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Shear strain in carbon nanotubes under hydrostatic pressure
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We investigated the hydrostatic and shear strain components introduced in the graphite hexagons by apply-
ing hydrostatic pressure to single-walled carbon nanotubes. The vibrational modes are expected to show
different pressure derivatives depending on the polarization of the eigenvector with respect to the nanotube
axis, but independent of chirality. A comparison with tight-binding calculations allows us to estimate the
Grüneisen parameter~1.24! and the shear phonon deformation potentials~0.41!; they compare favorably with
experimental results on nanotubes.
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The study of vibrational modes under pressure has b
of recent interest when studying the elastic properties
single and multiwalled carbon nanotubes and compa
them to theoretical predictions. It was found that the infl
ence of bundleing on single-walled tubes is large1–5 and that
multiwalled tubes may be described within the same elas
ity model as single-walled tubes.6 Calculations of the elastic
constants were provided by several groups7–9 and appear to
agree with experiment in the magnitude of the observed
quency shifts. However, since nanotubes are highly an
tropic, uniaxial structures, the strain resulting from hyd
static pressure is, in general, different for the length and
circumference of the tube; the strain tensor has two indep
dent components.10 Consequently, under hydrostatic pressu
one would expect different pressure slopes for modes vib
ing parallel and perpendicular to the axis, which has not
been reported.

Single-walled nanotubes are formed by rolling up
graphene sheet to a long, narrow cylinder. The vibratio
and electric properties of the tubes are determined by t
diameter and chirality, i.e., the angleQ between the carbon
bonds and the tube axis. There is an ongoing controve
about the distribution of chiralities in real nanotubes samp
ranging fromQ being always within'10° around the arm-
chair direction to a random distribution of chiralites.11 Typi-
cally the vibrations of carbon nanotubes are investigated
Raman spectroscopy. Single-walled tubes show scatterin
the radial breathing mode with a van der Waals contribut
in the low-energy region~150–200 cm21) and by the high-
energy modes ('1600 cm21), where the carbon atom
move out of phase in the axial or circumferential directio
To a good approximation the frequencies of these hi
energy vibrations can be related to those of graphite via z
folding, although the curvature of the graphene sheet in
duces a softening of the modes.9,12 For excitation between
1.7 and 2.2 eV, the modes of metallic nanotubes are re
nantly enhanced, the resonances for semiconducting t
are above and below that.13,14 So far, only the pressure de
pendence of semiconducting single-walled nanotubes
been reported.1,6,15 Surprisingly, all groups found the pres
sure derivatives of the different high-energy modes to
similar, i.e., the expected splitting appears to be absent.

In this paper we show that hydrostatic pressure applie
carbon nanotubes results in a nonhydrostatic deformatio
PRB 610163-1829/2000/61~20!/13389~4!/$15.00
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the graphite hexagons. By making reference to the rolled
graphene sheet we obtain the Gru¨neisen parameter and th
shear strain phonon deformation potentials with the help
recent tight-binding calculations. We compare our valu
with graphite and high-pressure experiments on nanotub

In a recent paper, Damnjanovic´ et al.16 derived the line
groups, which, similar to space groups in three dimensio
describe the full symmetry of a one-dimensional system,
the corresponding point groups for carbon nanotubes.
cording to them, the point group for chiral nanotubes isDq ,
and Dqh for the achiral zigzag and armchair tubes,q being
the number of graphene cells in the elementary cell of
tube. The strain tensor in these point groups reduces
G(«)52A1(g) % E1(g) % E2(g) , the index g holding for the
achiral tubes. Only the two fully symmetric strain comp
nents can be induced by hydrostatic pressure.10 They de-
scribe a strain«zz along the axis and«uu along the circum-
ference. Although these components are fully symmetric
the point groups of the tubes, they are not for the underly
graphene hexagon. Consider unwrapping the tube to a
and narrow rectangle, the longer side being parallel to
tube axisz and the shorter one to the circumference of t
tubeu. The strain in this graphene sheet due to«uu and«zz
now reads

«5S «uu cos2 Q1«zzsin2 Q 1
2 sin~2Q!~«zz2«uu!

