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We present a comprehensive analysis of double-resonant Raman scattering in graphite and derive an ana-
lytical expression for the Raman cross section of theD mode in one dimension. The extension to two dimen-
sions does not change the double-resonant phonon wave vectors. In the full integration of the Raman cross
section, the contributions by phonons from exactly theK point cancel due to destructive interference. We
calculate theD mode explicitly based on recent experimental data of the graphite phonon dispersion. Applying
the selection rules, a mapping of additional disorder-induced and second-order Raman modes onto the Bril-
louin zone of graphite is obtained.
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I. INTRODUCTION

Double-resonant Raman scattering reveals a variety of in-
formation about the electronic and vibrational states of a ma-
terial. Double resonances, where two of the intermediate
electronic states in the scattering process have to be real,
usually require special experimental conditions. For ex-
ample, an external electric field or pressure tune the elec-
tronic energies such that a double resonance occurs at a
given excitation energy and with a zone-center phonon.1,2

The double-resonance condition can be fulfilled more easily
in a semimetal-like graphite,3 but also in semiconductors
with parabolic bands,4 if the sample contains symmetry-
breaking elements. Such defects are, e.g., the boundaries of
the crystallites in polycrystalline graphite, or the crystal sur-
face. They relax the quasi-momentum conservation and al-
low nonzero-phonon wave vectors to contribute to the Ra-
man process. Alternatively, double resonances are observed
in two-phonon Raman scattering, where momentum is con-
served through phonons of equal but opposite wave vector.
An example is the overtone spectrum of acoustic phonons in
Ge.5

The characteristics of a double resonance is that the ob-
served modes depend on the wavelength of the incoming
light. At each excitation energy, a different phonon is se-
lected by the double-resonance condition, resulting in the
frequency shift of the double-resonant mode. Therefore, by
changing the laser energy, one can measure the phonon dis-
persion, if the electronic band structure is known, or, vice
versa, probe the electronic bands. In graphite, carbon nano-
tubes, and other forms ofsp2-bonded carbon, several defect-
induced and second-order double-resonant modes are ob-
served, of which the most prominent one is the so-calledD
mode at<1350 cm−1.

In this paper, we present a comprehensive treatment of
defect-induced and second-order double-resonant Raman
scattering in graphite based on the linear interpretation in
Ref. 3. We discuss, in particular, the destructive interference
of some of the scattering processes that are often mistakingly
included in the literature. The difference between a two-

dimensional and a one-dimensional integration is shown to
be small. The recently experimentally determined phonon
dispersion of graphite6 and numerically derived electronic
bands7 allow us to explicitly calculate theD-mode line shape
and its excitation-energy dependence without adjustable pa-
rameters. Both the absolute frequencies and the excitation-
energy dependence of theD mode agree very well with the
experimental Raman spectra. Furthermore, our results con-
firm that theD-mode phonons indeed stem from the trans-
verse optical(TO)-derived branch, as predicted indepen-
dently from symmetry and from a molecular approach.8 We
include the selection rules and use them to map the frequen-
cies of other first- and second-order Raman modes onto the
phonon dispersion of graphite.

The origin of theD mode in graphite and carbon nano-
tubes is well established as being defect-induced double-
resonant scattering.3,9,10 In spite of being intensively used,
the double-resonance model is often incorrectly implemented
or too severely simplified. In this introduction, we briefly
explain the double-resonance process and then outline the
issues that will be addressed in the following sections.

The defect-induced Raman process consists of four steps:
Excitation of an electron–hole pair, inelastic scattering of the
electron(or hole) by a phonon, elastic scattering of the elec-
tron (hole) by a defect, and recombination of the excited
electron and hole. The second and third step can be inter-
changed; for the second-order Raman spectrum, the elastic
defect scattering is replaced by inelastic scattering by a sec-
ond phonon. The process is double resonant, if two of the
transitions are real. By integrating the contributions of all
allowed processes, irrespective of whether they are resonant
or not, the Raman cross section can be computed. In Fig. 1,
we show schematically the step of electron–phonon
(electron-defect) scattering in the hexagonal Brillouin zone
of the graphite sheet. The background is a contour plot of the
conduction band. Scattering between two inequivalentK
points, K and K8, leads to theD mode (solid arrows),
whereas scattering close to the sameK point or between two
equivalentK points results in near-G point modes(dashed
arrows).
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The double-resonance model provides an excellent under-
standing of all experimental observations of theD mode: The
strength of theD mode increases with the number of defects
in the sample;11 it stems from near theK point of the graphite
Brillouin zone. Its frequency depends on the wavelength of
the exciting light and shifts at a rate of 38–70 cm−1/eV.12–16

Furthermore, theD-mode frequency is different in Stokes
and anti-Stokes scattering, which can be understood from
slightly different double-resonance conditions for the Stokes
and the anti-Stokes process.17 Many of the published appli-
cations of the double resonance, however, contain a number
of conceptual problems when the Raman spectrum is calcu-
lated or the double resonance is used for a derivation of the
phonon dispersion.

