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Abstract. We present a new interpretation of the origin of the first-order Raman modes in single-
wall carbon nanotubes. Similar to the disorder-inducedD mode, the high-energy modes are deter-
mined by double-resonant scattering. Our model predicts an excitation-energy dependence of the
Raman frequencies, which we observe experimentally as well. We present preliminary results on
the Raman spectra of metallic tubes.

The origin of the first-order high-energy Raman modes in carbon nanotubes has
been a puzzling question since the first Raman measurements on single-wall tubes by
Rao et al. [1]. The high-energy Raman spectrum (often calledG band) exhibits two
prominent peaks, a larger one at≈ 1590 cm−1 above and a smaller one at≈ 1570 cm−1

below the graphiteΓ-point frequency; additional smaller structures appear towards lower
frequencies. Some authors suggested that they originate from different phonon bands
folded into theΓ point, which haveA1(g), E1(g), andE2(g) symmetry (the subscriptg
refers to achiral tubes). Contrary to this interpretation, it was shown experimentally, that
the complete high-energy peak structure corresponds mainly to the fully symmetricA1(g)
phonon modes [2, 3, 4]. All attempts to explain the origin of the high-energy modes that
have been made so far, implicitly assume that they correspond toΓ-point phonons.

Here we show that a defect-induced, double resonant Raman process [5] naturally
leads to the observed high-energy spectrum with onlyA1(g) phonons involved. These
phonons stem from a region inside the Brillouin zone near theΓ point; their wave vectors
are – in contrast to usual first-order scattering – considerably larger (up to a factor of
100) than the wave vector of the incoming light. Defect-induced, double resonant Raman
scattering has been well established to lead to theD mode (≈ 1350 cm−1) in the first-
order Raman spectrum of graphite and carbon nanotubes [5, 6, 7]. TheD mode exhibits
the characteristic feature of a double-resonant Raman process, that is the excitation-
energy dependence of the Raman frequency. The scattering process for theD mode
involves only phonons which, in the zone-folding picture, scatter the electron between
two inequivalentK points of the graphene Brillouin zone. Another possible double-
resonant process is the scattering across the minimum at theK point, which has been
recently investigated by Saitoet al. for graphite [8]. Such phonons possess wave vectors
q up to q ≈ 0.2π/a0 (a0 is the graphene lattice constant), which is small compared
with the wave vectors of theD-mode phonons. They lead to Raman frequencies close to
theΓ-point frequencies. In chiral tubes, there are two optical phonon branches withA1
symmetry at theΓ point which give rise to two peaks in the Raman spectrum. In Fig. 1
we show a scattering process with an incoming resonance (solid arrow) and resonant
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FIGURE 1. Double resonant scattering process leading to the high-energy modes. The solid arrow
indicates an resonant absorption of a photon. The near Γ-point part of the phonon dispersion is shown
schematically, at the intersection with the electronic bands the excited electron is scattered in another
resonant transition (dashed arrows).

scattering of the excited electron by a phonon (dashed arrow). The angular momentum
quantum number of A1(g) phonons is m̃ = 0; therefore the electron is always scattered
within the same band by the phonon. In the zone-folding picture, the m̃ = 0 phonon
branches contain the Γ point of graphite. The two m̃ = 0 optical branches near the Γ point
are depicted schematically with the Γ point at the wave vector of the excited electron;
the phonon energy axis is inverted to indicate Stokes scattering. Out of all transitions the
resonantly excited electron can make, the intersection points of the phonon and electron
dispersion indicate the resonant ones. The phonon wave vector and frequency for such a
resonant transition are uniquely determined for each phonon branch; the Raman signal
at this frequency is strongly enhanced.

As a first approximation, we used a model phonon dispersion relation based on the
dispersion of graphene. The upper branch exhibits an overbending, i.e., the maximum
phonon frequency occurs away from the Γ point. The magnitude of a (possible) splitting
of the Γ-point phonons does not influence the general results or the consequences of our
model, because the involved phonon wave vectors are sufficiently large. For simplicity,
we took the electronic band structure in the symmetry-based tight-binding approxima-
tion [9]. We calculated the Raman cross section as a function of the phonon energy
according to a second-order process with a defect involved in one of the transitions [6].
The matrix elements were assumed to be wave-vector independent, but we included
them in terms of selection rules for electron-photon and electron-phonon coupling.

