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We present microscopic calculations of the excitonic ab-
sorption coefficient for single-wall carbon nanotubes.
Our approach combines the density matrix formalism in-
cluding the Coulomb and electron-light interaction with
the tight-binding approximation. It allows the investiga-
tion of excitons in carbon nanotubes of arbitrary chiral
index over a wide range of energy. We take all intra- and
intersubband contributions into account and study the

behavior of the Coulomb matrix elements for all relevant
processes. The Coulomb interaction is found to decrease
strongly with increasing momentum transfer perpendic-
ular to the nanotube axis. Furthermore, we show that
the band gap renormalization arising from the electron-
electron interaction leads to a partial lifting of degener-
acy in the spectra of zig-zag tubes.

1 Introduction Single-wall carbon nanotubes (CNTs)
as prototypical one-dimensional structures have well de-
fined optical properties. Hence, optical spectroscopy meth-
ods, such as absorption, photoluminescence, Rayleigh, and
Raman scattering have become important characterization
techniques for CNTs [1–4]. Theoretical investigations of
free-particle band-to-band transitions have given good in-
sight into their optical properties [5–10]. Three years ago,
the optical excitations in CNTs were shown to be deter-
mined by excitons [11,12]. A number of theoretical inves-
tigations on excitonic properties have been performed by
incorporating the Coulomb interaction within the Bethe-
Salpeter equation combined with the GW method [13–17].
The carbon nanotubes Bloch equation (CNBE) approach
[18] used in this work is based on the many-body density
matrix theory [19,20]. The combination with the tight-
binding (TB) wave functions allows the study of nanotubes
of arbitrary chiral index. Furthermore, the inclusion of fur-
ther interactions, such as exciton-phonon coupling or the
consideration of nonlinear effects is straightforward [18,
21].

In this work, we focus on the importance of the
Coulomb interaction when considering intersubband cou-

pling with a momentum transfer perpendicular to the nano-
tube axis. Moreover, we investigate the effect of band gap
renormalization caused by the electron-electron interac-
tion.

2 Excitonic absorption coefficient The Hamil-
ton operator of the CNT system consists of three parts
H = H0 +Hel-light +HCoul. The free electron contribution is
given by H0 = ∑l εla+

l al with the single-particle energy εl

calculated within the tight-binding approach [5,7,22,23].
We apply the formalism of the second quantization with the
creation and annihilation operators a+

l ,al . The compound
index l contains the band λ and the electronic wave vec-
tor k. The second part of the Hamilton operator describes
the electron-light interaction which is determined by the
dot product of the vector potential A(t) and the optical
matrix element Ml,l′ [6,8,18]: Hel-light = i e0h̄

m0
∑l,l′ Ml,l′ ·

A(t)a+
l a

l′ . The third contribution is the Coulomb interac-

tions HCoul = 1
2 ∑l1,l2,l3,l4

V l1,l2
l3,l4

a+
l1

a+
l2

al3
al4

. The character-

istics of the Coulomb matrix elements V l1,l2
l3,l4

are discussed
in the next section.
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Starting with the Hamilton operator we can calculate
the absorption coefficient α(ω) which is given by the
imaginary part of the optical susceptibility [8]:

α(ω) ∝ ωImχ(ω) = − 2e0h̄
m0ε0

∑
k

Re[Mcv
z (k)pk(ω)]
ωA(ω)

(1)

with m0 as the bare electron mass, e0 as the elementary
charge, and c(v) labelling conduction (valence) band. The
response function χ(ω) is calculated within the density
matrix theory by deriving the optical Bloch equation for
the microscopic polarization pk(t) = 〈a+

v,kac,k〉. The latter
expresses the probability amplitude for an optical transi-
tion at the wave vector k. Only the z-component of the op-
tical matrix element Mcv

z (k) is taken into account since we
only consider z-polarized light (along the nanotube axis)
accounting for the depolarization effect that strongly sup-
presses light polarized perpendicular to the nanotube axis
[24]. To determine the matrix elements we describe the
electronic single-particle wave functions of carbon nano-
tubes within the TB approach combined with the zone-
folding approximation [5,22]. The periodic boundary con-
ditions around the nanotube circumference are considered
by restricting the allowed wave vectors k to lines in the
graphene Brillouin zone k = (kz,m) with m as the subband
index. Using the Heisenberg equation of motion we derive
the carbon nanotube Bloch equation (CNBE) [18]:

ṗk(t) = −iΔωkpk(t)+ gk(t)− γ pk(t) . (2)

The microscopic polarization pk(t) is determined by the
renormalized band transition frequency

Δωk = [ωc(k)−ωv(k)]− i
h̄ ∑

k′
Vren(k,k′) (3)

and the excitonic Rabi frequency

gk(t) =
e0

m0
Mcv

z (k)A(t)− i
h̄ ∑

k′
Vexc(k,k′)pk′ . (4)

The damping parameter γ describes the dephasing result-
ing from electron-phonon coupling or other neglected in-
teractions. Its value γ = (0.0125/h̄)eV [8] determines the
linewidth in the calculated spectra, but has no influence on
the position of the peaks.

