n1 + 2n2

2N
k2� + �−

n2

q
k1 +

n1

q
k2�kz.

�10�

n is the greatest common divisor of n1 and n2, k1 and k2 are
the reciprocal lattice vectors of graphene, q is the number of
graphene hexagons in the nanotube unit cell �m is restricted
to �− q

2 , q
2
�, and kz��0, 1

2
�� describes the Brillouin zone of a

nanotube.
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Using knt we can express the optical matrix element for
light polarized along the nanotube axis as a function of the
chiral index �n1 ,n2�, band index m, and wave vector along
the axis kz:

Mz�m,kz� =
Mc

2�N�e�k��
��n1 − n2�cos �3 − �2n1 + n2�cos �1

+ �n1 + 2n2�cos �2� , �11�

with

�1 = �m
2n1 + n2

N
− 2�

n2

q
kz,

�2 = �m
n1 + 2n2

N
− 2�

n1

q
kz,

�3 = �m
n1 − n2

N
− 2�

n1 + n2

q
kz,

�e�k�� = �3 + 2 cos��1� + 2 cos��2� + 2 cos��3� . �12�

We obtained a fully analytic expression for the band-to-
band transition matrix element; it will be analyzed in Sec.
III. To find ���� we insert Eq. �11� into Eq. �2� and sum
numerically over k. In the special case of zigzag nanotubes
we even obtain an analytical expression for the absorption
coefficient. The electronic dispersion relation for a �n ,0� zig-
zag nanotube is

Ezz
± = ± �0

�3 + 2 cos�2�m/n� + 4 cos��m/n�cos��kz� .

�13�

Inserting Eqs. �11� and �13� into Eq. �2� we find the absorp-
tion coefficient for an arbitrary zigzag nanotube:

����zz � �
m=−q/2+1

q/2
�cos��m/n�cos��kz���� − cos�2�m/n��2

����2 cos��m/n�sin��kz����
.

�14�

The nanotube wave vector corresponding to a given photon
energy kz��� is obtained from Eq. �13�:

kz��� =
1

�
arccos� ���/2�2 − Em

2

cm
2 
 ,

where cm
2 =4�0

2 cos��m /n� and Em
2 =�0

2�3+2 cos�2�m /n��.
The analytical expression for the absorption coefficient is
valid in the case �→0 where the relation �

��−�cv�2+�2

=�
��−�cv� is applicable.22

III. OPTICAL MATRIX ELEMENTS

In this section, we study the optical matrix element, given
in an analytic form in Eq. �11�. We first consider symmetry-
imposed selection rules that are fully covered by our expres-
sion. We then discuss the dependence of the matrix element
on chiral angle, nanotube family, band index m, and wave
vector kz along the nanotube axis.

The symmetry of carbon nanotubes imposes the following
selection rules for optical band-to-band transitions.16,20 For
light polarized along the nanotube axis, transitions are al-
lowed between electronic states with �m=0. The vertical
and horizontal mirror planes of achiral armchair and zigzag
tubes give rise to additional symmetry-imposed selection
rules. Because of its A0

− symmetry, z-polarized light preserves
the vertical mirror parity �v, whereas the parity for the hori-
zontal mirror plane �h is reversed.28

The symmetry-imposed selection rules are governed by
our analytic expression for M�m ,kz� in Eq. �11�, which is a
first test of our result. Mz vanishes in �n ,n� armchair nano-
tubes for kz=0, m=0, or m=n. For an �n ,n� armchair tube,
the conduction and valence bands with m=0 and m=n have
opposite �v parity; see Fig. 1�a�. The corresponding two
transitions are forbidden because the parity with respect to
�v cannot be preserved. The matrix element is zero for
kz=0, reflecting the �h selection rule. As can be seen in Fig.
1�a� the valence and conduction bands with the same m have
the same �h parity at the � point in armchair nanotubes.20

The �h parity cannot be reversed, and the matrix element
vanishes for kz=0, independent of m. The maxima and
minima in the electronic band structure of zigzag tubes are
always located at the � point. As can be seen in Fig. 1�b�,
optical transitions between valence and conduction bands
with the same m fulfill the symmetry-imposed selection
rules. This is in excellent agreement with Eq. �11�, where Mz
remains nonzero for �n ,0� tubes at kz=0, in contrast to the
�n ,n� armchair case.