First, the full integration of the Raman cross section is
often replaced by considering only the step shown in Fig.
1.16,18–20The wave vectorki of the excited electron is fixed at
the incoming resonance. Starting from this wave vector, the
double-resonant phonon wave vectorsq are determined,
partly graphically19 or by requiring that the electron wave
vectorkb=ki −q is real.16,18–20The calculation of the Raman
spectra in this case is merely based on the condition that two
intermediate electronic states have to be real. Although this
is a necessary condition for double-resonant scattering, it is
not sufficient for a large Raman signal. In such a simplified
procedure, the Raman cross section may appear large for a
particular phonon mode, but it vanishes in the complete in-
tegration by destructive interference. Neglecting the full in-
tegration therefore leads to incorrect predictions of the
double-resonant Raman spectrum. Conversely, the phonon
dispersion derived from double-resonant Raman scattering
may be wrong, if interference effects are not taken into ac-
count. For example, the phonon from exactly theK point
seems at first sight to contribute to the double resonance, but
it is cancelled by destructive interference, as we will show in
this paper. Nevertheless, theK point is often included in the

derivation of the phonon dispersion, leading to incorrect
results.18,19 Thus, in the analysis of theD mode and other
double-resonant modes, the interference effects have to be
taken into account explicitly if the full integration of the
Raman cross section is omitted.

Second, most of the full integrations have been carried out
in one dimension only or for the one-dimensional case of
carbon nanotubes.9,16 Therefore, it needs to be clarified ana-
lytically how the two-dimensional integration in the graphite
Brillouin zone affects the results obtained in one dimension.

Third, the symmetry and selection rules for electron–
phonon scattering were frequently not considered. As a re-
sult, some double-resonant modes were assigned to a forbid-
den phonon branch, such as the assignment of the 800 cm−1

peak to the out-of-plane modes in Refs. 18 and 21. Even the
D mode was incorrectly believed to belong to the longitudi-
nal (LO)-derived phonon branch, which is degenerate at the
K point.3,9,16Instead, it comes from the upper, fully symmet-
ric phonon branch, which is nondegenerate at theK point.8,15

We will confirm this explicitly by calculating theD-mode
spectrum based on the newly obtained experimental phonon
dispersion of graphite.

Finally, the quantitative analysis so far relied on—partly
arbitrary—assumptions about the electron and phonon dis-
persion. The common tight-binding formula for the elec-
tronic band structure is a reasonable approximation if ex-
tended to including third-nearest neighbors.7 In contrast, the
phonon branches were often modeled by simple analytical
expressions.3,9,16 Because the theoretically determined pho-
non dispersions were contradictory in many respects, quan-
titative predictions of theD mode were difficult to judge.
Here, we will use the experimental phonon dispersion of
graphite for calculations of double-resonantD-mode scatter-
ing without any arbitrary assumptions.

This paper is organized as follows: In Sec. II, we give a
detailed description of the integration of the Raman cross
section, including interference effects and the integration in
two dimensions. The selection rules for double-resonant scat-
tering in graphite are derived in Sec. III. We calculate the
D-mode spectra in Sec. IV and obtain a mapping of the ad-
ditional double-resonant Raman peaks onto the phonon dis-
persion in Sec. V. In the Appendix, the derivation of the
analytical expression for the Raman cross section is pre-
sented.

II. THEORY: INTEGRATION OF THE RAMAN
CROSS SECTION

A. Double-resonant scattering in one dimension

In this section, we derive an analytical expression for the
Raman cross section of theD mode in the approximation of
linear bands in one dimension. The scattering process for the
D mode takes place between two inequivalentK points of the
graphite Brillouin zone, see Fig. 1. At theK point, the elec-
tronic bands are approximately linear for transition energies
in the visible range of light and cross the Fermi level. Along
the G–K–M direction, theD-mode phonon wave vector is
close to twice theK-point vector. In Fig. 2(a), both possibili-
ties for scattering within the same electronic band are shown.

FIG. 1. Hexagonal Brillouin zone of graphene(single graphite
sheet) with a contour plot of the conduction band(dark gray corre-
sponds to zero energy). The high-symmetry pointsG, K, andM are
indicated. Two neighboringK points, given byK and K8, are in-
equivalent, i.e., they cannot be transformed into each other by a
reciprocal lattice vector. Their distance corresponds again to a
K-point vector. Scattering between two inequivalentK points there-
fore results in the RamanD mode from near theK point (solid
arrows). Scattering at the sameK point or between two equivalent
K points involves phonon wave vectors close to theG point (dashed
arrows).
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v1 andv2 are the Fermi velocities andk andq are the wave
vectors of the electron and the phonon, respectively.

