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Phonon dispersion of carbon nanotubes
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Abstract

We present the phonon dispersion relations of single-wall carbon nanotubes calculated within a force-constants approach. By
using the full symmetry group of the tubes, we are able to calculate the dispersion relations for any chirality starting from one

single carbon atom. We find an overbending in the highest optical branch between 6 and 12 cm ™

! independent of the tube

diameter. The order of the high-energy modes at the I"-point differs from the results derived from simple zone folding. The
splitting between the two Raman active optical modes with A, symmetry at the I'-point of chiral tubes is = 4 cm ™" for typical
diameters; it increases with decreasing tube diameter. © 2002 Elsevier Science Ltd. All rights reserved.

PACS: 78.30; 63.22; 78.30.Na
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The Raman spectra of single-wall carbon nanotubes are
still being controversially discussed, despite the numerous
studies in this field. Even recent experiments on isolated
single tubes have not led so far to a full understanding of
the observed Raman modes [1,2]. The interpretation of
experimental data still relies on certain assumptions on the
phonon frequencies derived from calculations. There are
two main approaches in calculating the phonon dispersion
of nanotubes. The first one is the so-called zone folding
approximation, i.e. the graphene dispersion along the
Brillouin zone lines corresponding to the states of the par-
ticular nanotube. Although this rather simple method can be
used in principle for any nanotube, it suffers from several
deficiencies. Curvature effects like different bond lengths
and angles and rehybridization of the electronic w bonds
are not taken into account, which may lead to incorrect
predictions, especially for small tube diameters. In addition,
the symmetry of the states is not completely obtained by
zone folding, which affects selection rules essential for
determining matrix elements. By definition, zone folding
does not yield the nanotube-characteristic radial breathing
mode, which, although derived from a graphene acoustic
mode, has non-zero frequency at the I'-point in nanotubes.

* Corresponding author.
E-mail address: janina@physik.tu-berlin.de (J. Maultzsch).

Saito et al. have used a modified zone folding approach,
taking the graphite force-constants but changing them
such that the radial breathing mode was obtained [3]. In
the second approach, the phonon dispersion is found by ab
initio calculations. While this method is in general more
reliable than zone folding with respect to curvature effects,
it is (at this time) limited to achiral and to only a few chiral
tubes with diameters =< 1 nm because of the large number
of atoms in the nanotube-unit cell. Sinchez-Portal et al. have
shown that concerning the vibrational properties, the largest
differences between ab initio calculations and zone folding
occur in the low-energy range and for tubes with small
diameters ( =< 0.7 nm) also in the high-energy range. The
phonon frequencies soften with respect to the frequencies
derived from graphene due to curvature effects [4]. So far,
the calculations of phonon frequencies presented in the
literature have focused mainly on armchair tubes or, if
chiral tubes are considered, only on the I'-point frequencies
[3-5].

The Raman spectra of carbon nanotubes, however, appear
to be dominated by defect-induced, double-resonant Raman
scattering, which involves phonon wave vectors of the entire
Brillouin zone. This was shown for the D mode [6] and,
recently, for the entire (high-energy) Raman spectrum [7].
Therefore, complete, symmetry-based calculations of the
full phonon dispersion for an arbitrary tube are necessary
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Fig. 1. Phonon dispersion of the (12,0) zig—zag tube. The bands
with m = 0 and m = n are given by bold lines. The symbols indicate
the Raman active modes at the I'-point; open circles denote Ay,
squares E, and triangles E,, symmetry. The dashed lines are the
bands with m € [1,n — 1]; they are four-fold degenerate for k €
(0, 7/a), where a is the length of the unit cell.

for gaining further understanding of the Raman spectra and
the vibrational properties in general.

Here, we present the phonon dispersion relations of both
chiral and achiral isolated single-wall carbon nanotubes
within a symmetry-based force-constants approach. We
investigate the characteristics of the phonon dispersions
relevant for the interpretation of Raman spectra and present
their dependence on tube diameter and chirality.