We now discuss how the optical matrix element Mz�k� in
zigzag and armchair nanotubes depends on the band index m,
which corresponds to certain high-symmetry lines in
graphene. Figure 2�a� shows the optical matrix element at the
� point of zigzag nanotubes. This is equivalent to the �KM
high-symmetry line of graphene; see the inset of Fig. 2�a�.

FIG. 1. Band structure of an �a� �10,10� armchair and �b� �10,0�
zigzag nanotube. �and � denote the electron parity under �h and A
and B the parity under �v reflections �Refs. 16 and 28�. The bold
�dashed line� band in �a� emphasizes the m=10 �m=9� valence and
conduction bands. In �b� we indicated the m=7 bands by solid bold
lines, the m=6 bands by dashed lines, and the dispersionless m=5
bands by dash-dotted lines.

ANALYTICAL APPROACH TO OPTICAL ABSORPTION… PHYSICAL REVIEW B 74, 195431 �2006�

195431-3



The matrix element is zero for m=0, which corresponds to
the � point of graphene. At this high-symmetry point optical
absorption is forbidden in graphene for the � bands, which
carries over to nanotubes. The magnitude of Mz�m ,0� de-
creases when going from K to �, but increases from K to M.
This leads to a chirality and family dependence of the matrix
element as we discuss below.

Figure 2�b� shows the dependence of the matrix element
on m in armchair nanotubes for the kz with a high electronic
density of states �maxima and minima in the band structure;
see Fig. 1�a��. Varying m then corresponds to going along the
high-symmetry line MK as shown in the inset of Fig. 2�b�.
The magnitude of the matrix element is maximal at the M
point; it decreases towards K, where it vanishes because of
the �v selection rule. Note that the matrix elements along the
two KM segments in Figs. 2�a� and 2�b� differ, because we
fixed the polarization of the absorbed light to be parallel to
the tube.

Figure 3 shows the dependence of the matrix element on
the chiral angle 	 and the semiconducting nanotube family
�= �n1−n2� mod 3= ±1 �Ref. 29�. A similar dependence of
Mz on 	 was obtained numerically by Grüneis et al.12 We

evaluated Mz at the kz that correspond to the first two Van
Hove singularities �transitions E11 and E22�. The result mir-
rors the behavior of the matrix element shown in Fig. 2. For
zigzag nanotubes �	=0° � the magnitude of the matrix ele-
ment is larger for the knt on the KM than on the �K line in
Fig. 2�a�. Consequently, �Mz�k�� is higher for E11 than for E22

in +1 tubes, because these transitions originate from opposite
sides of the graphene K point as indicated in Fig. 4�b�. The
difference becomes smaller with increasing chiral angle 	. It
almost vanishes for armchair tubes, where the dependence of
Mz on m is weak, Fig. 2�b�.

The energy minima for +1 and −1 tubes for a given tran-
sition Eii are located on different sides of the graphene K
point; see Fig. 4. The matrix elements, therefore, exhibit a
family dependence. For −1 nanotubes, �Mz�k�� is larger at the
second transition E22 than at E11 �in contrast to +1 tubes�,
because the E22 Van Hove singularity originates from the
KM line �Fig. 4�. The two families differ even for the same
transition Eii. For, say, E11 the +1 family has larger Mz than
the −1 family. This can, likewise, be explained with the ab-
solute values of Mz in zigzag tubes, Fig. 2�a�, and the zone-
folding approximation, Fig. 4�b�. Interestingly, the difference
in the magnitude of Mz to the right and left of K in Fig. 2�a�
is mainly due to the explicit dependence of the matrix ele-
ments on e�k�. The cosine terms in Eq. �11� lead to a linear
dependence of Mz on k close to the K point.