To find the double-resonant phonon wave vectors, the Ra-
man cross section has to be evaluated by summing over all
possible(including resonant and nonresonant) processes. The
Raman cross section is proportional touK2f,10u2, where the
Raman matrix elementK2f,10 in higher-order scattering is
given by22

K2f,10= o
a,b,c

F M
sE1 − EaidsE2 − EbidsE2 − Ecid

+
M

sE1 − EaidsE1 − EbidsE2 − Ecid
G . s1d

The matrix elements are assumed to be constant and are sum-
marized byM. E1 andE2 are energies of the incoming and
scattered photons, respectively. The energy differences be-
tween the intermediate electronic statesa,b,c and the initial
state are denoted byExi. The first term in the sum corre-
sponds to the process where the electron is first scattered by
the phonon and then by the defect; in the second term of the
sum this time order is reversed.

We first evaluate Eq.(1) for the two processes in Fig.
2(a). The evaluation of the sum is straightforward as shown
in detail in the Appendix. Assumingv1=−v2, we find from
Eq. (1) for the scattering processes shown in Fig. 2(a)

K2f,10=
M

2v1
2"vph

3F k1 + k2 + 2K8 − q

sk1 + K8 − q/2dsk2 + K8 − q/2d
ln Sk2 + K8

k1 + K8
·

k1

k2
D

−
k1 + k2 − 2K8 + q

sk1 − K8 + q/2dsk2 − K8 + q/2d
ln Sk2

k1
DG . s2d

Here, we definedk1 and k2 analogously to the approach in
Ref. 3

k1 =
E1 − ig

2v1
and k2 =

E1 − "vph − ig

2v1
, s3d

andK8 denotes the wave vector of theK point. The lifetime
broadeningg of the electronic transition energies is taken to
be the same. Equation(2) depends on the phonon wave vec-
tor q and is evaluated as a function ofq; the Raman intensity
is at maximum for thoseq which fulfill the double-resonance
condition. The maximum values ofK2f,10 are dominated by
the terms in the denominators of Eq.(2). The double-
resonant phonon wave vectors are, therefore,

q1,2= 2sK8 + k1,2d for k , K8,

q3,4= 2sK8 − k1,2d for k . K8, s4d

whereq1,2 are double-resonant wave vectors withq,2K8,
i.e., they are between theK and M point and arise from
process(1) in Fig. 2(a), whereasq3,4 are between theG and
K point [process(2) in Fig. 2(a)].

Compared to Eq.(2), the analytic expression derived by
Thomsen and Reich3 applies to scattering between different
bands across theK point, as indicated by the dashed arrows
in Fig. 1. Besides the change of the time order, there are two
double-resonant phonon wave vectors only if the Fermi ve-
locities are different. In contrast, Eq.(2) describes double-
resonant scattering across theG point within the same band.
Both processes,(1) and(2) in Fig. 2(a), are included, as well
as both time orders of scattering by the phonon and by the
defect. This leads to four different double-resonant phonon
wave vectors[Eq. (4)], even if the Fermi velocities of both
electronic bands are equal.

In the approximation of zero phonon energy, Eq.(4) for
the double-resonant phonon wave vectors yields the so-
calledq<2ki rule, whereki is the wave vector of the incom-
ing resonant transition. This approximation will be used be-
low for mapping the double-resonant Raman modes onto the
graphene Brillouin zone.

B. Interference effects

Interference effects are often neglected in the literature,
when the full integration of the Raman cross section is omit-
ted. They can, however, cancel some of the apparently
double-resonant modes and thus significantly alter the Ra-
man spectrum. An example is given in Fig. 2(b), where the
electron is scattered across theG point between two differ-
ent, almost parallel bands. In this process, at each excitation
energy the double-resonance condition is fulfilled by the
phonon exactly at theK point in the case ofv1=−v2. These
phonons are often assumed to yield double-resonant terms
with the phonon energy being independent of the excitation
energy, see the data exactly at theK point in Refs. 18 and 19.
When summing over all intermediate states these contribu-
tions, however, cancel, as we will show in this section.
Moreover, in graphite the fully symmetric phonons leading
to theD mode are not allowed to couple electronic states of
different symmetry.

The Raman cross section for the scattering process shown
in Fig. 2(b) can be evaluated in the same way as above,
assumingv1=−v2:

FIG. 2. (a) Double-resonant scattering processes leading to the
D mode in graphite. The electronic bands are assumed to be linear
at theK point with Fermi velocitiesv1 and v2. The D-mode scat-
tering takes place across theG point within the same electronic
band.(b) Scattering across theG point between two almost parallel
bands does not contribute to the double-resonance signal because of
destructive interference.
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K2f,10
sbd =

2M
s2v1d3 ·

fsq,k1,k2d
sk1 − k2df2sk1 − k2d + 2K8 − qg

3
1

f2sk2 − k1d + 2K8 − qgs2K8 − qd
, s5d

where f is a function of q, k1, and k2 as defined in the
Appendix. At first sight, this expression seems to have sin-
gularities atq1

sbd=2K8 and q2,3
sbd =2K8±2sk1−k2d. In particu-

lar, q1
sbd=2K8 agrees with what is found graphically from Fig.

