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We present a comprehensive analysis of double-resonant Raman scattering in graphite and derive an ana-
lytical expression for the Raman cross section ofBhmode in one dimension. The extension to two dimen-
sions does not change the double-resonant phonon wave vectors. In the full integration of the Raman cross
section, the contributions by phonons from exactly Exeoint cancel due to destructive interference. We
calculate théd mode explicitly based on recent experimental data of the graphite phonon dispersion. Applying
the selection rules, a mapping of additional disorder-induced and second-order Raman modes onto the Bril-
louin zone of graphite is obtained.
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[. INTRODUCTION dimensional and a one-dimensional integration is shown to
be small. The recently experimentally determined phonon
Double-resonant Raman scattering reveals a variety of indispersion of graphifeand numerically derived electronic
formation about the electronic and vibrational states of a mabandsg allow us to explicitly calculate thB-mode line shape
terial. Double resonances, where two of the intermediat@nd its excitation-energy dependence without adjustable pa-
electronic states in the scattering process have to be reahmeters. Both the absolute frequencies and the excitation-
usually require special experimental conditions. For ex-energy dependence of tli mode agree very well with the
ample, an external electric field or pressure tune the ele@xperimental Raman spectra. Furthermore, our results con-
tronic energies such that a double resonance occurs atfmm that theD-mode phonons indeed stem from the trans-
given excitation energy and with a zone-center phohon. verse optical(TO)-derived branch, as predicted indepen-
The double-resonance condition can be fulfilled more easilglently from symmetry and from a molecular appro&aie
in a semimetal-like graphité,but also in semiconductors include the selection rules and use them to map the frequen-
with parabolic band$,if the sample contains symmetry- cies of other first- and second-order Raman modes onto the
breaking elements. Such defects are, e.g., the boundaries ptionon dispersion of graphite.
the crystallites in polycrystalline graphite, or the crystal sur- The origin of theD mode in graphite and carbon nano-
face. They relax the quasi-momentum conservation and atubes is well established as being defect-induced double-
low nonzero-phonon wave vectors to contribute to the Raresonant scattering®'° In spite of being intensively used,
man process. Alternatively, double resonances are observéide double-resonance model is often incorrectly implemented
in two-phonon Raman scattering, where momentum is coner too severely simplified. In this introduction, we briefly
served through phonons of equal but opposite wave vectoexplain the double-resonance process and then outline the
An example is the overtone spectrum of acoustic phonons iissues that will be addressed in the following sections.
Ge? The defect-induced Raman process consists of four steps:
The characteristics of a double resonance is that the olExcitation of an electron—hole pair, inelastic scattering of the
served modes depend on the wavelength of the incominglectron(or hole) by a phonon, elastic scattering of the elec-
light. At each excitation energy, a different phonon is se-tron (hole) by a defect, and recombination of the excited
lected by the double-resonance condition, resulting in thelectron and hole. The second and third step can be inter-
frequency shift of the double-resonant mode. Therefore, bghanged; for the second-order Raman spectrum, the elastic
changing the laser energy, one can measure the phonon diefect scattering is replaced by inelastic scattering by a sec-
persion, if the electronic band structure is known, or, viceond phonon. The process is double resonant, if two of the
versa, probe the electronic bands. In graphite, carbon nandransitions are real. By integrating the contributions of all
tubes, and other forms sf*-bonded carbon, several defect- allowed processes, irrespective of whether they are resonant
induced and second-order double-resonant modes are obr not, the Raman cross section can be computed. In Fig. 1,
served, of which the most prominent one is the so-cdlled we show schematically the step of electron—phonon
mode at=1350 cm™. (electron-defegtscattering in the hexagonal Brillouin zone
In this paper, we present a comprehensive treatment aif the graphite sheet. The background is a contour plot of the
defect-induced and second-order double-resonant Ramaonduction band. Scattering between two inequivalknt
scattering in graphite based on the linear interpretation impoints, K and K’, leads to theD mode (solid arrows,
Ref. 3. We discuss, in particular, the destructive interferencevhereas scattering close to the sapoint or between two
of some of the scattering processes that are often mistakinglquivalentK points results in near- point modes(dashed
included in the literature. The difference between a two-arrows.
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derivation of the phonon dispersion, leading to incorrect
resultst®1° Thus, in the analysis of th® mode and other
double-resonant modes, the interference effects have to be
taken into account explicitly if the full integration of the
g Raman cross section is omitted.
Second, most of the full integrations have been carried out