Figure 5 shows the matrix element for �a� the �10,0� zig-
zag and �b� the �10,10� armchair nanotube as a function of kz
for the lowest bands. For the �10,0� zigzag tube we show,
additionally, the bands with m=3 and 4 to illustrate the rela-
tion to the band structure in Fig. 1�b�. The matrix element
M�7,kz� is negative in the �10,0� tube at the first Van Hove
singularity in agreement with Fig. 2�a�; it exhibits a mini-
mum at the � point followed by a rapid increase. In contrast,
M�6,kz� �second singularity� is positive and the maximal ab-
solute value is smaller than for the m=7 band, because the
Van Hove singularity originates from the �K line of
graphene. The kz dependence of the matrix elements for
bands with m�

n
2 such as m=3 and 4 in Fig. 5�a� differs from

bands with m�
n
2 mirroring the band structure of a �n ,0�

zigzag nanotube. Figure 1�b� shows that the bands of zigzag
tubes have minima at � for m�

n
2 , but maxima m�

n
2 ; the

two types of bands intersect at kz= �
a .

FIG. 2. Optical matrix element Mz�k� as a function of m. �a� In
zigzag nanotubes Mz�m ,0� corresponds to the high-symmetry line
�KM; see inset. In �b� we show the optical matrix elements in
armchair nanotubes for the kz vectors that give rise to the Van Hove
singularities. This corresponds to the the MK line of graphene; see
inset.

FIG. 3. The magnitude of the optical matrix element Mz�k� as a
function of the chiral angle 	 for the first two Van Hove singulari-
ties. We evaluated two semiconducting tube families �= +1, −1
with �=2n1+n2=26,28; see legend. The tubes have a fairly con-
stant diameter d�1.1 nm.

FIG. 4. �a� � bands of graphene along �KM. �b� Simplified
energy contour of graphene around the K point of the Brillouin
zone. The deviation from a circle is exaggerated to illustrate trigo-
nal warping. The vertical lines correspond to the lowest subbands of
semiconducting zigzag nanotube with �=−1 �left� and �= +1
�right�. Dashed lines indicate the three KM directions. The numbers
label the transition Eii.

MALIĆ et al. PHYSICAL REVIEW B 74, 195431 �2006�

195431-4



In the �10,10� armchair nanotube in Fig. 5�b� the matrix
element is zero for Mz�m ,0� as we explained above. It de-
creases when going away from � with minima for
Mz�9,0.68� /a� and M�8,0.74� /a�. The extrema correspond
to the position of the energy minima in the band structure in
Fig. 1�a�.

IV. ABSORPTION SPECTRA

The dependence of the optical matrix element on nano-
tube chirality and transition energy Eii is often assumed to
indicate the variation in absorption strength.12 However, the
absorption coefficient reflects also the joint density of
electronic states �JDOS�. In this section we discuss the vari-
ous contributions to � in Eq. �2� separately and examine how
the absorption intensities of band-to-band transitions depend
on nanotube chirality. The parameters needed for the evalu-
ation of Eq. �2� are used in agreement with experimental
results and previous theoretical investigations �0=−2.7 eV,
�=20 ps−1, and Mc=1.12,16

A. Achiral and chiral nanotubes

Figure 6 shows the absorption spectra of the �8,8� metallic
armchair, the �13,0� semiconducting zigzag, the �10,5� semi-
conducting, and the �9,6� metallic chiral nanotube. The pro-
nounced peaks in the spectra correspond to band-to-band
transitions from valence to conduction band with the same m
according to the selection rule for parallel polarized light.
The peaks in the spectra of the �8,8� nanotube in Fig. 6 �solid
lines� stem from transitions between bands with m=7, 6, 5,
and 4 when going from lower to higher energies. The selec-
tion rules in armchair nanotubes �kz=0, m=0, and m=n� re-
duce the number of peaks compared to assuming constant
matrix elements �dashed lines�. Transitions with m=3, 2, and
1 do not appear since for m�

n
2 the band extrema are at the �

point �Fig. 1�a�� where the optical matrix element is zero.
Similarly, optical transitions between the valence and con-
duction bands crossing at the Fermi level are forbidden,
which is known as the optical band gap of armchair tubes.