2(b). The numerator[Eq. (A5)], however, vanishes simulta-
neously, and we obtain forq→2K8

lim
q→2K8

K2f,10
sbd =

2M
s2v1d3 ·

1

2sk1 + K8dsk2 + K8d
. s6d

The Raman cross section is large ifk1=−K8 or k2=−K8. For
g=0 this condition is equivalent toE1,2=−2v1K8, i.e., a laser
energy that is resonant with the optical transition atk=0.
Together with the initial condition ofq=2K8 we conclude
that such a scattering process is not reasonable and does not
contribute to a double-resonance signal. The other possibili-
ties result in a similar situation. Fromq2,3

sbd =2K8±2sk1−k2d
=2K8±"vph/v1 follows "vph= ± sqv1−2K8v1d. This condi-
tion implies that either the phonon dispersion has the same
slope as the electronic bands—in this case the process is
“double-resonant” for anyq—or, assuming a constant pho-
non energy, thatq<2K8. The latter case was already ex-
cluded above; the first is not realistic either. Therefore, we do
not obtain double-resonant contributions from scattering
across theG point between the two(almost) parallel elec-
tronic bands. Note that this mechanism is analogous to the
destructive interference of double-resonant scattering within
the same band, if the electron is not scattered across a mini-
mum (or maximum) of the band. In fact, the destructive in-
terference occurs because the electron before and after being
scattered belongs to bands with the same slope, in particular
with the samesign of the slope. Such contributions always
vanish after the summation over all intermediate states, for
details see also Ref. 22.

Interference effects do not only occur in the one-
dimensional band structure discussed so far, but also in two
or three dimensions, in particular, in the more realistic two-
dimensional model system of graphene. In Fig. 3, we show
the Raman intensity as a function of the phonon wave vector
uqu obtained from a full calculation(solid line) and from the
simplified procedure, where the electron wave vectorki is
fixed at the incoming resonance(dashed line). In the simpli-
fied calculation, the cross section is large for smalluqu and
diverges foruqu=0. These contributions cancel in the summa-
tion over all initial electron wave vectorski. The same effect
occurs for the phonons exactly at theK point in graphite.

In summary, the contributions fromq=2K8 [Fig. 2(b)]
cancel as well as those fromq=0. Nevertheless, when the
integration of the Raman cross section is not performed ex-
plicitly but instead the double-resonantq vectors are found
graphically,q=0 andq=2K8 contributions are often included
by mistake.16,18–20Neglecting interference effects thus leads
to incorrect results such as the prediction of Raman peaks

that are not present in the spectra. In particular,q=2K8 cor-
responds to aK-point vector; this is included in the literature
as a contribution fulfillinguq−Ku=0 and being independent
of the laser energy.16,18–20We showed, however, that it is not
possible to obtain double-resonant Raman scattering with
phonons from exactly theK point. The additional contribu-
tions that were incorrectly included led to wrong predictions
about the phonon dispersion of graphite in the past.18,19

C. Double-resonant scattering in two dimensions

Finally, we discuss the differences between the one-
dimensional integration above and an integration in two di-
mensions. Double-resonant scattering in two dimensions was
mostly studied graphically, where entire circles of double-
resonant phonon wave vectors were identified and used for
an analysis of the experimental spectra. In this section, we
show that again some of the graphically determined double-
resonantq vectors vanish by destructive interference. Those
wave vectors that correspond exactly to the one-dimensional
integration are most enhanced in two dimensions as well. As
an example we consider linear bands whch cross the Fermi
level atk=0 with a Fermi velocityv1. Electrons are scattered
acrossk=0 from wave vectork to k+q, whereq is the pho-
non wave vector, see inset to Fig. 3. In two dimensions, the
cross section Eq.(1) can be written as an integral overuku
=k and the angleu between the vectorsk andq

K2f,10
2D =

2M
s2v1d3E

0

`

dkE
0

2p

duF 1

sk1 − kdsk2 − kd

3
1

k1,2− sk + Îk2 + q2 + 2kq cosud/2
G , s7d

with k1 andk2 as defined in Eq.(3). uK2f,10
2D u2 is plotted as a

function of uqu in Fig. 4 for k1=1–0.01i and k2=0.9–0.01i
(upper curve). The lower curve is the same scattering process
evaluated in one dimension. The positions of the maxima,
i.e., the phonon wave vectors that contribute most in the

FIG. 3. Raman cross section as a function of the phonon wave
vector calculated with a fixed incoming resonance(dashed line) and
after the full integration(solid line). The large contributions at small
q vanish by destructive interference in the integration. The solid
line is the same as in Fig. 4, see Sec. II C for details. The inset
shows the relation between the vectorsk andq in Eq. (7).

MAULTZSCH, REICH, AND THOMSEN PHYSICAL REVIEW B70, 155403(2004)

155403-4



double-resonance, are the same in both calculations. The
main difference is the broader range of double-resonantq
vectors, if the integration is performed in two dimensions.