1
2 sin~2Q!~«zz2«uu! «uu sin2 Q1«zzcos2 Q

D ;

~1!

where we transformed« to the principal axes of graphene,Q
being the chiral angle. For clarity the out-of-plane comp
nent was omitted; it factorizes out in the sheet. Obvious
the deformation of the graphene elementary cell given in
~1! is not hydrostatic for any chirality and will cause a spl
ting of the doubly degenerateE2g graphene mode. For th
nanotubes this yields different pressure derivatives for mo
vibrating in axial and circumferential direction.

The dynamical equation for the phonon modes in
presence of strain is given by17

müi52S mv0
2ui1(

klm
Kikml

(1) « lmukD ; ~2!
R13 389 ©2000 The American Physical Society
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whereu is the displacement of the atoms,m is their mass,
and v0 the strain-free frequency. The second summand
scribes the change in phonon frequency due to the strain.
symmetric tensorK (1) has only three nonzero componen
because of the hexagonal symmetry of the graphene s
namely,10

K11115K22225mK̃11

K11225mK̃12

K12125m
1

2
~K̃112K̃12!. ~3!

From Eqs. ~2! and ~3! the secular equation can b
constructed,17,18 the solutions of which give the frequencie
in the strained sheet. With the strain tensor given in Eq.~1!
the relative shift in the phonon frequenciesDv/v0 is

Dv

v0
5

~K̃111K̃12!

4v0
2 ~«uu1«zz!6

1

2

~K̃112K̃12!

2v0
2 ~«uu2«zz!.

~4!

The first phonon deformation potential (K̃111K̃12)/4v0
2

52g is the Grüneisen parameter, which describes the f
quency shift under hydrostatic strain. The splitting of t
modes under the shear strain components comes from
second term. For the nanotube high-energy modes,g is ex-
pected to be similar to the one in graphite, since the effec
curvature on frequencies is on the order of 1022.12 Likewise,
both phonon-deformation potentials have the same value
the three high-energy vibrations, because these modes d
only in the confinement wave vector along the circumfere
of the tube. The shiftDv/v0 is independent of chirality;
instead, it depends only on the polarization direction o
given phonon eigenvector.

The pressure dependence of the nanotube modes wa
culated for armchair tubes and ropes of armchair tubes
Kahn and Lu4 and by Venkateswaranet al.1 Since the dis-
placement of the high-energy modes in armchair tube
either circumferential (A1g ,E2g) or axial (E1g) by symme-
try, different slopes are expected when a shear strai
present in the graphite hexagon. In the tight-binding calcu
tion of Ref. 4 a hydrostatic pressure was approximated
stressing an entire nanorope in the basal plane. The vol
change of the relaxed structure was then related to the p
sure byDV/V5«z12«x5p/Brope. In Fig. 1 we show the
calculated frequency shift of the three high-energy mo
normalized to the strain-free frequency, which we obtain
from Fig. 5 in the reference. The slopes of the two circu
ferential modes are slightly different (0.5 TPa21), while the
axial E1g mode is split off by 1.3 and 1.8 TPa21 from the
E2g andA1g modes, respectively. The mean hydrostatic s
(6.18 TPa21) is shown as a dashed line in the figure; t
average shear-strain splitting isDvsp/v051.55 TPa21. The
bulk modulus of a nanorope has two contributions accou
ing for the van der Waals interaction between the tubes
the stiffness of a single tube. To a good approximation o
the latter has to be considered for the high-energy mo
yielding Dvh /v056.18 TPa215gp/Btube (Btube
50.2 TPa) ~Ref. 7! and the Gru¨neisen parameterg51.24
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~see Table I!. This is in good agreement with the value
measured in graphite under hydrostatic pressure19 normal-
ized to a two-dimensional sheetg52d ln v/2d ln a, a being
the in-plane lattice constant of graphite.