in one dimension only or for the one-dimensional case of
carbon nanotubes!® Therefore, it needs to be clarified ana-
lytically how the two-dimensional integration in the graphite
D mod“K Brillom_Jin zone affects the results obt_ained in one dimension.
_///ﬁ////—\\\\\\ \:\\ Third, the symmetry and selection rules_ for electron—
phonon scattering were frequently not considered. As a re-
FIG. 1. Hexagonal Brillouin zone of grapheg&ingle graphite  sult, some double-resonant modes were assigned to a forbid-
sheet with a contour plot of the conduction bandark gray corre-  den phonon branch, such as the assignment of the 800 cm
sponds to zero energyThe high-symmetry pointE, K, andM are  peak to the out-of-plane modes in Refs. 18 and 21. Even the
indicated. Two neighboringk points, given byK andK’, are in- D mode was incorrectly believed to belong to the longitudi-
equivalent, i.e., they cannot be transformed into each other by @aal (LO)-derived phonon branch, which is degenerate at the
reciprocal lattice vector. Their distance corresponds again to & point39®Instead, it comes from the upper, fully symmet-
K-point vector. Scattering between two inequivalEnpoints there-  ric phonon branch, which is nondegenerate at¢hmoint81°
fore results in the RamaB® mode from near th&K point (solid  \ne will confirm this explicitly by calculating thé-mode
arrows. Scattering at the sant€ point or between two equivalent spectrum based on the newly obtained experimental phonon
K points involves phonon wave vectors close tolhgoint (dashed dispersion of graphite.

arrows. Finally, the quantitative analysis so far relied on—partly

The double-resonance model provides an excellent undeffbitrary—assumptions about the electron and phonon dis-
standing of all experimental observations of enode: The ~ Persion. The common tight-binding formula for the elec-
strength of theD mode increases with the number of defectstfonic band structure is a reasonable approximation if ex-
in the samplé it stems from near thi point of the graphite tended to including third-nearest neighbbis. contrast, the
Brillouin zone. Its frequency depends on the wavelength ofhonon branches were often modeled by simple analytical
the exciting light and shifts at a rate of 38— 70 &eV.12-16 expression$:>16 Because the theoretically determined pho-
Furthermore, theD-mode frequency is different in Stokes NON dispersions were contradictory in many respects, quan-
and anti-Stokes scattering, which can be understood frorfitative predictions of theD mode were difficult to judge.
slightly different double-resonance conditions for the Stoked1ere, we will use the experimental phonon dispersion of
and the anti-Stokes proce¥sMany of the published appli- graphlte for calcula’qons of double_—reson@}mode scatter-
cations of the double resonance, however, contain a numbétd Without any arbitrary assumptions. _
of conceptual problems when the Raman spectrum is calcu- | NiS paper is organized as follows: In Sec. Il, we give a

lated or the double resonance is used for a derivation of thé€tailed description of the integration of the Raman cross
phonon dispersion. section, including interference effects and the integration in

First, the full integration of the Raman cross section istwo dimensions. The selection rules for double-resonant scat-

often replaced by considering only the step shown in Fig_tering in graphitg are derived in Sec. lll. We g:alculate the
1.16.18-20The wave vectok; of the excited electron is fixed at D-mode spectra in Sec. IV and obtain a mapping of the ad-
the incoming resonance. Starting from this wave vector, th&litional double-resonant Raman peaks onto the phonon dis-
double-resonant phonon wave vectaysare determined, Persion in Sec. V. In the Appendix, the derivation of the
partly graphically® or by requiring that the electron wave analytical expression for the Raman cross section is pre-
vectork,=k;—q is real!®18-29The calculation of the Raman Sénted.

spectra in this case is merely based on the condition that two

intermediate electronic states have to be real. Although this Il. THEORY: INTEGRATION OF THE RAMAN

is a necessary condition for double-resonant scattering, it is CROSS SECTION

not sufficient for a large Raman signal. In such a simplified
procedure, the Raman cross section may appear large for a
particular phonon mode, but it vanishes in the complete in- In this section, we derive an analytical expression for the
tegration by destructive interference. Neglecting the full in-Raman cross section of tfi2 mode in the approximation of
tegration therefore leads to incorrect predictions of thdinear bands in one dimension. The scattering process for the
double-resonant Raman spectrum. Conversely, the phondd mode takes place between two inequivalémgoints of the
dispersion derived from double-resonant Raman scatteringraphite Brillouin zone, see Fig. 1. At th€ point, the elec-
may be wrong, if interference effects are not taken into actronic bands are approximately linear for transition energies
count. For example, the phonon from exactly #iepoint  in the visible range of light and cross the Fermi level. Along
seems at first sight to contribute to the double resonance, bthe I'-K—M direction, theD-mode phonon wave vector is

it is cancelled by destructive interference, as we will show inclose to twice thék-point vector. In Fig. 2a), both possibili-

this paper. Nevertheless, tiepoint is often included in the ties for scattering within the same electronic band are shown.

