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Chirality dependence of the density-of-states singularities in carbon nanotubes
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We derive an approximate analytical expression for the density-of-states singularities in single-walled car-
bon nanotubes. Our approximation goes beyond the lowest-order, isotropic approach and yields the energy
splitting for an arbitary chiral angle in metallic nanotubes. Semiconducting tubes are shown to fall into two
classes and have a corresponding energy shift, which should be observable experimentally.

The unique one-dimensional structure of carbon nanoangles and derive an approximate analytical expression for
tubes and the related electronic band structure have been thfe energy splitting of the density-of-states singularities of
much interest. Hamadgt al. noticed in their calculation that metallic carbon nanotubes and find the related shift for semi-
there was a difference in electronic structure of armchair andonducting nanotubes. The starting point of our analysis is
zigzag nanotubes, the two limiting chiral anglds. plots of  the tight-binding expression for the energy of a graphene
energy versus diameter by Mintmiet al. and later Kataura sheet:
et al. it became evident that similar diameters but different

chiral angles produced slight differences in energies of the e(k)==+ vo{3+2 cosk-R;+2 cosk-R,
singularity?® Smaller diameters enhanced this dispersion. - "
White and Mintimire showed that to first approximation the +2cosk- (Ry—R2)} (1)

energy of the singularity is independgné_%f chirality and\ynhereR, andR, denote the unit-cell vectors of the graphene
should not depend on the size of the unit Ceflin a further  gpeet This approach to the electronic structure of carbon
analysis in this approximation the density of states of nanopanotubes implies that a nanotube can be looked at as a

tubes was expressed as a universal function that does anapped—up graphite sheet. Curvature effects on the elec-
depend on chirality. The first-order expression for the en- tronic and vibrational energies are on the order of 40as
ergy is widely used as a basis for the analysis of experimensoyn by ab initio calculation$ and second-order Raman
tal work on the singularitie$: spectra-® they will not be considered here.

. Recently, it was pointed out that dgviations from a circle_ The energy in the band structure of graphite goes to zero
in the energy contours near the Fermi surface produce a spliyt thek point of the Brillouin zone. For the further analysis
ting of the singularity in metallic tubegtrigonal warping

effect,”*?3which is maximal for zigzag tubes. Saiét al.

give an analytical expression for this limiting cdSeTheir

plot Qf the density o_f states of_selected nanotubes with simiE(k) = + yo{3—cosk- R, — cosk- Ry— cosk - (R, — Ry)

lar diameters and different chiral anglaessuggests that the

splitting decreases continuously asis varied froma=0° +v3 sink-R;—v3 sink- R,—v3 sink- (R;— R,)}Y2.

(zigzag topology to 30° (armchaiy, and it is zero for the )

armchair configuration.
In this paper we generalize these results to arbitrary chiraln Fig. 1(a) we show energy contours of the expressign

we transform Eq(1) to one wherek=k— kg represents a
vector originating in theK point:

a.) b.) c.)
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FIG. 1. (a) Energy contours near th€ point of graphite according to the exact tight-binding expression of BqThe axes point in the
circumferential(#) and axial(z) directions of a zigzag nanotubex£0°). Thelength of the graphite unit cell vector is denoted dy(b)
Same as irfa) but in the approximation of Ed4). (c) Same as irib) but for a chiral angle otv=15°. The vertical lines touch tangentially
the energy contours in the density-of-states singularities.
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near theK point of the Brillouin zone, i.e., around zero n
It is nicely seen how, for increasing|, the energy contours . - - - T
change from a circular to a more triangular shape. a) metallic d;=1.36 nm
In carbon nanotubes the wave veckor (k4 ,k,) is quan- 100r
tized ink,, while k, can take continuous values. The singu-
larities in the density of state®O0S) near the Fermi level,
according to Mintmire and Whitéare given by the zeros in
the derivative of the energy with respect to the wave vector
componenk, . In the type of plot in Fig. 1 this corresponds
to tangentials to the energy contours running parallel to the . . .
k, axj:;. The othek componer)k(, i_s gi\(en by the boundary ij_) Se;nicom'iucdné d0=i.36 m
condition in the circumferential direction: 100l 152 (144 (147138) 1100
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FIG. 2. (a) Energy splitting of the DOS singularity in metallic
1 nanotubes as function of chiral angle; the energy calculated accord-
a n{—n ; : . ;
d== m and taf30°— )= — 1 2' ing to Eq.(7) was taken as r(_eferen(?e. The solid cufright axig
T Vv3 ni+ny corresponds to the second singularity, e.g., ¢1@ 10 nanotube,
the dashed curvéleft axis) to the first one. Upper and lower