A carbon nanotube is defined by the components (n;, 1)
of the chiral vector, given in the basis of the graphene lattice
vectors. The number of carbon atoms in the unit cell of
the tube is 2g, where g = 2(n? + n3 + nyny)/n#. n is the
greatest common divisor of (ny, ny); # = 3, if (n; — ny)/ 3n
is integer, otherwise # = 1 [8]. A carbon nanotube is a
single-orbit system, i.e. the whole tube can be constructed
from a single carbon atom by the application of all the
symmetry operations of the nanotube group [9]. Therefore,
the solution of any eigenvalue-problem can in principle be
reduced to the solution in the low-dimensional interior space
of one atom. By this approach we are able to calculate the
phonon dispersion of any carbon nanotube, with no limi-
tations caused by the large number of atoms in the unit
cell as for chiral tubes. In addition, the phonons are auto-
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Fig. 2. (a) I'-point frequencies of the high-energy bands of zig—zag
tubes with m = 0 (circles), m = 1 (squares) and m = 2 (triangles) as
a function of tube diameter. Open symbols indicate the Raman
active modes. (b) Same as in (a), but for armchair tubes. (c) Splitting
of the two high-energy I'-point frequencies with A; symmetry in
chiral tubes as a function of tube diameter.

matically assigned by their full set of symmetry quantum
numbers, including the parity with respect to the twofold
rotational axis perpendicular to the tube axis and, for achiral
tubes, the vertical and horizontal mirror planes. For the type
of quantum numbers we choose both, the km numbers,
describing separately the purely linear and angular
momenta, and the helical /&7 numbers, which are more
convenient for the characterization of chiral tubes [9].
Calculations were performed using modified force-constants
of graphite [10]. The change of the atom positions in the
curved graphite sheet with respect to the flat graphene plane
was incorporated by explicitly including the change in bond
angle on the curved graphene wall. Additionally, we require
vanishing energy of pure rotation around the tube axis
(fourth acoustic mode). We included up to fourth nearest
neighbor interaction in order to reproduce the experi-
mentally observed overbending in the optical phonon
bands. We verified the validity of our calculation by plotting
the frequency of the radial breathing mode at the I'-point
(wgrpm) as a function of inverse tube radius 1/r and found
(wrpm) = 1140 em A averaged over all chiralities, which
is well in the range found by other groups [4,10,11]. Note,
that in our calculations the force-constants of graphite are
not additionally manipulated in order to obtain the radial
breathing mode as in other force-constants calculations [3].

In Fig. 1 we show the phonon dispersion of the (12,0)
zig—zag tube. The bold lines are the doubly degenerate
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Fig. 3. Phonon dispersion of the (14,5) tube given by kst quantum numbers. g/n = 194 and # = 3. Because n = 1, = 0, i.e. there are only six
phonon bands. At 2/3 of the Brillouin zone (dashed line) there is a minimum in the optical branch at about 1250 cm ™" (grey line), which gives
rise to the observed disorder Raman peak. Right: phonon dispersion of the (14,5) tube in linear quantum numbers; m = —96, ..., 97; the number

of bands is 1164.

bands with angular momenta m = 0 and m = n, which
contain the I'- and M-point of graphene in the zone folding
scheme. The symbols denote the Raman active modes at the
I'-point, where open circles indicate Alg(OAar ), squares
Ejs(E;) and triangles Ezg(oEz+ ) symmetry. All other
bands (dashed lines) are four-fold degenerate for k €
(0, 7/a) [8]. For the highest m = 0 optical branch the calcu-
lated overbending, i.e. the difference between the maximum
and the I'-point frequency, is about 12 cm™!, which is in
good agreement with experiments performed on bundled
single-wall nanotubes [12]. The overbending does not
depend on the diameter of the tube but decreases with
increasing chiral angle towards 6 cm ™' for armchair tubes.

In the high-energy range, the order of the phonon frequen-
cies at I' is different from what is expected in the simple
zone folding approach. The phonon frequency with m = 0 is
the highest frequency; the m = 2 frequency appears slightly
below (7 cmfl). For zig—zag tubes with diameters larger
than 1.49 nm [(19,0)], the upper two I'-point frequencies

interchange, see Fig. 2(a). We find the same behavior in
armchair (Fig. 2(b)) and chiral tubes with the interchange
of the m = 0 and m = 2 frequencies at a tube diameter of
1.09 nm for armchair tubes [(8,8)]. The frequency ordering
of the high-energy bands is in good agreement with the
calculations by Saito et al. [3]. The frequencies in the
zone folding approach which originate from the transversal
optical branch of graphene are sorted as expected, i.e. with
decreasing frequency m = 0, 1, 2 for all tubes. While in
chiral tubes there are six Raman active high-energy modes
(2A,, 2E,, 2E,), in achiral tubes only three of the high-
energy modes are Raman active. These are, independent
of the diameter, sorted by decreasing the frequency as E,,,
Ajg, Eig and Ay, Ejg, B,y for armchair and zig—zag tubes,
respectively, see Fig. 2. Therefore, besides selection rules,
the high-energy peaks that are above the graphite I'-point
frequency cannot simply be assigned to E;, and E,, phonon
modes as has been done, e.g. by Kasuya et al. [13].