In the spectrum of the �13,0� zigzag nanotube eight peaks
�m=9, 8, 10, 7, 11, 12, 13, and 6 with increasing energy� can

be seen. Transitions that are higher in energy are very weak
because of the E−2 dependence of the absorption coefficient
�Eq. �14��. The band structure of a zigzag nanotube exhibits
minima for m�

n
2 and maxima m�

n
2 at the nanotube � point,

Fig. 1�b�. The transition energy increases strongly from En/2
to En/2−1 and, therefore, the intensities of transitions with
m�

n
2 are weak.

Chiral nanotubes have no additional symmetry-imposed
selection rules besides �m=0. It is controversial whether
results obtained for the higher-symmetry armchair and zig-
zag tubes such as the existence of an optical gap �see �8,8�
tube in Fig. 6� can be extended to chiral tubes. Figure 6
demonstrates that including the optical matrix elements of
chiral tubes leads to similar conclusions about the absorption
spectra as for achiral tubes. In particular, the absorption di-
minishes for the bands crossing at the Fermi level in metallic
nanotubes �optical gap� as can be seen for the �9,6� tube in
Fig. 6. Also, the transitions originating from maxima rather

FIG. 5. Optical matrix element as a function of kz: �a� bands
with m=7, 6, 3, and 4 in the �10,0� zigzag nanotube and �b� bands
with m=9 and 8 in the �10,10� armchair nanotube.

FIG. 6. Optical absorption of the �8,8� armchair, �13,0� zigzag,
�10,5� semiconducting, and �9,6� metallic chiral nanotubes. The
solid lines were calculated using the optical matrix element in Eq.
�11�. The dashed lines correspond to the approximation of a con-
stant matrix element Mz�k�=1. The four nanotubes have a similar
diameter d�1 nm.
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than minima in the electronic band structure are strongly
suppressed �compare the solid and dashed lines for the �10,5�
and �9,6� tube in Fig. 6�. These transitions are very high in
energy ��6 eV� and are strictly zero in armchair tubes. The
optical gap in zigzag nanotubes can also be obtained from
the analytic expression for the absorption spectra in Eq. �14�.
The bands crossing at the Fermi level have m=2n /3. Insert-
ing this m into Eq. �14� and assuming a linear electronic
dispersion close to the Fermi level yields �����kz. The ab-
sorption is weak at the � point; then, it slowly increases �the
factor between � and kz is small�. The 1/sin-type singulari-
ties that dominate the transitions with m�2n /3 are sup-
pressed.

Comparing the band-to-band absorption peaks for con-
stant matrix elements in Fig. 6 �dashed lines� with the full
calculation according to Eqs. �2� and �11� �solid lines� we
find that the peaks are more pronounced when including the
optical matrix elements. This can be understood by looking
at the kz dependence of Mz in Fig. 5; the magnitude of Mz is
at maximum at kz values that correspond to Van Hove singu-
larities. This enhances the absorption probability at the band
extrema and reduces the absorption intensity away from the
minima and maxima in the electronic band structure. For
zigzag nanotubes we found an analytic expression for the
energy Eeq at which the absorption intensity assuming a con-
stant matrix element equals the full calculation using Eq.
�11�:

Eeq = − Mc�0��
m

�cos��m/n�cos��kz� − cos�2�m/n��2.

�15�

For a given m the absorption will be stronger for E�Eeq
when including the matrix element and weaker for E�Eeq.

B. Chirality and family dependence of the absorption
intensity

From the dependence of the optical matrix elements on
nanotube family and chiral angle one might expect a de-
crease in absorption intensity with chiral angle for the ab-
sorption into the first Van Hove singularity of +1 nanotubes,
but an increase for −1 tubes; see Fig. 3. However, this is not
correct. As we show in the following � always increases for
the first two optical transitions when going from zigzag to
armchair tubes.

In Figs. 7�a�–7�c� we show how the different contribu-
tions to � in Eq. �2� combine to the overall chirality depen-
dence of the optical absorption in +1 semiconducting tubes.
The joint density of states in +1 tubes is constant for the E11
transition, but decreases with chiral angle for E22, Fig. 7�a�.
This is related to trigonal warping and whether the transi-
tions originate from the left or right of the K point of
graphene in the zone-folding approximation. We plot �cM for
the approximation of constant Mz�k�=1 in Fig. 7�b�, which
is given by the JDOS divided by the transition energy, Eq.
�2�. The transition energies of the tubes decrease with in-
creasing 	 since the diameter decreases slightly for 2n1+n2
=const. As a result the absorption intensity should become
larger with 	 when matrix elements are neglected. The de-

creasing JDOS of the second Van Hove singularity E22, how-
ever, leads to a slight decrease of �cM�E22� with chiral angle.