. . .
In order to obtain an analytical expression for the energyranches belong t, andk, , respectively. The fourth-order ap-

of the singularities, we expand E¢®) to third order(under proximation(open trianglesand the exact solutiofsolid triangle$
the square rootin k and find for the zigzag and armchair topologies are shown for comparison.

The solid squares are values for selected metallic tubes as indicated.
(b) Same ada) but for semiconducting tubes. The curves are valid

3 v3ad i i i _
~ b 2_ 2_ a2 for the class of semiconducting tubes where[sgn(3m—n;+n,)]
E(ak)~= 70[4 (@k) 8 [ko(k—3kz)cos 3 =—1, as is the case for the selection of tubes shown.
12 . .
— k.(K2—3K2)sin 3 , 4 try reasons _that a me_talhc zigzag tube has the maximum
Ak ) a]} @ energy splitting(for a given diametgrand that an armchair

. . tube has no splitting at all.
where k=|k| Note that the angular functions vary with 3 We use the approximation of E¢4) to calculate for an

times the chiral angle, introducing the triangular shape in therbitrary chiral angle thek, values of the singularity, i.e.,
energy contours around th€ point. The fourth-order term  the points at whichiE/d(ak,)=0:

(—3/64)(@k)*, like thek? term, depends on the magnitude

of k and does not enhance the deviation from circular sym- 2
metry; its contribution to the energy is small for not too large akZl e
ak,, and we will discuss it later. In Fig.(t) we show the * v3sin3a
contours calculated in the approximation given by &g.on 3
the same scale as in Fig(al; they describe very well the -+ \/1+\/§ak6cos A+ —(aky)?|. (5
energies in the vicinity of th& point. For other chiral angles 4

the triangle rotates by around its center ak=0. As an  gply the plus solution yields aak, value near th& point
example of_a chiral tube we show the Bnlk_)um zone n€ar 444 will be considered further. The two values ak,=
corresponding to &4, 5 tube (@=15°) in Fig. Xc). In the
limit of an armchair nanotubea(=30°) the tip of the tri-
angle points in the { k,) direction.

The two vertical lines in Fig. (t) atak;, = +0.74, which,
according to Eq(3) define the energy of the second singu-
Iqrity for the metallic(14, 5 nagotube, are seen t_o touch SE=E(ak; )—E(ak)). 6)
different energy contours. Fak, = —0.74 the line is tan-
gential slightly above the fourth contour whereas the otheFor our above example we findSE=1.91-1.67eV
line is tangential somewhat below the fourth contour, at a=0.24 eV, where we usegl,=2.9 eV as is consistent with
smallerk, value. The difference in these two energies correRaman experiment®:111® This value of SE agrees with
sponds to the energy splitting of the singularities for thisSaito et al'® and may be read off from their Fig. 4 for the
particular chiral angle. It is obvious from Fig. 1 for symme- (14, 5 tube. The metallic tubes thus have degenerate singu-

V3
-1- 7ak0cos3a

+0.74, inserted into Eq(6) give two valueskzi. For the
example of Fig. lc) this corresponds tak, =0.26 and
ak; =0.11. The energy splitting is now readily obtained
from Eq. (4):