Several authors estimated the relative weight of the con-
tributions to the double-resonance signal by considering a
“density” of double-resonant phonon wave vectors in two
dimensions.19,20Our results show that the main contributions
come from scattering across theG or K point as in one di-
mension. Therefore, to find the double-resonant phonon
wave vectors with the strongest Raman signal, the integra-
tion in one dimension is sufficient.

III. SELECTION RULES

In the preceding section, the possible double-resonant Ra-
man processes in graphite were analyzed from a purely
mathematical point of view. Each phonon branch yields
double resonances in the framework of the discussion pre-
sented so far. It has been argued that double-resonant Raman
scattering cannot explain the selective enhancement of theD
band with respect to other phonon branches in graphite.15,23

In this section, we include the symmetry of electrons and
phonons and analyze which of the phonon branches are al-
lowed by selection rules in double-resonant scattering. Based
on this analysis the TO branch of graphite is expected to
yield the largest Raman cross section, whereas the out-of-
plane modes are never double resonant.

Figure 5 shows the electronicp andp* bands in graphene
along G–K–M; they are labeled by their symmetry. The
bands are calculated from the tight-binding approximation
including third-nearest neighbors and fit to ab initio results.7

Along G–K–M, the wave vectors between the high-
symmetry points belong to the C2v subgroup of the D6h point
group of graphene. The electronic bands have eitherT2 or T4
symmetry (A2 and B2 in molecular notation). The double-
resonant process(1) from Fig. 2(a) is shown by solid arrows.
The optical transition betweenT4 and T2 requires a photon
with G6

− symmetry, i.e., in-plane polarized light. The excited
electron is then scattered within the same band by a phonon.
The phonon must therefore be fully symmetricsT1d. The
same selection rules hold for the second process in Fig. 2(a),

because the electron–phonon scattering again takes place
within the same electronic band.

We assume that the defect-scattering does not change the
symmetry of the electron. Even if it changed the symmetry,
the Raman cross section would be small, because the defect
had to couple electronic states of different symmetry. In the
example shown in Fig. 5, the third intermediate electronic
state is in this case far away from a real electronic state with
the correct symmetry. Therefore, the third term in the de-
nominator of the Raman cross section[Eq. (1)] is much
larger than for an intermediate state very close to a real state.

The double-resonant phonon wave vectors are, as shown
in the previous section, nearq=2K8, which corresponds to
near-K point vectors. At theK point of graphene, there are
two optical branches, one derived from the LO and one from
the TOG-point phonon. Although the eigenvectors at theK
point are of mixed longitudinal and transverse character, we
call them TO and LO for convenience. At theK point, the
TO is the upper branch, which is fully symmetric(K1 or A18)
in the D3h symmetry group of theK point; the LO (lower
branch) is degenerate with the longitudinal acoustic mode
(K5 or E8 symmetry). Between the high-symmetry points the
TO and the LA phonons haveT1 symmetry; the LO and the
in-plane TA phonons belong to theT3 representation. The
out-of-plane modes haveT2 andT4 symmetry. Therefore, not
all phonon branches contribute to the double resonance pro-
cess as expected when neglecting symmetry. Only phonons
from the TO or the LA branch are allowed in the double-
resonant scattering shown in Fig. 2(a). Because the LA does
not have the correct symmetry at theK point nor at theG
point, we expect from continuity that the TO branch, which
is allowed at bothK and G, leads to the strongest double-
resonant Raman signal. The LO phonon is forbidden by sym-
metry in the D-mode process, in contrast to a variety of
models which regarded the LO responsible for the RamanD
mode.3,13,18,24The reason for the LO being involved in those
calculations is that most theoretical predictions25–27 of the
LO branch provided the characteristics required to match the

FIG. 4. Raman cross sectionuK2Du2 as a function of the phonon
wave vector for linear bands in one dimension(lower curve) and for
linear bands in two dimensions(upper curve).

FIG. 5. Electronicp andp* bands of graphene alongG–K–M.
The symmetry of the bands is given. The solid arrows denote the
same double-resonant process as in Fig. 2(a). Only fully symmetric
sT1d phonons can contributeto the scattering within the same non-
degenerate band. The dashed arrow indicates another possibility of
double-resonant scattering, involving phonons from near theG
point with T3 symmetry.
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experimental data of theD mode. These requirements are a
frequency at about 1250 cm−1 and a local minimum at theK
point. The TO phonon was predicted at a too high frequency
at theK point, e.g., 1370 cm−1 in the ab initio calculation of
Ref. 27. In force-constants calculations even a local maxi-
mum was found for the TO branch at theK point,25 which is
incompatible with the positive frequency shift as a function
of laser energy. On the other hand, a fully symmetric breath-
inglike vibration of the carbon hexagons was suggested
already by Tuinstra and Koenig11 and later predicted from
a molecular approach based on small aromatic
molecules.8,15,23,28 Only recently the correct TO and LO
branches of graphite were found from inelastic X-ray
scattering.6 In the following section, we show that when us-
ing this new experimentally determined phonon dispersion,
indeed the calculations from the TO phonons match the ex-
perimentalD-mode spectra very well.