The evaluation of Eq. (1) yields excitonic absorption
spectra for nanotubes with arbitrary chiral index. Figure 1
shows the spectra of the (8,4) chiral nanotube illustrating
the different contributions to the microscopic polarization
discussed above. The free electron spectra are character-
ized by the Van Hove singularity. Including the renormal-
ization of the band gap due to the electron-electron inter-
action leads to a large blue shift. The reduction in intensity
arises from the ω−1 dependence of the absorption coeffi-
cient (see Eq. (1)). After including the electron-hole cou-
pling the renormalized Van Hove singularity is red-shifted

Figure 1 Absorption spectra of the (8,4) nanotube (for reasons
of clarity only the first transition E11 is shown). Coulomb inter-
action leads to 1) band gap renormalization due to the electron-
electron coupling (blue shift of the Van Hove singularity) and 2)
formation of excitons due to the electron-hole interaction (red-
shift of the renormalized Van Hove singularity and reshaping into
an Lorentzian), see also [18].

and reshaped to a Lorentzian resulting in a net blue-shift.
The excitonic binding energy of 0.7eV (with the dielectric
constant εbg = 1) can be easily determined as the difference
between the peak with and without electron-hole coupling.

The equations (3),(4) contain the Coulomb contribu-

tions Vren = V ck,vk′
vk′,ck −V vk′,vk

vk,vk′ and Vexc = V ck,vk′
ck′,vk −V ck,vk′

vk,ck′
that determine the band gap renormalization and the for-
mation of excitons, respectively. In the following section,
we discuss the characteristics of the Coulomb matrix ele-
ments in more detail.

3 Coulomb matrix element The Coulomb matrix
elements V l1,l2

l3,l4
are calculated within the tight-binding ap-

proximation. Applying the TB single-particle wave func-
tions Ψ c,v(k,r) = ∑ j=A,BCc,v

j (k)φ j(k,r) as a linear com-
bination of the Bloch functions φ j(k,r) consisting of two
atoms A and B in the graphene unit cell yields

V l1,l2
l3,l4

= ∑
i, j=A,B

Ci∗
l1

C j∗
l2

Ci
l3

C j
l4

V i j(q)δl3−l1,l4−l2 , (5)

with the tight-binding coefficient functions Ci
l1

where l1 is
a compound index containing the band index λ = c,v and
the wave vector k1 = (kz

1,m). The conservation of the mo-
mentum is expressed by the Kronecker delta δ . The Fourier
transform of the Coulomb potential is given by

V i j(q) =
1
N ∑

l

eiq·(Ri
l−R

j
0)V i j(|Ri

l −R
j
0|) , (6)

with the lattice vectors Ri
l , the normalization factor N,

and the momentum transfer q = k3 −k1 = (qz,Δm). The
Coulomb interaction in one-dimensional structures needs
to be treated with care since the ground state is known to
have an infinite energy [25]. This problem can be avoided
by introducing a regularized Coulomb potential that takes
into account that CNTs are not strictly one-dimensional. In
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Figure 2 a) The inset shows the Fourier transform of the Coulomb potential V AB(qz,Δm) for the (8,4) tube as a function of the
momentum transfer qz along the nanotube axis (V AA(qz,Δm) shows a similar behavior). The region marked with a dashed line in the
inset is plotted as a blow-up in the main figure showing the Coulomb contribution which arises from processes with a momentum
transfer perpendicular to the nanotube axis, i.e. Δm �= 0. b) The band structure of the (8,4) tube shows that the distance x between the
band minima exactly corresponds to the relative maxima of the Coulomb interaction x = r

n
2π
a in Fig. 2a.

this work the unscreened Coulomb interaction V i j(|Ri
l −

R
j
0|) in Eq. (6) is parametrized by the Ohno potential

which has already been shown to be a good approximation
for CNTs [14,15,17].

Having a line group symmetry nanotubes can be de-
scribed with helical or roto-translational (linear) quantum
numbers [26,22]. Our calculations are performed with the
helical quantum numbers having the advantage that no
Umklapp rules need to be taken into account when the
boundary of the Brillouin zone (BZ) or the Γ point is
crossed. Note, that for an accurate description of excitonic
effects (chirality and family behavior), it is necessary to
consider the full (helical) BZ, especially for chiral nano-
tubes with large unit cells. The transformation between
the linear (k̃z,m̃) and helical indices (kz,m) is given by
(kz,m) = (k̃z + m̃ r