PRB 62 BRIEF REPORTS 4275

larities in the armchair topologyand in the isotropic ap- Finally, we discuss some limiting cases of our solution
proximatior), which split for a general chiral angle according and the accuracy of the approximations. In the armchair
to Eq.(6). tubes @=30°) our expression fok, in Eq. (5) reduces to

As Eqg. (4) is an analytical solution for arbitrary chiral ak,=— 23+ \/4/3+ (ak,)? and an energy of
angles, we may calculate the energy splitting as function of
a. In Fig. 2@ we have plotted the difference in energyg, 3 3 112
between our and the first-order approximation verausr g -, |~ (ak)2+ — ak,(k2—k?) (armchair tubes
the first and second singularities of metallic tubes with a ™ 4 8
diameter neardy=1.36 nm [corresponding to &10, 10
tube]. Also shown are the shifts in energyE, for some  Sincek, appears only in even ordeSEA°=0. In the zigzag
selected tubes with diameters withir0D.1 nm of the chosen casekztzo; i.e., the splitting in metallic tubes is maximal
do. The energies deviate slightly from the curves for a parwhere the tangentials meet tleek, axis. The energies in
ticular chirality because of different actual diameters. Thethese points are
splitting of the singularitie$E is seen to decrease monotoni-
cally for increasinge, starting horizontally atw=0° and
going towards zero with a finite slope at=30°. The split-
ting is nonlinear inak,; largerak, yield much larger split-
tings as evident from the figure, where we plott&& on
different scales. Neglecting tHe’ term in Eq.(4) and with «
k=k, yields Mintmire and White’sresult of

. V3
Ey = 77’0|ak0|

1/2
(metallic zigzag tubes

1
1I_ak9
2v3

V3

E= > yoak, (7) Here the energy splitting®) is

the isotropic approximation of the energy in tkepoint vi-
cinity and the zeros of our plots in Fig. 2. Note that their
result does not coincide with the value for armchair topology 5
but lies above that. For largexk,, i.e., smaller tubes or ~ yo(aky) /4.

higher singularities, this deviation increases.

The plots ofAE are remarkably asymmetric with respect For ak,= 0.73 this corresponds to 0.38 eV, which is equal to
to the armchair energy in contrast to what was reported byhe maximal splitting in metallic tubes witti=1.4 nm ob-
Ref. 13. Forak,=0.36[dashed curve in Fig.(3] the upper served in Fig. 4 of Ref. 18’ In Fig. 2@ we show on the
branch shifts by a factor of 1.3 more than the lower one: forsame scale the values AE as derived numerically from the
aky=0.72 (solid curve it is 2.5 times as muclicalculated exact expressioi2) and including the fourth-order term in
from the fourth-order approximation at=0°). This implies  our approximation4). It is seen that the curvegorrect to
that if the resolution in an experiment is not large enough tahird order ink) yield close results; the fourth order cannot
resolve a splitting, there is nevertheless a shift of the singube distinguished from the exact value for thd, value
larities of metallic tubes from the armchair value associateghown. Our approximation should be good at leasfiatk|

V3
SE?*=—yolak|[ V1+aky/2v3—J1-ak,/2/3]

with a broadening which should be observable. =1, where the errors for all absolute energies are less than
The situation is different for semiconducting tubes. As4% (third ordey and less than 0.7%ourth ordey.
can be seen in E@3), k, varies in steps of &/ whenm steps In conclusion, we derived an approximate analytical solu-

through integers; thé, values are not symmetric around tion to the energies of the singularities in the density of states
k,=0. There is no degeneracy in the isotropic approximatiorof metallic and semiconducting carbon nanotubes with arbi-
and hence there cannot be any splitting. There is, however, teary indices @, ,n,) for energies not too far from the Fermi
shift from the limiting «=30° energy value as well, as the surface (ak|<1). The energies of the singularities in the
same triangular shape as for metallic tubes is present. Waensity of states in carbon nanotubes shift due to the trigonal
show this for four different values ahin Fig. 2(b). A fur-  distortion of the energy contours near tepoint. Metallic