From polarization-dependent Raman experiments on both
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Fig. 4. Phonon dispersion of the (12,8) tube given by ki quantum numbers. i takes integer values from —n/2 + 1 to n/2, i.e. ia = —1,0,1,2.

g/n =38 and # = 1. Bold lines indicate the bands with 2 = 0.
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unoriented and aligned single-wall tubes, it is known that
the phonon modes which contribute most to the Raman
signal have A, (A;) symmetry [1,14,15]. In Fig. 2(c) we
plot the splitting of the two high-energy A; modes at the
I'-point of chiral tubes as a function of the tube diameter.
The upper frequency slightly increases with decreasing
diameter, whereas the lower frequency decreases with
decreasing diameter. In our calculation, this splitting
stems from the modified bond angles in the nanotube
compared with the flat graphene sheet. In the diameter
range between 1.1 and 1.5 nm, which covers the typical
diameter range for experiments on single-wall nanotubes,
the splitting of the A; modes is rather small, varying from
~5to ~2cm . In contrast, the peculiar high-energy peak
structure in so-called semiconducting spectra exhibits a
splitting of the peaks of ~20cm™' with a peak width
(FWHM) of = 10-20cm™', see for isolated tubes, e.g.
Ref. [16]. Therefore, the high-energy spectra of carbon
nanotubes cannot be explained simply by the splitting of
the graphene degenerate optical modes into the non-
degenerate nanotube modes at the I'-point. In chiral tubes,
the phonon modes in general do not have purely longitudinal
or transversal character [17]. We thus do not expect other
effects like rehybridization and dependence of the force-
constants on the interatomic distance to further increase
the splitting between the A; modes.

Representative for chiral tubes we show in Fig. 3 and in
Fig. 4 the phonon dispersion of the (14,5) and the (12,8)
tube, respectively, given by the helical k7 full quantum
numbers. The length of the Brillouin zone is (g7/na),
which is 1947/a and 387r/a for the (14,5) and (12,8) tube,
respectively. The bands with /7 =0 are given by the
bold lines. A band with a given 7 can be understood as
‘unfolding’ the bands in the km description by obeying the
Umklapp rules at the zone boundary [18]. In contrast to m,
is a fully conserved quantum number. As the phonon wave
vectors participating in double-resonant Raman scattering
can be large compared with the length of the ‘helical’
Brillouin zone (g7r/na), the use of kit quantum numbers is
more convenient than the use of the linear km quantum
numbers and application of the Umklapp rules each time
when crossing the zone boundary 7/a. Besides, the number
of bands is reduced by a factor of g/n in the ks description,
see Fig. 3. For the observation of the D mode, it is essential
that there be a minimum in the # = 0 branch around 2/3 of
the Brillouin zone at the corresponding frequency [6].
Indeed, we find for the # =3 (14,5) tube a minimum
with a high density of states in one of the high-energy
bands at 2/3 of the Brillouin zone with a frequency around
1250 cm ™", In contrast to graphene, the quasi acoustic and
optical bands touching at 2/3 of the Brillouin zone do not
cross in the tubes. Instead, they have a local maximum and
minimum with a high phonon density of states. In par-
ticular, this might alter the intensity dependence of the D
mode with varying laser energies, which should be taken
into account in future studies of this disorder induced

peak. In the #Z =1 (12,8) tube, there is no minimum in
the optical branches at 2/3 of the Brillouin zone. Consider-
ing the /m = 0 bands, there is even a gap around the expected
D mode frequency. It can be easily proven that, in general,
only tubes with # = 3 show this minimum at 2/3 of the
Brillouin zone in one of the optical /7 = 0 branches, see
also Ref. [19].

In conclusion, we have presented the phonon dispersion
relations of achiral and chiral tubes calculated within a
symmetry-based force-constants approach. We showed
that the splitting between the two Raman active high-energy
modes with A; symmetry is too small to account for the
splitting of the high-energy peaks observed in first-order
Raman spectra. For chiral tubes, we confirmed the predicted
differences between # = 3 and # = 1 tubes.
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