) K'/

—

A. Double-resonant scattering in one dimension
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@ \_ @) k=27 and ky= L oeh =Y (3)
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W A 2 /(\ i andK’ denotes the wave vector of tiepoint. The lifetime
broadeningy of the electronic transition energies is taken to
v, -V v, v, be the same. Equatiq®) depends on the phonon wave vec-

tor g and is evaluated as a function@fthe Raman intensity

o  \ L -2 == is at maximum for thosg which fulfill the double-resonance
2 . condition. The maximum values @, ;o are dominated by

’ \ : ' the terms in the denominators of E¢). The double-
M ~K’ r K M
-V,

resonant phonon wave vectors are, therefore,

v " 012=2(K' + &y for k<K',

FIG. 2. (a) Double-resonant scattering processes leading to the ) ,
D mode in graphite. The electronic bands are assumed to be linear Oz 4=2(K' — k1o for k>K’, (4)
at theK point with Fermi velocities); andv,. The D-mode scat-
tering takes pla_ce across the po_lnt within the same electronic i.e., they are between thé and M point and arise from
band.(b) Scattering across the point between two almost parallel 1) in Ei h betw thé and
bands does not contribute to the double-resonance signal becausel} PCQSS( ) In |g-22(_a),FV_V ereasys , are between an
destructive interference. point [process(2) in Fig. 2a)]. . . .

Compared to Eq(2), the analytic expression derived by
q h i velocit dand h Thomsen and Reiéhapplies to scattering between different
v1 andv, are the Fermi velocities aridandq are the wave  panqs across thié point, as indicated by the dashed arrows

vectors of the electron and the phonon, respectively. in Fig. 1. Besides the change of the time order, there are two
To find the double-resonant phonon wave vectors, the Ra%

X _ ouble-resonant phonon wave vectors only if the Fermi ve-
man cross section has to be evaluated by summing over g

blaincludi q h cities are different. In contrast, ER) describes double-
possible(including resonant and nonresongocesses. The  rogonant scattering across figoint within the same band.
Raman cross section is proportional [t 102, Where the

. o - ~'=  Both processeg;l) and(2) in Fig. 2a), are included, as well
Rlamar;fr?atnx elemenky 0 in higher-order scattering is 55 poth time orders of scattering by the phonon and by the
given

defect. This leads to four different double-resonant phonon
M wave vectordEq. (4)], even if the Fermi velocities of both
Ko 10= 2 electronic bands are equal.
7 apel (B1— Ea) (B2 = By (B2 — Egy) In the approximation of zero phonon energy, E4j. for
M the double-resonant phonon wave vectors vyields the so-
) (1) calledq= 2k; rule, wherek; is the wave vector of the incom-
(BEy — Ea)(E1 — Ep)(Ex — Ey) ing resonant transition. This approximation will be used be-
low for mapping the double-resonant Raman modes onto the
GFaphene Brillouin zone.

whereq, , are double-resonant wave vectors witkc 2K,

The matrix elements are assumed to be constant and are su
marized by M. E; andE, are energies of the incoming and
scattered photons, respectively. The energy differences be- B. Interference effects

tween the intermediate electronic stae$,c and the initial Interference effects are often neglected in the literature,

state are denoted bl,. The first term in f{he. Sum Corre- -\ hen the full integration of the Raman cross section is omit-
sponds to the process where the electron is first scattered le

the phonon and then by the defect; in the second term of thggd' They can, however, cancel some of the apparently
e ) ouble-resonant modes and thus significantly alter the Ra-
sum this time order is reversed.

We first evaluate Eq(l) for the two processes in Fig. man spectrum. An example is given in Figbp where the

2(a). The evaluation of the sum is straightforward as Shownelectron is scattered across thepoint between two differ-

in detail in the Appendix. Assuming,=—v,, we find from ent, almost parallel bands. In this process, at egch excitation
Eq. (1) for the scattering .processes éhowzr; in Fig)2 energy the double-resonance condition is fulfilled by the
: phonon exactly at th& point in the case o0f;=-v,. These
M phonons are often assumed to yield double-resonant terms
with the phonon energy being independent of the excitation
energy, see the data exactly at g@oint in Refs. 18 and 19.
K1+ Ko+ 2K = ky+K' Ky When summing over all intermediate states these contribu-
X (ki + K —q/2)(ky + K' - /2) n T tions, however, cancel, as we will show in this section.
1 4 2 4 Moreover, in graphite the fully symmetric phonons leading
~ K1+ Kky— 2K +q n <Q> 2 to theD mode are not allowed to couple electronic states of
(k1=K +0/2) (k- K +0/2) \ Ky different symmetry.
The Raman cross section for the scattering process shown
Here, we defined; and «, analogously to the approach in in Fig. 2b) can be evaluated in the same way as above,
Ref. 3 assumingy,=-vs:

Kaf,10=
' 2U%ﬁa)ph

K1+ K, Ko
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by — 2M f(qul’ KZ) é " |

K ) - . ]
P07 209 (k= K[ 2y = k) + 2K =] ¥ A I
1 1 11k, = constant
(5) ~

" 2(ko-r) + 2K —q)(2K' )

|2

IK2f,10

where f is a function ofq, «;, and «x, as defined in the

Appendix. At first sight, this expression seems to have sin-

gularities atq(lb)=2K’ and qg?)3=2K’12(K1—K2). In particu-

lar, q(lb)=2K’ agrees with what is found graphically from Fig.