So far we considered scattering of the electrons across the
G point within the same band. The electron can also be scat-
tered across theK point, i.e., between different bands, lead-
ing to further defect-induced modes with wave vectors closer
to theG point. This is shown in Fig. 5 by the dashed arrow.
The symmetry of the phonon required for scattering between
electronic states withT2 andT4 symmetry isT3, therefore in
this process the LO and TA modes are allowed. The contri-
bution from the defect scattering step, however, will be
rather small because either the third intermediate state is not
close to a real state of the same symmetry(if the defect
conserves symmetry) or the scattering probability is small(if
the defect changes symmetry). Therefore, defect-induced
modes from close to theG point are predicted to be weaker
than theD mode.

For D-mode scattering in carbon nanotubes,9 there is a
symmetry-based objection against the LO phonon as well. In
armchair tubes, the LO-derived phonon branch has odd par-
ity with respect to the vertical mirror plane.29 The incoming
and outgoing light in the Raman process(zz-polarization) has
even parity and, hence, does not change the parity quantum
number of the system. Therefore, the odd-parity LO phonon
is in fact forbidden. In chiral tubes, however, these parity
quantum numbers do not exist and both phonon branches are
allowed.

IV. CALCULATION OF THE D MODE

We now use the analytical expression derived for the Ra-
man cross section, Eq.(2), to calculate theD mode of graph-
ite. The average slope of both electron bands at theK point
was set tov1=−5.1 eV Å from a fit to ab initio calculations
of the electronic band structure for transition energies below
3 eV.7 For the phonons, we used a linear fit of the experi-
mental TO frequencies close to theK point.

Figure 6 shows theD-mode frequencies calculated from
the TO branch(solid lines) together with the experimental
values for graphite. TheD mode consists of two groups of
peaks, one from each side of theK point [process(1) and(2)
in Fig. 2(a)]. These two groups correspond toq1,2 and q3,4
from Eq. (4), respectively, see inset to Fig. 6. Within each
group, a double-peak structure results from the two different

time orders in the scattering process. In Fig. 6, the average of
the peak positions in each group was taken. The calculated
slopes are 56 cm−1/eV and 43 cm−1/eV, where the larger
slope stems from phonon wave vectors betweenK and M
and the smaller one betweenK andG. Compared to the ex-
perimental slopes of 44 cm−1/eV (Ref. 13), 47 cm−1/eV
(Ref. 30), and 51 cm−1/eV (Ref. 31), we find a very good
agreement. In contrast, if we calculate theD mode from the
LO data(dashed lines), either the Raman frequencies are by
40–50 cm−1 lower than the experimental values, or theD
mode shift is by a factor of 2 larger than the experimental
shift.

The linear approximation used in Fig. 6 allows a quick
estimation of theD-mode properties. The rate at which theD
mode shifts is proportional to the slope of the phonon dis-
persion and inversely proportional to the slope of the elec-
tron bands. Moreover, the excitation-energy dependence is in
this approximation strictly linear.

In the next step we include, again in one dimension, the
correct electronic bands from the ab initio calculation and the
experimental dispersion of the TO branch. The sum over all
intermediate states in Eq.(1) is performed numerically. As
we showed in the last section, the main difference between
the one-dimensional and the two-dimensional integration is a
broadening of the range of double-resonantq values, where
the positions of the maxima remain the same. Therefore, the
error when performing the integration in one dimension is
not larger than the uncertainties in a two-dimensional inte-
gration, where we would have to interpolate the experimental
data of the phonon dispersion. Moreover, the asymmetry of
the bands with respect to theK point (trigonal warping) is
largest along the high-symmetry linesG–K–M and is there-
fore fully taken into account in the present one-dimensional
calculation.

FIG. 6. D-mode frequency of graphite as a function of laser
energy. The dots denote experimental data from Refs. 13, 30, and
31. The lines are calculations for defect-induced Raman scattering
based on the experimental data for the TO(solid line) and LO
(dashed line) phonon branch around theK point. Inset: Raman in-
tensity uK2f,10u2 as a function of the phonon wave vectorq at E1

=2.0 eV. The solid line is from a calculation of Eq.(2); for the
dashed line the scattering process in Fig. 2(b), i.e., scattering by
K-point phonons, was explicitly included. These phonons(vertical
line) do not contribute to the Raman signal due to destructive inter-
ferences.q1,2 andq3,4 correspond to Eq.(4).
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In Fig. 7, we show a calculated Raman spectrum of theD
mode for an excitation energyE1=2.54 eV. The agreement
with the experimental spectrum(dots) is excellent consider-
ing that no adjustable parameter is involved except for an
overall scaling. TheD-mode peak is not a single Lorentzian
but has a complex line shape due to the double-resonance
processes contributing to the signal. The individual contribu-
tions are not resolved, and a fit by two Lorentzians is appro-
priate. Each of them roughly corresponds to phonons from
one particular side of theK point as discussed above. The
good agreement in line shape was obtained by using a pho-
non linewidth of 20 cm−1 in the calculation. This large line-
width is consistent with the broadened range of double-
resonant phonon wave vectors that we expect for the
integration in two dimensions.