To derive the shear strain phonon deformation potentia
closer look at the strain introduced in a single nanotube b
basal stress is necessary. A stress in the (x,y) plane results in
a decrease in diameter but in an increase in length given
«z52(2C13/C33)«x520.29«x .10,7 With the volume
change given above and Eq.~4!, the full splitting of the
slopesDvsp/v0 is

Dvsp

v0
5

~K̃112K̃12!

2v0
2

~112C13/C33!

~222C13/C33!
p/Btube, ~5!

and (K̃112K̃12)/2v0
250.41. In Table I we listed for compari

son the values of the shear deformation potential measure
a graphitic fiber under uniaxial stress along the fiber ax
which is about 3 times higher.20 There is, however, a simila
factor between the Gru¨neisen parameter obtained in the
measurements and the more precise value measured late
der hydrostatic pressure.19 If we scale the shear deformatio
potential by the ratio of the twog we find (K̃112K̃12)/2v0

2

50.64, close to the value calculated for armch
nanotubes.21

In contrast to the basal stress assumed by Kahn and
the molecular dynamics simulations by Venkateswaranet

FIG. 1. Calculated shift of the high-energy modes of armch
nanotubes versus applied pressure. The data were taken from R
and normalized to the frequency at ambient pressure. The calcu
point at 0 GPa was omitted from the linear regressions.

TABLE I. The phonon deformation potentials of nanotube
graphite, and a graphitic fiber, all normalized to a two-dimensio
plane.

g (K̃112K̃12)

2v0
2

nanotubes 1.24 0.41
graphitea 1.59
graphitic fiberb 2.87 1.13

aReference 19.
bReference 20.



atic fre-

RAPID COMMUNICATIONS

PRB 61 R13 391SHEAR STRAIN IN CARBON NANOTUBES UNDER . . .
TABLE II. Strain induced by hydrostatic pressure in the circumferential («uu) and axial («zz) direction in
single-walled nanotubes according to the three models described in the text. The expected hydrost
quency shift and the full shear strain splitting were calculated with Eq.~4! and the phonon deformation
potentials of nanotubes given in Table I.

«uu /p (TPa21) «zz/p (TPa21) «uu /«zz Dvh /v0 Dvsp/v0

Elastic constantsa 21.74 20.49 3.5 2.8 0.3
Elasticity modelb 22.04 21.07 1.9 3.9 0.4
Molecular dynamicsc 23.41 20.91 3.7 5.4 1.0

graphited 20.8 20.8

aReference 7.
bReference 6.
cReference 1.
dReference 19.
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al.1 were performed for applied hydrostatic pressure. Unf
tunately, only the pressure derivative of theE2g armchair
mode is given in the reference, but, as the authors state,
found a small difference in slopes as well. Another intere
ing piece of information can be determined by the data p
sented, namely, the strain in circumferential and axial dir
tion in a nanotube under pressure. We extracted the va
from Fig. 4 in Ref. 1, where the axial lattice constant and
radius as a function of pressure are presented; the value
given in Table II together with the results of two other a
proaches we chose. For the second approach we use
elastic continuum model worked out by us previously.6 The
parameters necessary within this model are the diameter
tube d51.4 nm, Poisson’s ration50.16, and Young’s
modulusE51 TPa, the latter two we took fromab initio
calculations.9 Finally, we determined the two independe
strain components with the elastic constants found by L7

The values for theCi j given in Table 4 of Ref. 7 were cal
culated for multilayered nanotubes, but, as Lu states,
change compared to single-walled tubes is small for the
few layers. We chose the two-layer~10,10! tube, since its
radius is typical for nanotube samples. All three mod
agree in that both length and radius are reduced under p
sure, the axial strain being smaller than the radial or circu
ferential one. When comparing the volume change of na
tubes«uu1«zz under pressure, i.e., neglecting shear strain
the one of graphite within the layer planes~see Table II!, it is
apparent that the higher pressure derivatives found in na
tubes are mostly due to the 2–3 times higher linear co
pressibility in the radial tube direction, resulting in a larg
volume change for the same pressure.