2(b). The numeratofEqg. (A5)], however, vanishes simulta- . . . . . .

neously, and we obtain fay— 2K’ 00 05 10 15 20 25 30
Phonon wave vector g

2M 1

lim ,K(Z??loz (2v4)3 ' 2k +K ) (ke +K') © FIG. 3. Raman cross section as a function of the phonon wave
a2 ! ! 2 vector calculated with a fixed incoming resonandashed lingand

The Raman cross section is largecif=—K’ or x,=—K’. For after the full integratiqr(so_lid line). The I_arge cqntributi_ons at small_
y=0 this condition is equivalent t&, ,=-2v,K’, i.e., a laser 9 vanish by destructive interference in the integration. The solid
energy that is resonant with the 6ptical transitionkat0. line is the same as in Fig. 4, see Sec. Il C for details. The inset
Together with the initial condition of=2K’ we conclude Shows the relation between the vectirandq in Eq. (7).
that such a scattering process is not reasonable and does not

contribute to a double-resonance signal. The other possibilthat are not present in the spectra. In particujg2K’ cor-
ties result in a similar situation. Fromébéz 2K'+2(k,—k,)  Fesponds to &-point vector; this is included in the literature
=2K' thwpy/v; follows fwp,=+(qu;-2K'v;). This condi- as @ contribution fulgi!izng|q—K|=0 and being independent
tion implies that either the phonon dispersion has the sam@f the laser energs::15-2°We showed, however, that it is not
slope as the electronic bands—in this case the process ROSSible to obtain double-resonant Raman scattering with
“double-resonant” for ang—or, assuming a constant pho- Phonons from exactly th& point. The additional contribu-
non energy, thag~2K’. The latter case was already ex- tions that were incorrectly included led to wrong predictions
cluded above; the first is not realistic either. Therefore, we d@bout the phonon dispersion of graphite in the past.

not obtain double-resonant contributions from scattering

across thd’ point between the twdgalmos) parallel elec- C. Double-resonant scattering in two dimensions
tronic bgndg. Note that this mechanism is analogqus to the Finally, we discuss the differences between the one-
destructive interference of double-resonant scattering W'th"aimensional integration above and an integration in two di-

the same band, if the electron is not scattered across a Minizensions. Double-resonant scattering in two dimensions was
mum (or maximum) of the band. In fact, the destructive in- g4y studied graphically, where entire circles of double-
terference occurs because the electron before and after beifgonant phonon wave vectors were identified and used for
scattered belongs to bands with the same slope, in particulal, onayysis of the experimental spectra. In this section, we
with the samesign of the slope. Such contributions always g\, that again some of the graphically determined double-
vanish after the summation over all intermediate states, fofgsonang vectors vanish by destructive interference. Those
details see also Ref. 22. . wave vectors that correspond exactly to the one-dimensional
_Interference effects do not only occur in the one-jieqration are most enhanced in two dimensions as well. As
dimensional band structure discussed so far, but also in twg, example we consider linear bands whch cross the Fermi
or three dimensions, in particular, in the more realistic tWo-jo\ 0| atk=0 with a Fermi velocity,. Electrons are scattered
dimensional model system of graphene. In Fig. 3, we show,.oss=0 from wave vectok to k+q, whereq is the pho-
the Raman intensity as a function of the phonon wave vectog,, \vave vector, see inset to Fig. 3. In two dimensions, the
|q| obtained from a full calculatiogsolid line) and from the . 0ss section Eql) can be written as an integral v

simplified procedure, where the electron wave ved&ors  _} 444 the angle) between the vectors andq
fixed at the incoming resonan¢egashed ling In the simpli-

fied calculation, the cross section is large for sniglland - 2M (7 2m 1
diverges forlq/=0. These contributions cancel in the summa- 21,10~ mj dkf do PETIPE)
tion over all initial electron wave vectoks. The same effect vo 0 ! 2
occurs for the phonons exactly at tKepoint in graphite. 1
In summary, the contributions from=2K’ [Fig. 2b)] X K1 0= (K+ K2+ 2+ 2kq cos 6)/2 | ()

cancel as well as those frogq=0. Nevertheless, when the

integration of the Raman cross section is not performed exwith «; and x, as defined in Eq(3). |K§P,10|2 is plotted as a
plicitly but instead the double-resonamtvectors are found function of|g| in Fig. 4 for x;=1-0.01 and x,=0.9-0.01
graphically,q=0 andg=2K" contributions are often included (upper curvg The lower curve is the same scattering process
by mistake!®18-20Neglecting interference effects thus leadsevaluated in one dimension. The positions of the maxima,
to incorrect results such as the prediction of Raman peakise., the phonon wave vectors that contribute most in the
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Phonon wave vector ¢ Wave vector
FIG. 4. Raman cross sectidk,p|> as a function of the phonon FIG. 5. Electronicr and 7" bands of graphene alodg-K—M.
wave vector for linear bands in one dimensitower curvg and for  The symmetry of the bands is given. The solid arrows denote the
linear bands in two dimensior{spper curvg same double-resonant process as in Fig). Dnly fully symmetric