The D-mode frequency as a function of excitation energy
from the same calculation as in Fig. 7 is shown in Fig. 8. The
frequencies were again found from a fit by two Lorentzians
to the calculated spectra. The upper(lower) frequency stems
from the phonon branch betweenK andM (G andK ). TheD
mode shifts at a rate of 56 cm−1/eV and 61 /cm−1/eV. Be-
cause of the nonlinear electronic bands and phonon disper-
sion, the shift is only approximately linear. Our calculations
again confirm that theD mode comes from the TO-derived
phonon branch of graphite.8,15,23,28From the strong relation
between graphite and carbon nanotubes we expect that this
holds for carbon nanotubes as well.

V. MAPPING DISORDER-INDUCED MODES ONTO THE
PHONON DISPERSION

If the Raman spectrum of a material is governed by
double resonances and an excitation-energy dependence of
the Raman modes can be measured, these experiments can in
principle be used to find the phonon dispersion. This ap-
proach was first suggested for graphite by Saitoet al.18 As

discussed, the procedure of finding the double-resonant pho-
non wave vector is rather complex, and a precise knowledge
of both the electronic bands and the phonon dispersion is
needed. Nevertheless, we can estimate the double-resonant
phonon wave vector, neglecting the phonon energy and the
details of the scattering process, by assumingq<2ki for
scattering across theG point. At a given excitation energy in
the experiment, the electron wave vectorki for a resonant
transition of the incoming light is calculated from the elec-
tronic band structure. The observed Raman frequency of the
double-resonant mode is then plotted atq=2ki into the pho-
non dispersion relation. We took the asymmetry of the bands
with respect to theK point into account by findingki sepa-
rately for both sides of theK point [corresponding to the
processes(1) and(2) in Fig. 2(a)]. For double-resonant scat-
tering across theK point, as shown by the dashed arrow in
Fig. 5, the phonon wave vector is close to theG point and
found approximately from the difference betweenkisGKd and
kisKMd. Since this procedure does not contain a full calcula-
tion of the Raman cross section, the destructive interferences
have to be taken into account explicitly. Therefore, we do not
include the processes in Fig. 2(b), in contrast to Refs. 18–20.
Furthermore, the selection rules help to find the correct as-
signment of the double-resonant modes.

In Fig. 9, we show the mapping of all disorder-induced
Raman peaks[Fig. 9(a)] and second-order modes[Fig. 9(b)]
of graphite onto the phonon dispersion. Since any second-
order overtone contains the fully symmetric representation,
all overtones can contribute to the same scattering process
that also leads to theD mode(Fig. 2). Combination modes,
i.e., second-order scattering of two phonons from different
branches, must in total contain a fully symmetric component.
The solid lines are ab initio calculations that were shown to
reproduce the experimental phonon dispersion very well.6

The agreement of the Raman data and the calculation is
good, in particular, for both optical modes and their over-
tones. For the acoustic modes, the assumption of zero-
phonon energy is justified close to theG point; on the other
hand, neglecting their large dispersion in the mapping proce-

FIG. 7. Raman spectrum of theD mode atE1=2.54 eV. The
experimental spectrum(dots) was taken on a natural graphite flake.
The solid line shows a spectrum calculated from the experimental
data of the graphite TO phonon(Ref. 6); the dashed lines are
Lorentzian fits to the calculated spectrum. The calculated Raman
intensity is at each phonon energy multiplied by a Lorentzian with
a full width of 20 cm−1.

FIG. 8. D-mode frequency of graphite as a function of laser
energy, calculated from the experimentally determined TO branch.
The upper and lower frequencies come from phonons between
K–M and betweenG–K, respectively. The dots denote experimen-
tal data from Refs. 13, 30, and 31.
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dure leads to larger discrepancies at increasing phonon wave
vectors. For more accurate results, the phonon energy should
be taken into account. In contrast to Saito18 and
Kawashima,21 we assigned the mode at<800 cm−1 to the
transverse acoustic(TA) branch instead of the out-of-plane
mode. The out-of-plane mode is forbidden by symmetry in
the double-resonance process, see Sec. III, thus it cannot be
seen in the Raman spectra. Furthermore, no disorder-induced
peak corresponds exactly to theK point because of the inter-
ference effects discussed above.

In summary, the following procedure can be used to map
the double-resonant Raman modes of graphite onto the pho-
non dispersion:

(i) Find alongG–K–M, the two electron wave vectors
ki1,2 for an incoming resonance of the laser energy,

(ii ) Plot the fully symmetric modes(TO, longitudinal
acoustic) at q=2ki1,2 into the phonon dispersion, and

(iii ) Plot the modes withT3 symmetry(LO, upper TA) at
q= uki1−ki2u alongG–K–M.