Taking the optical matrix element into account we obtain
the intensities shown in Fig. 7�c�. The intensities of both
transitions increase from the zigzag to the armchair direc-
tion; the increase of ��E22� is larger. Trigonal warping also
leads to a family dependence of the absorption coefficient. A
comparison to Fig. 7�c� shows that in contrast to +1 tubes the
intensity of the first transition ��E11� increases strongly
whereas ��E22� remains approximately constant. This can,
again, be explained by zone folding. According to Fig. 4 the
position of the first two transitions for the two semiconduct-
ing families originate from opposite sides of the graphene K
point.

The family dependence of the absorption coefficient and
the importance of the matrix element for understanding the

FIG. 7. Chirality and family dependence of the absorption in-
tensity. �a� �b� �c� are for +1 nanotubes with 2n1+n2=26
�d�1.02−1.15 nm�. �a� Joint density of states for E11 �solid lines�
and E22 �dashed lines�, �b� absorption intensity �cM when assuming
constant matrix elements Mz�k�=1, �c� absorption intensity � in-
cluding the matrix element Mz in Eq. �11�, and �d� same as �c� for
−1 nanotubes �2n1+n2=28 and d=1.10−1.22 nm�.
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absorption spectra are further illustrated in Fig. 8, where we
show ��E11� /��E22� for both nanotubes families. The inten-
sity ratios for Mz�k�=1, Fig. 8�b�, differ clearly from the
ratios obtained by using the k dependence of Mz�k�, Fig.
8�a�. The reason is the chirality dependence of the optical
matrix element itself. It decreases with 	 for transitions with
Van Hove singularities on the KM high-symmetry line and
increases for transitions stemming from the K� line �Figs. 3
and 4�. Since the absorption coefficient depends on the
squared matrix element, the intensity of transitions between
bands originating from the KM line of graphene is reduced
with increasing chiral angle, which changes the intensity ra-
tios for the two semiconducting nanotube families in Figs.
8�a� and 8�b�.

The intensity in photoluminescence excitation �PLE� ex-
periments on single-walled carbon nanotubes is proportional
to the product ��E22���E11�, because the light is absorbed by
the second and emitted by the first subband.1 Under the as-
sumption of a constant decay rate from the second to the first
subband for different chiralities, Fig. 7 predicts an increase
in the PLE intensity for both semiconducting families with
increasing chiral angle. This trend is also observed experi-
mentally, although the increase is much larger than the 10%
predicted from the product of the absorption probabilities.1,2

The discrepancy comes most likely from the nonconstant
decay rates from the second to the first subband, a topic that
is studied intensively.14,30,31 We also note that ��E22���E11�
is by 10% larger for −1 tubes in Fig. 7�d� than for the +1
tubes in Fig. 7�c�. This agrees quite nicely with the higher
experimental PLE intensity of −1 semiconducting tubes
compared to the +1 family.2

In our discussion of the nanotube optical properties we
neglected so far excitons and the curvature of the nanotube
wall. As mentioned earlier, electron-hole interaction leads to
a transfer of the oscillator strength from band-to-band to ex-
citonic transitions. If the relative intensities of the correlated
and uncorrelated electron-hole pairs are constant for different
tubes, the absolute intensities of the excitonic lines will sim-
ply follow the band-to-band transition intensities. This is
most likely a reasonable approximation, because nanotube
excitons are in the strong-binding limit6–9 for typical tube
samples. To further study this question we currently develop
a tight-binding-based model of the nanotube optical proper-
ties including electron-hole interaction.