(Ty) phonons can contributeto the scattering within the same non-
double-resonance, are the same in both calculations. THegenerate band. The dashed arrow indicates another possibility of
main difference is the broader range of double-resomant double-resonant scattering, involving phonons from near Ithe
vectors, if the integration is performed in two dimensions. Point with T symmetry.

. Se_veral authors estimated the rela_tive weight Of.the.conbecause the electron—phonon scattering again takes place
tributions to the double-resonance signal by considering @ithin the same electronic band.

“density” of double-resonant phonon wave vectors in tWo  \\e assume that the defect-scattering does not change the
dimensiong2-2°Qur results show that the main contributions symmetry of the electron. Even if it Changed the symmetry,
come from scattering across tiieor K point as in one di-  the Raman cross section would be small, because the defect
mension. Therefore, to find the double-resonant phonomkad to couple electronic states of different symmetry. In the
wave vectors with the strongest Raman signal, the integraexample shown in Fig. 5, the third intermediate electronic

tion in one dimension is sufficient. state is in this case far away from a real electronic state with
the correct symmetry. Therefore, the third term in the de-
IIl. SELECTION RULES nominator of the Raman cross sectifiq. (1)] is much

larger than for an intermediate state very close to a real state.

In the preceding section, the possible double-resonant Ra- The double-resonant phonon wave vectors are, as shown
man processes in graphite were analyzed from a purelin the previous section, neg=2K’, which corresponds to
mathematical point of view. Each phonon branch yieldsnearK point vectors. At theK point of graphene, there are
double resonances in the framework of the discussion prawo optical branches, one derived from the LO and one from
sented so far. It has been argued that double-resonant Ramg@ TO I'-point phonon. Although the eigenvectors at the
scattering cannot explain the selective enhancement dbthe point are of mixed longitudinal and transverse character, we
band with respect to other phonon branches in graphité. call them TO and LO for convenience. At the point, the
In this section, we include the symmetry of electrons andrO is the upper branch, which is fully symmetti€; or A))
phonons and analyze which of the phonon branches are ah the D5, symmetry group of the&k point; the LO (lower
lowed by selection rules in double-resonant scattering. Baselgranch is degenerate with the longitudinal acoustic mode
on this analysis the TO branch of graphite is expected tgK; or E' symmetry. Between the high-symmetry points the
yield the largest Raman cross section, whereas the out-offO and the LA phonons havg, symmetry; the LO and the
plane modes are never double resonant. in-plane TA phonons belong to thE; representation. The

Figure 5 shows the electronieand« bands in graphene out-of-plane modes have, andT, symmetry. Therefore, not
along '-K-M; they are labeled by their symmetry. The all phonon branches contribute to the double resonance pro-
bands are calculated from the tight-binding approximatiorcess as expected when neglecting symmetry. Only phonons
including third-nearest neighbors and fit to ab initio res(lts. from the TO or the LA branch are allowed in the double-
Along I'-K-M, the wave vectors between the high- resonant scattering shown in Figap Because the LA does
symmetry points belong to the,Csubgroup of the B, point  not have the correct symmetry at thepoint nor at thel’
group of graphene. The electronic bands have eifh@r T,  point, we expect from continuity that the TO branch, which
symmetry (A, and B, in molecular notation The double- is allowed at bothK and T, leads to the strongest double-
resonant procesd) from Fig. Aa) is shown by solid arrows. resonant Raman signal. The LO phonon is forbidden by sym-
The optical transition betweefi, and T, requires a photon metry in the D-mode process, in contrast to a variety of
with I'g symmetry, i.e., in-plane polarized light. The excited models which regarded the LO responsible for the RaMan
electron is then scattered within the same band by a phonomode?'31824The reason for the LO being involved in those
The phonon must therefore be fully symmetfit;). The calculations is that most theoretical predicti&nd’ of the
same selection rules hold for the second process in &y 2 LO branch provided the characteristics required to match the
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experimental data of thB mode. These requirements are a . [ '
frequency at about 1250 ¢fand a local minimum at thi
point. The TO phonon was predicted at a too high frequency
at theK point, e.g., 1370 cnt in the ab initio calculation of
Ref. 27. In force-constants calculations even a local maxi-
mum was found for the TO branch at tKepoint2°> which is
incompatible with the positive frequency shift as a function
of laser energy. On the other hand, a fully symmetric breath-

- 1400

1K, 10 (8.u.)