ther complication arises because the smallest allokyefdr  tubes, which are doubly degenerate in the isotropic approxi-
semiconducting tubes may be either negative or positive. Iimation, split for a general chiral angle. Semiconducting
Fig. 2(b) we have indicated explicitly tubes that have nanotubes are nondegenerate in the isotropic approximation,
sgrimin(3m—n;+n,)]=—1. The four points shown for each so they cannot split; their absolute energies shift, though, as
selected tube correspond to subsequent singularities startisgfunction ofe, by an amount given by the same expression
from the lowest one, which shows the smalle8€|. The as for metallic tubes with the approprigtg values. Semi-
largest singularity shown for th@5, 2 tube has an absolute conducting chiral tubes fall into two classes, depending on
energy of 1.39 eV and is shifted by 130 meV compared tahe sign of their smallest allowed, values. Experimentally
what is calculated from Ed7). For the other type semicon- their shift may be easier to observe than the lifting of the
ducting tubes, e.g(15, 4, the dependence &fE on « is  degeneracy of metallic tubes. Our results should be useful
different since Eq(4) is not symmetric with respect to the when finding splittings or shifts in the DOS singularities of
sign of k,. Experimentally, with a limited resolution, the specific nanotubes, with an arbitrary but known chirality or
shift in semiconducting tubes may be easier to observe sinda ensembles of tubes with a known, possibly nonuniform
a shift is more readily detected than a broadening or splittingchirality distribution.



4276

IN. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. G&tt.
1579(1992.

2J. W. Mintmire, D. H. Robertson, and C. T. White, J. Phys.
Chem. Solidsb4, 1835(1993.

3H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y.
Ohtsuka, and Y. Achiba, Synth. Met03 2555(1999.

4C. T. White and J. W. Mintmire, Naturg.ondon) 394, 29(1998.

5M. S. Dresselhaus, Natuieondon 391, 19 (1998.

6J. C. Charlier and P. Lambin, Phys. Rev5B, 15 037(1998.

7J. W. Mintmire and C. T. White, Phys. Rev. Le®l, 2506
(1998.

8T. W. Odom, J. L. Huang, P. K. M. Ouyang, and C. M. Lieber, J.
Mater. Res13, 2380(1998.

9J. W. G. Wildeer, L. C. Venema, A. G. Rinzler, R. E. Smalley,
and C. Dekker, Natur@_ondon 391, 59 (1998.

10M. A. Pimenta, A. Marucci, S. A. Empedocles, M. G. Bawendi,
E. B. Hanlon, A. M. Rao, P. C. Eklund, R. E. Smalley, G.

BRIEF REPORTS

PRB 62

Dresselhaus, and M. S. Dresselhaus, Phys. ReS8BL6 016
(1998.

11p. M. Rafailov, H. Jantoljak, and C. Thomsen, Phys. Revtd
be published

12p_Kim, T. W. Odom, J.-L. Huang, and C. M. Lieber, Phys. Rev.
Lett. 82, 1225(1999.

¥R, Saito, G. Dresselhaus, and M. S. Dresselhaus, Phys. R&ly. B
2981 (2000.

14D, Smchez-Portal, E. Artacho, J. Soler, A. Rubio, and P. Orde-
jon, Phys. Rev. B9, 12 678(1999.

15C. Thomsen, Phys. Rev. 81, 4542(2000.

18M. Milnera, J. Kirti, M. Hulman, and H. Kuzmany, Phys. Rev.
Lett. 84, 1324(2000.

Expression(19) of Ref. 13(not the corresponding peaks in their
Fig. 4) contains an additional factor of 2 which does not follow
from their Egs.(7) and(18).