The effect of curvature on the nanotube optical properties
is twofold: First, curvature induces a � contribution in the

electronic wave functions.19,32 The �-like part of the wave
function, however, yields little or no optical absorption in-
tensity. This is best understood for zigzag tubes, because of
their high symmetry. The bonding and antibonding � states
both transform even under �h. Optical absorption is, there-
fore, forbidden for parallel polarization �see Sec. III�, which
will reduce the overall magnitude of Mz�k� if curvature is
included. The second effect of curvature is to shift the E11
optical transition energies of +1 tubes and the E22 transition
energies of −1 tubes to smaller energies for small chiral
angles �these are the band with the strongest �−� mixing,
Ref. 19�.1,3,13,19,32 Since � depends explicitly on Eii

−2, Eqs. �2�
and �11�, this shift will increase � for zigzag and close-to
zigzag tubes when curvature is included. We expect the two
effects to cancel for tubes with diameter �1 nm and not to
affect the dependence of � on chiral angle. Nevertheless, an
analysis of the absorption intensities when including curva-
ture would be very interesting.

C. Dispersionless band in zigzag tubes

Finally, we present a pronounced absorption band at high
energies that is characteristic of �n ,0� zigzag nanotubes with
n even. Figure 9 compares the absorption spectra of the
�10,0� nanotube with two chiral tubes and the �11,0� zigzag
nanotube �n odd�. The spectra of the �10,0� nanotube contain
a characteristic peak at E=5.4 eV that dominates in intensity
over all other transitions. It does not have the typical 1 /�E
form. Within the tight-binding model, �n ,0� zigzag nano-
tubes with n even have a band m= n

2 that is free of dispersion
�Fig. 1�, which gives rise to this intense peak. According to
Eq. �13�, the energy of the m=5 band of the �10,0� nanotube
is Ezz

± = ±2�0. The energy is independent of kz and leads to an
infinite density of states. None of the other nanotubes exhibit
such an intense peak. Including more neighbors in the tight-
binding model or using ab initio techniques to calculate the
band structure will lead to a small dispersion of the n /2 band
in �n ,0� tubes. Nevertheless, the density of states remains
very large and singles out the �n ,0� tubes with n even. Ob-
serving this UV transition would allow one to easily identify

FIG. 8. Intensity ratios ��E11� /��E22� of the first two peaks in
the absorption spectra for −1 �solid lines� and +1 nanotubes �dashed
lines�. The ratios in �a� and �b� were calculated with and without the
matrix element, respectively.

FIG. 9. Illustration of the intense peak at 5.4 eV for �n ,0� zig-
zag nanotubes with n even. Beside the �10,0� nanotube, another
zigzag tube with n uneven and two chiral nanotubes with similar
diameter are shown. Only the �10,0� zigzag nanotube exhibits an
intense peak at 5.4 eV; the others show a regular peak with the
1/�E form at this energy.
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zigzag nanotubes with n even, discriminating against all
other tube chiralities.

V. CONCLUSIONS

We calculated the optical absorption in single-walled car-
bon nanotubes using the density matrix formalism. The op-
tical matrix elements of carbon nanotubes are derived ana-
lytically within the tight-binding approximation. In the
special case of zigzag nanotubes, even the absorption coeffi-
cient can be given analytically. Metallic nanotubes have an
optical band gap; i.e., transitions between the band crossing
at the Fermi energy have a vanishingly small intensity. Only
for armchair tubes can this result be obtained from symme-
try. Higher-lying optical transitions in carbon nanotubes
��5 eV� are suppressed, because the optical matrix elements
are small.

The optical absorption intensity increases in carbon nano-
tubes when going from the zigzag to the armchair directions,
which is in agreement with experiment. Absorption is, in

general, weaker for +1 than for −1 nanotubes. The chiral
angle and the family dependence originate from the com-
bined effects of the joint density of electronic states, the
dependence of the electronic transition energies Eii on chiral
angle and diameter, and the optical matrix element. We
showed that �n ,0� zigzag tubes with even n have a peculiar
peak in their absorption spectra that dominates the overall
intensity.

Our model will allow the inclusion many-particle interac-
tions like excitonic effects and relaxation processes in a con-
sistent way. The analytic expression for the optical matrix
elements of arbitrary �n1 ,n2� nanotubes and the absorption
spectra of zigzag tubes will be useful for modeling nanotube
absorption spectra.
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