-4 1350

-4 1300

inglike vibration of the carbon hexagons was suggested S ® o

D-mode frequency (cm™")

already by Tuinstra and Koerfgand later predicted from L ----calke. LO| | 4050
a molecular approach based on small aromatic T S
molecules1523.28 Only recently the correct TO and LO 1.0 15 20 25 3.0
branches of graphite were found from inelastic X-ray Excitation energy (eV)
scattering In the following section, we show that when us-
ing this new experimentally determined phonon dispersion,
indeed the calculations from the TO phonons match the exg

perimentalD-mode specra very well. based on the experimental data for the T$lid line) and LO

So far we considered scattering of the electrons across t . . ) )
T point within th band. The elect 50 b ashed ling phonon branch around th€ point. Inset: Raman in-
point within the€ same band. 1he electron can aliso be sca ensity |Kyr 192 @s a function of the phonon wave veciprat E;

.tered across th point, i.e., between Qifferent bands, lead- =2.0 eV. The solid line is from a calculation of E¢R); for the
ing to further defect-induced modes with wave vectors closefaqned line the scattering process in Figh)2i.e., scattering by

to theT" point. This is shown in Fig. 5 by the das_hed arrow. K noint phonons, was explicitly included. These phonorestical
The symmetry of the phonon required for scattering betweeline) do not contribute to the Raman signal due to destructive inter-
electronic states witfi, and T, symmetry isTs, therefore in  ferencesg; , andas 4 correspond to Eq4).

this process the LO and TA modes are allowed. The contri-

bution from the defect scattering step, however, will bejime orders in the scattering process. In Fig. 6, the average of

rather small because either the third intermediate state is ngte peak positions in each group was taken. The calculated

close to a real state of the same symmaifythe defect slopes are 56 cm/eV and 43 crit/eV, where the larger

conserves symmetyyr the scattering probability is smalf slope stems from phonon wave vectors betwéeand M

the defect changes symmegryTherefore, defect-induced ang the smaller one betweéhandI'. Compared to the ex-

modes from close to thE point are predicted to be weaker perimental slopes of 44 cieV (Ref. 13, 47 cntl/eV

than theD mode. o _ (Ref. 30, and 51 cm'/eV (Ref. 31), we find a very good
For D-mode scattering in carbon nanotulethere is @  agreement. In contrast, if we calculate hamode from the

symmetry-based objection against the LO phonon as well. Ip 5 gata(dashed lines either the Raman frequencies are by

armchair tubes, the LO-derived phonon branch has odd pagg_50 cmit lower than the experimental values, or tbe

ity with respect to the vertical mirror plarf& The incoming  mode shift is by a factor of 2 larger than the experimental
and outgoing light in the Raman procéggpolarization has  gpjft.
even parity and, hence, does not change the parity quantum The finear approximation used in Fig. 6 allows a quick
number of the system. Therefore, the odd-parity LO phononystimation of théD-mode properties. The rate at which e
is in fact forbidden. In chire_ll tubes, however, these parityygde shifts is proportional to the slope of the phonon dis-
quantum numbers do not exist and both phonon branches aggsion and inversely proportional to the slope of the elec-
allowed. tron bands. Moreover, the excitation-energy dependence is in
this approximation strictly linear.
In the next step we include, again in one dimension, the
correct electronic bands from the ab initio calculation and the
We now use the analytical expression derived for the Raexperimental dispersion of the TO branch. The sum over all
man cross section, E(R), to calculate thé& mode of graph- intermediate states in E@l) is performed numerically. As
ite. The average slope of both electron bands atktimint  we showed in the last section, the main difference between
was set ta;=-5.1 eV A from a fit to ab initio calculations the one-dimensional and the two-dimensional integration is a
of the electronic band structure for transition energies belovbroadening of the range of double-resonantalues, where
3 eV.” For the phonons, we used a linear fit of the experi-the positions of the maxima remain the same. Therefore, the
mental TO frequencies close to thepoint. error when performing the integration in one dimension is
Figure 6 shows th®-mode frequencies calculated from not larger than the uncertainties in a two-dimensional inte-
the TO branch(solid lineg together with the experimental gration, where we would have to interpolate the experimental
values for graphite. Th® mode consists of two groups of data of the phonon dispersion. Moreover, the asymmetry of
peaks, one from each side of tHepoint [procesg1) and2) the bands with respect to th€ point (trigonal warping is
in Fig. 2@)]. These two groups correspond @9, andqz 4  largest along the high-symmetry lin€s-K—M and is there-
from Eq. (4), respectively, see inset to Fig. 6. Within each fore fully taken into account in the present one-dimensional
group, a double-peak structure results from the two differentalculation.