n
2π
a + K q

n
2π
a ,m̃ + Mn) with K and M as

integers used to assure that the momenta are from the in-
tervals kz ∈ (− q

n
π
a , q

n
π
a ], m ∈ (− n

2 , n
2 ] with q as the num-

ber of hexagons in a nanotube unit cell, a as the unit cell
length and n as the greatest common divisor of (n1,n2)
[26]. The Fourier transformation of the Coulomb poten-
tial V i j(q) in Eq. (5) is performed atom-wise using the line
group symmetry operations that allow us to construct an
entire nanotube starting from a single carbon atom at the
position r000: rtsu = (Crt

q Cs
nUu|tna/q)r000 with the pure

rotations Cs
n (s = 0,1, ...,n− 1), the U operation mapping

atom A to atom B (u = 0,1), and screw axis rotation
(Crt

q |tna/q) (combination of rotations and translations with
t = 1− q/2n, ...,q/2n) [22]. This way we can distinguish
between the two atoms A and B where V AA(q) = V BB(q)
and V AB(q) = V BA∗(q).

Figure 2a) shows the Fourier transform of the Coulomb
potential as a function of the momentum transfer qz along
the nanotube axis for processes with Δm = 0 and Δm �= 0.
The Coulomb interaction reaches the maximal value when

the involved electrons have the same momentum, i.e. for
processes with Δm = 0 and qz = 0. The second maxima is
found for Δm = 1 at qz = r

n
2π
a , i.e. for transitions between

two energetically neighboured subbands. For this process,
the Coulomb interaction is strongly enhanced when a mo-
mentum of qz = r

n
2π
a is carried over along the nanotube

axis. This corresponds to a transition between the subband
minima (see Fig. 2b). However, the coupling strength de-
creases strongly with increasing momentum transfer per-
pendicular to the nanotube axis, e.g. the Coulomb interac-
tion for the process with Δm = 1 (Δm = 2) is less than 5%
(< 2%) of the absolute maxima for Δm = 0.

4 Band gap renormalization The Fourier trans-
form of the Coulomb potential is a direct measure for the
strength of Coulomb effects, such as the band gap renor-
malization (cp. Eq. (3))

Vren(k,k′) = Re

[
e∗(k′)e(k)
|e(k′)e(k′)|V

AB(qz,Δm)
]

(7)

with qz = k′z−kz and Δm = m′ −m. Eq. (7) has been calcu-
lated using the expressions for the nearest neighbor tight-
binding coefficients CB = 1√

2
and Cc,v

A (k) =∓CB
e(k)
|e(k)| with

the abbreviation e(k)= ∑3
j=1 exp[ik ·(R j−R0)] where R j

are the lattice vectors of the three nearest neighbor atoms
[8]. The contribution Vren(k,k′) is illustrated in Fig. 1 in
the case of the (8,4) nanotube. The free-particle energy is
renormalized by 1.1eV that is about 100% of the free band
gap which is a sign for the strong Coulomb interaction in
carbon nanotubes.

In an earlier work [8] we have shown that (n,0) zig-zag
nanotubes with n even have a pronounced peak at higher
energies which dominates the overall intensity in their ab-
sorption spectra. We explained this effect by showing that
within the tight-binding approximation the mentioned zig-

phys. stat. sol. (b) 245 , No. 10 (2008) 2157
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Figure 3 Illustration of the importance of the band gap renormal-
ization. The dispersionless band with m=5 gains a small oscillat-
ing dispersion after electron-electron coupling is included (shown
in the inset). As a result, the pronounced peak with the high in-
tensity splits up into two peaks with a similar coupling strength.

zag tubes have a dispersionless band with m̃ = n/2 lead-
ing to a formally infinite density of states. Additionally,
a degeneracy with the band m̃ = n further increases the
intensity of the peak. However, Coulomb effects change
the dispersion of the band m̃ = n/2 (see the renormalized
band structure in the inset of Fig. 3). This results in a fi-
nite density of states and a much smaller intensity of the
corresponding peak. Moreover, the gain of dispersion also
account for the lifting of the mentioned degeneracy with
the band m̃ = n leading to a peak splitting shown in Fig.
3. A similar effect can be observed in the spectra of other
nanotubes where the energy renormalization often enlarges
the distance between peaks. As a result, energetically close
transitions can be resolved in the spectra.

5 Conclusions In conclusion, we presented a method
to calculate the excitonic absorption coefficient for ar-
bitrary carbon nanotubes within the density matrix for-
malism combined with tight-binding single-particle wave
functions. The Coulomb matrix elements are shown to
be maximal when the momentum transfer along and per-
pendicular to the nanotube axis is low. Processes around
qz = 0 and with Δm = 0 give the maximal contribution to
the Coulomb interaction. For processes with a perpendicu-
lar momentum transfer, i.e. Δm �= 0, the coupling strength
is reduced to less than 5%. Furthermore, we found that
the band gap renormalization arising from the electron-
electron interaction leads to a partial lifting of degeneracy
in (n,0) zigzag tubes with n even. As a result, the pro-
nounced peak in the absorption spectra of these tubes
splits up into two peaks with a similar intensity.
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