In this way, the experimental data points from Raman
scattering were plotted in Fig. 9; thus, an unknown disper-
sion curve can be investigated experimentally with double-
resonant Raman scattering.

VI. SUMMARY

In conclusion, we presented an in-depth analysis of
double-resonant Raman scattering. We calculated the double-
resonantD mode in graphite without using arbitrary assump-
tions or adjustable parameters in the calculation. We derived
an analytical expression forD-mode scattering in one dimen-
sion and showed that double resonances withq=K8 and q
=0 vanish by destructive interferences. The integration in the
two-dimensional Brillouin zone does not alter the double-
resonant phonon wave vectors found from the one-
dimensional integration. We performed a full integration of

the Raman cross section in one dimension, using the experi-
mentally determined phonon dispersion of graphite. The ob-
tained D-mode shift of 43–61 cm−1/eV is in good agree-
ment with the experiment, confirming that theD mode
comes from the TO-derived phonon branch. The selection
rules for double-resonant scattering along the high-symmetry
directions of the graphene Brillouin zone were found and
used for a mapping of disorder-induced and second-order
Raman modes onto the phonon dispersion.
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APPENDIX

In this Appendix, we derive the expression of Eq.(2) for
the Raman matrix elementK2f,10 in the case ofD-mode scat-
tering within linear bands in one dimension. From the scat-
tering processes shown in Fig. 2(a) we find

Eai = suku − K8dsv1 − v2d − ig for uku,K8,

Eai = s− uku + K8dsv1 − v2d − ig for uku.K8, sA1d

and

Ebi = − ukusv1 + v2d + qv1 − K8sv1 − v2d − ig for uku,K8,

Ebi = − ukusv1 + v2d + qv2 − K8sv2 − v1d − ig for uku.K8,

sA2d

The double-resonant processes(1) and (2) in Fig. 2 corre-
spond touku,K8 and uku.K8, respectively. In the first case,
the phonon wave vector is smaller than 2K8, i.e., it is from
betweenK and M, whereas in the second caseq is larger
than 2K8 and stems from betweenK andG.

From the intermediate stateb, the electron is scattered to
a statec close to statea, thereforeEci=Eai. The phonon
energy is"vph, thusE1−"vph=E2. We insert the above ex-
pressions into Eq.(1) and obtain

K2f,10=
2

s2v1d3o
k=0

K8 F M
sk1 + K8 − kdsk2 + K8 − kd

3 S 1

sk2 + K8 − q/2d
+

1

sk1 + K8 − q/2dDG
+

2

s2v1d3 o
k=K8

` F M
sk1 − K8 + kdsk2 − K8 + kd

3 S 1

sk2 − K8 + q/2d
+

1

sk1 − K8 + q/2dDG .

sA3d

The sum can be converted into an integral overk. A straight-
forward evaluation of the integral yields Eq.(2),

FIG. 9. (a) Disorder-induced Raman modes mapped onto the
phonon dispersion of graphite(dots). Part of the experimental data
are taken from Refs. 13, 30, and 32–34. The full lines areab initio
calculations(Ref. 6); the dashed line is a cubic-spline fit to the
experimentally determined dispersion of Ref. 6.(b) Analogous
mapping of the overtone and combination modes with experimental
data from Refs. 32–34. The lines are the sum of the phonon
branches in(a) for the overtones and the allowed combination
modes.
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K2f,10=
M

2v1
2"vph

F k1 + k2 + 2K8 − q

sk1 + K8 − q/2dsk2 + K8 − q/2d
ln Sk2 + K8

k1 + K8
·

k1

k2
D−

k1 + k2 − 2K8 + q

sk1 − K8 + q/2dsk2 − K8 + q/2d
lnSk2

k1
DG . sA4d

For the scattering processes according to Fig. 2(b), an analytical expression can be derived in the same way as above:

K2f,10
sbd =

2M
s2v1d3 ·

1

sk1 − k2ds2K8 − qds2k1 − 2k2 + 2K8 − qds2k2 − 2k1 + 2K8 − qd
3fs2k2 − 2k1 + 2K8 − qdf− s2K8 − qdlns− k1

− K8d + s2k1 − 2k2 + 2K8 − qdlns− k2 − K8d+ sk1 − k2dsln 4 − 2 lns− 2k2 − qddg+ s2k1 − 2k2 + 2K8 − qdf− s2k2 − 2k1

+ 2K8 − qdlns− k1 − K8d + s2K8 − qdlns− k2 − K8d+ sk1 − k2dsln 4 − 2 lns− 2k1 − qddgg

=
2M

s2v1d3 ·
fsq,k1,k2d

sk1 − k2ds2K8 − qdf2sk1 − k2d + 2K8 − qgf2sk2 − k1d + 2K8 − qg
. sA5d

wherek1 and k2 are given by Eq.(3). The functionfsq,k1,k2d defined above was used in the discussion in Sec. II B. For
q1

sbd=2K8, this expression is zero; the processes in Fig. 2(b) cancel due to destructive interference.
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