FIG. 6. D-mode frequency of graphite as a function of laser
nergy. The dots denote experimental data from Refs. 13, 30, and
1. The lines are calculations for defect-induced Raman scattering

IV. CALCULATION OF THE D MODE
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FIG. 7. Raman spectrum of tH2 mode atE;=2.54 eV. The FIG. 8. D-mode frequency of graphite as a function of laser

experimental spectrurftiots was taken on a natural graphite flake. €nergy, calculated from the experimentally determined TO branch.
The solid line shows a spectrum calculated from the experimentalhe upper and lower frequencies come from phonons between
data of the graphite TO phonofRef. 6); the dashed lines are K-M and betweend K, respectively. The dots denote experimen-
Lorentzian fits to the calculated spectrum. The calculated Ramaf®l data from Refs. 13, 30, and 31.

intensity is at each phonon energy multiplied by a Lorentzian with

a full width of 20 et discussed, the procedure of finding the double-resonant pho-

non wave vector is rather complex, and a precise knowledge
of both the electronic bands and the phonon dispersion is

In Fig. 7, we show a calculated Raman spectrum oflhe needed. Nevertheless, we can estimate the double-resonant
mode for an excitation enerdy;=2.54 eV. The agreement phonon wave vector, neglecting the phonon energy and the
with the experimental spectrugdots is excellent consider- details of the scattering process, by assumirrg2k; for
ing that no adjustable parameter is involved except for ascattering across tHe point. At a given excitation energy in
overall scaling. Théd-mode peak is not a single Lorentzian the experiment, the electron wave vecigrfor a resonant
but has a complex line shape due to the double-resonanggansition of the incoming light is calculated from the elec-
processes contributing to the signal. The individual contributronic band structure. The observed Raman frequency of the
tions are not resolved, and a fit by two Lorentzians is approdouble-resonant mode is then plottechat2k; into the pho-
priate. Each of them roughly corresponds to phonons fronhon dispersion relation. We took the asymmetry of the bands
one particular side of th& point as discussed above. The with respect to thé< point into account by findinds sepa-
good agreement in line shape was obtained by using a ph@ately for both sides of thé& point [corresponding to the
non linewidth of 20 criit in the calculation. This large line- processesl) and(2) in Fig. 2a)]. For double-resonant scat-
width is consistent with the broadened range of doubletering across th& point, as shown by the dashed arrow in
resonant phonon wave vectors that we expect for therig. 5 the phonon wave vector is close to figoint and
integration in two dimensions. found approximately from the difference betwdef'K) and

The D-mode frequency as a function of excitation energyi;(KM). Since this procedure does not contain a full calcula-
from the same calculation as in Fig. 7 is shown in Fig. 8. Th&jon of the Raman cross section, the destructive interferences
frequencies were again found from a fit by two Lorentzianshaye to be taken into account explicitly. Therefore, we do not
to the calculated spectra. The upplewer) frequency stems  jnclude the processes in Figld, in contrast to Refs. 18—20.
from the phonon branch betwegnandM (I' andK ). TheD  Fyrthermore, the selection rules help to find the correct as-
mode shifts at a rate of 56 ctieV and 61 /cr*/eV. Be-  signment of the double-resonant modes.
cause of the nonlinear electronic bands and phonon disper- | Fig. 9, we show the mapping of all disorder-induced
sion, the shift is only approximately linear. Our calculationsRaman peakgFig. 9a)] and second-order modégig. Ab)]
again confirm that th& mode comes from the TO-derived of graphite onto the phonon dispersion. Since any second-
phonon branch of graphife’>232°From the strong relation order overtone contains the fully symmetric representation,
between graphite and carbon nanotubes we expect that thii overtones can contribute to the same scattering process

holds for carbon nanotubes as well. that also leads to thB mode(Fig. 2). Combination modes,
i.e., second-order scattering of two phonons from different
V. MAPPING DISORDER-INDUCED MODES ONTO THE branches, must in total_cpntamlaflully symrr]netrlc coanonent.
PHONON DISPERSION The solid lines are ab initio calculations that were shown to

reproduce the experimental phonon dispersion very Swell.
If the Raman spectrum of a material is governed byThe agreement of the Raman data and the calculation is
double resonances and an excitation-energy dependence gdod, in particular, for both optical modes and their over-
the Raman modes can be measured, these experiments candnes. For the acoustic modes, the assumption of zero-
principle be used to find the phonon dispersion. This apphonon energy is justified close to thepoint; on the other
proach was first suggested for graphite by Satt@l!® As  hand, neglecting their large dispersion in the mapping proce-
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1600¢ T \ (b) the Raman cross section in one dimension, using the experi-
 1a00} T1‘ s K, 73990 mentally determined phonon dispersion of graphite. The ob-
' 1200 TR %2500 tained D_—mode shift of 43-61 cr‘ﬁr/ey is in good agree-
4 @8 K ment with the experiment, confirming that tH2 mode
g 1000F . T ° 1200 comes from the TO-derived phonon branch. The selection
g 800F 2 o/ K, \1500 rules for double-resonant scattering along the high-symmetry
§ 600f directions of the graphene Brillouin zone were found and
£ ool s 7% 12t 2TA 11000 ysed for a mapping of disorder-induced and second-order

- 6 _M3+_ 1500 Raman modes onto the phonon dispersion.
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data from Refs. 32-34. The lines are the sum of the phonon
branches in(a) for the overtones and the allowed combination
modes.