In Fig. 2 (left) we show a calculated Raman spectrum of the (15,6) tube (lower curve)
for an excitation energy 2.18 eV. The upper curve is an experimental spectrum of
bundled single-wall nanotubes with a mean tube diameter of 1.45 nm taken at the same
energy. The experimental spectrum is very well reproduced by our calculation. There
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FIGURE 2. Left: Calculated Raman spectra for the (15,6) tube (lower curve) for an excitation energy
2.18 eV, and experimental Raman spectrum (upper curve) of tubes with diameter 1.4 nm at the same exci-
tation energy. Right: Experimental (open circles) and theoretical (closed circles) values for the frequencies
of the high-energy Raman modes. Triangles indicate the position of the graphite G mode.

is a minimum between the two largest peaks around the graphite Γ-point frequency
(1588 cm−1 in our model dispersion); the upper peak has a larger amplitude than the
lower one. The model comprises the smaller structures in the high-energy range as well.
At a given laser energy, several electronic bands can be involved, which leads to a signal
from phonons of the same branch with different wave vectors and hence frequency.
In principle, those processes contribute more to the Raman signal which occur at a
higher electronic density of states (smaller phonon wave vectors). Therefore, depending
on the particular tube and the laser energy, contributions from other electronic bands
vary in intensity compared to the strongest peaks. For the same reason, the absolute
intensities depend on the laser energy as well; for tubes with diameters between 1.3 nm
and 1.5 nm and excitation energies in the range of visible light, the Raman intensity
decreases with increasing laser energy. Finally, we find an excitation-energy dependence
of the Raman frequencies both in experiment and theory [10] which is the signature of
a double-resonant process. In Fig. 2 (right) the experimental and theoretical frequencies
of the high-energy modes are shown by open and closed circles, respectively, as a
function of excitation energy. The upper peak shifts towards higher frequency, which
reflects the overbending in the upper phonon branch, while the frequency of the lower
peak decreases with increasing laser energy. For comparison, the Raman frequency of
graphite is indicated (triangles), which does not depend on the laser energy.
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FIGURE 3. (Left:) Phonon dispersion relations of the (3,3) tube from ab initio calculations within the
local-density function approximation. Thick lines: m̃ = 0 branches; circles: Γ-point frequencies of the LO
and TO-like phonons. (Right:) Calculated Raman spectra of the (3,3) tube for an excitation energy 2.8 eV
(solid line) and 4.1 eV (dashed line).

The Raman spectra shown in Fig. 2 with two prominent peaks at ≈ 1570 and ≈
1590 cm−1 are often called “semiconducting” spectra. They typically appear at laser
energies around the transition energies between the singularities in the electronic den-
sity of states for semiconducting tubes. Note that our calculation for the metallic (15,6)
tube also yields a “semiconducting” spectrum. On the other hand, typical spectra from
bulk samples which are attributed to metallic tubes exhibit a broad structure in the range
from 1500 to 1600 cm−1, centered at lower frequency than the “semiconducting” spec-
tra. This broadening and downshift of the high-energy peaks has been attributed to a
coupling between the phonons and the conduction electrons in metallic tubes, resulting
in a Fano-lineshape [11, 12]. The experimental peak shape and frequencies, however,
have not been reproduced by calculations so far, and the question arises whether also
these “metallic” spectra can be explained within the double-resonance model.

The phonon dispersion of metallic tubes at the Γ point is probably not sufficiently
well described by our simple model dispersion based on graphene. In Fig. 3 (left) we
show the phonon dispersion of the (3,3) tube from an ab initio calculation [13] within
the local-density function approximation [14]. The Γ-point frequencies of the m̃ = 0
branches (circles) are at 1470 cm−1 and 1490 cm−1, which is by about 100 cm−1 lower
than the graphite Γ-point frequency. This agrees well with the work by Kresse et al., who
in a similar ab initio calculation for larger armchair and zig-zag tubes found a decrease
of the Γ-point frequencies in metallic tubes by some tens of wave numbers compared
with those of semiconducting tubes [15].

On the other hand, one of these phonon branches exhibits a strong overbending
up to ≈ 1600 cm−1 inside the Brillouin zone. In armchair tubes, phonons from this
branch are actually forbidden by symmetry in a Raman process. But we expect a
similar dispersion in chiral metallic tubes and therefore use this armchair dispersion
as an example. If in a double-resonant Raman process the singularity in the electronic



joint density of states is nearly matched, the phonon wave vectors are very small and
frequencies almost at the Γ-point frequencies are observed. We therefore suggest that
this is the origin of the large downshift in the “metallic” spectra. In Fig. 3 (right) we show
some preliminary calculations of the Raman spectra of a (3,3) tube. For the electron
band structure we used an ab initio calculation as well; the first singularity appears
around 2.8 eV [16]. Therefore the spectrum with the laser energy at 2.8 eV (solid line)
shows approximately the Γ-point phonon frequencies. If the laser energy is increased
and hence the wave vectors of the involved phonons become larger, the observed Raman
frequencies increase up to the maximum frequency around 1600 cm−1. This is shown
for a laser energy of 4.1 eV (dashed line), where again a narrow peak at 1600 cm−1

appears.
In conclusion, we showed that the high-energy Raman process in single-wall carbon

nanotubes is the same as for the disorder-induced D mode. We have reproduced the
high-energy spectrum by our calculations of a defect-induced, double-resonant Raman
process. Our model is supported by the dependence of the high-energy Raman frequen-
cies on excitation-energy. Finally, we showed that Raman spectra usually attributed to
semiconducting tubes can also originate from metallic tubes, while “metallic” spectra
probably stem from metallic tubes exclusively.
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