In this Appendix, we derive the expression of Eg) for
the Raman matrix elemeftty 1, in the case oD-mode scat-
tering within linear bands in one dimension. From the scat-

tering processes shown in Fi we find
dure leads to larger discrepancies at increasing phonon wave gp 9k

vectors. For more accurate results, the phonon energy should Ea=(K -K)(vy—vy) =iy for |K<K’,
be taken into account. In contrast to Sé#itoand
. . ~1 .
Kawashim&?! we assigned the mode at800 cm? to the E.=(-|K+K)(i—vy) —iy for |[K>K', (AL)

transverse acousticTA) branch instead of the out-of-plane
mode. The out-of-plane mode is forbidden by symmetry inand
the double-resonance process, see Sec. lll, thus it cannot b
seen in the Raman spectra. Furthermore, no disorder-induced i =
peak corresponds exactly to tKepoint because of the inter- )
ference effects discussed above. Epi =~ [K|(vy+v2) +quo =K' (vo=vy) ~iy for [K>K',
In summary, the following procedure can be used to map (A2)

the double-resonant Raman modes of graphite onto the phqg- . .
non dispersion: grap P (}he double-resonant procesgds and (2) in Fig. 2 corre-

spond tolk| <K’ and |k|>K’, respectively. In the first case,
(i) Find alongI’'-K—-M, the two electron wave vectors the phonon wave vector is smaller thaK’'2i.e., it is from

— k(v +vy) +qui =K' (v —vy) —iy for [K<K’,

ki1 » for an incoming resonance of the laser energy, betweenK and M, whereas in the second cages larger
(i) Plot the fully symmetric modegTO, longitudinal than XK’ and stems from betwedf andT".

acoustig at q=2k;, , into the phonon dispersion, and From the intermediate state the electron is scattered to
(iii) Plot the modes witiT; symmetry(LO, upper TA at  a statec close to staten, thereforeEy=E,. The phonon

g=|ki1—ki,| along'—K—M. energy ishawpp, thusE;-fwyn=E,. We insert the above ex-

In this way, the experimental data points from RamanP'€ssions into Eq1) and obtain

scattering were plotted in Fig. 9; thus, an unknown disper- 5 K’ M
sion curve can be investigated experimentally with double- Kof 10= [
resonant Raman scattering. T (2% L (ki + K = K) (ki + K’ = k)
P ]
VI. SUMMARY (it K -2 e+ K -q2)
In conclusion, we presented an in-depth analysis of o
double-resonant Raman scattering. We calculated the double- + 2 { M
resonanD mode in graphite without using arbitrary assump- (200)° 5 L (ki =K' +K) (1= K" +K)
tions or adjustable parameters in the calculation. We derived
an analytical expression f@-mode scattering in one dimen- ( 1 + 1 )
sion and showed that double resonances W#K’ andq (ko= K'+0/2) (k;—K'+0/2)

=0 vanish by destructive interferences. The integration in the (A3)
two-dimensional Brillouin zone does not alter the double-

resonant phonon wave vectors found from the oneThe sum can be converted into an integral duek straight-
dimensional integration. We performed a full integration of forward evaluation of the integral yields E@),
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Ky 10 M K1+ Ko+ 2K —(q | <K2+K’.ﬁ>_ K1+ Kky—2K' +Q |n(K2>] (Ad)
' (k1

20%hapnl (k1 + K — Dk, + K —qf2) \rky +K' 1y K A2 (=K +q2) \ kg
For the scattering processes according to Fi),2an analytical expression can be derived in the same way as above:
K= = :

(17 (k1= k) (2K =) (267 = 2k + 2K = Q) (262 = 261 + 2K' — )
=K'+ (2k1 = 2K, + 2K' = @)In(= ko = K" )+ (k1 — k) (IN 4 = 2 In(= 2K, — Q) |+ (2K = 2K, + 2K' = )[— (2K — 2K
+2K' = g)In(= k= K') + (2K" = q)In(= k2 = K')+ (k1 = k) (IN 4 = 2 In(= 261~ @))]]

_ 2M f(q, k1, k7)
T(209)° (k1 o) (2K = O[2(ky ~ k) + 2K = ql[ 2, = rcy) + 2K =]
where k; and k, are given by Eq(3). The functionf(q, 1, x,) defined above was used in the discussion in Sec. Il B. For

q(lb):ZK’, this expression is zero; the processes in Fig) 2ancel due to destructive interference.

X[(2Ky = 2K1 + 2K' = @)[- (2K" = g)In(— &1
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