With the help of the phonon deformation potentials, t
hydrostatic shiftDvh /v0 and the full shear strain splitting
Dvsp/v0 predicted by the three models are now readily o
tained with Eq.~4!. The published pressure derivatives
semiconducting tubes vary between 3.3–3.8 TPa21, but
where more than one slope was reported1,6 they agree to
within 0.1 TPa21.22 We performed Raman scattering on m
tallic tubes under pressure, i.e., using an excitation energ
1.91 eV in the region of the metallic resonance. The frequ
cies are presented in Fig. 2 as a function of pressure; de
of the experimental setup are given in Ref. 6. The analysi
the data is difficult due to the close proximity of the mode
Additionally, under pressure, the broadening of the pe
leads to a merging of the lines~see insets in Fig. 2!. Never-
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theless, when fitting the high-energy peak with three sim
larly sized Lorentzians or with a focus on the low and hig
energy flanks for pressures up to 10 GPa, we find a split
of 0.56 TPa21 between the peaks at 1544 and 1565 cm21

and a hydrostatic shift of 3.8 TPa21. The third peak, at 1592
cm21, which has been assigned to semiconducting tubes~see
Ref. 4 of Ref. 13 and Ref. 14!, again has a pressure deriv
tive of 3.8 TPa21.

It thus seems that only the hydrostatic part of the f
quency shift is observed in semiconducting carbon na
tubes. In contrast to the higher symmetry achiral armchai
zigzag tubes, the phonon displacement in chiral tubes
have arbitrary directions with respect to the tube axis,
cause mirror planes are absent in their point groups. A
tribution of phonon polarization directions averages out
splitting of the slopes introduced by a shear strain and res
in an average mode shift.23 Most likely, this is the reason
why only the hydrostatic shift is observed, since chiral tub
are always present in real samples. Armchair tubes can
contribute to the metallic Raman spectra, thus the peak

FIG. 2. Shift of the Raman active modes of metallic sing
walled nanotubes versus applied pressure normalized to the
quency at zero pressure. The up triangles refer to the mode at
cm21 at ambient pressure, the down triangles to the one at 1
cm21, and the open squares to the 1592 cm21 mode. The insets
show Raman spectra~Raman shift in cm21) at p50.34 and 9.9 GPa
and the fit to the data.



er
tin
f t
te
m
ite
e

ts
r

in
ur
tia
tio
e

de-
ra-
al-
ar
ee-
ave
po-
bes,

K.
igh-
nier
ple

RAPID COMMUNICATIONS

R13 392 PRB 61S. REICH, H. JANTOLJAK, AND C. THOMSEN
1544 and 1565 cm21 are probably dominated by the high
symmetry armchair tubes, making the shear strain split
observable in pressure experiments. The magnitudes o
measured frequency shifts compare well with the predic
slopes given in Table II, showing that the axial linear co
pressibility of carbon nanotubes is on the order of graph
but higher in the radial direction. Since the elasticity mod
where curvature effects are neglected, gives similar resul
the two other approaches, the different compressibilities
flect the cylindrical geometry of carbon nanotubes.

We studied theoretically and experimentally the strain
troduced in single-walled nanotubes by hydrostatic press
The two independent strain components in circumferen
and axial direction were found to be different, their ra
lying between'2 and 3.5. Because of the splitting of th
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graphiteE2g mode under shear strain, different pressure
rivatives are expected for axial and circumferential vib
tions in carbon nanotubes. From a recent tight-binding c
culation we derived the Gru¨neisen parameter and the she
strain phonon deformation potential and found good agr
ment with the values of graphite. Semiconducting tubes h
pressure derivatives given by the hydrostatic strain com
nents. We showed Raman results obtained on metallic tu
which confirm the predicted shear strain splitting.

We acknowledge experimental support by I. Loa and
Syassen at the Max-Planck-Institut Stuttgart, where the h
pressure experiments were performed. We thank P. Ber
and C. Journet for providing us with the nanotube sam
used in this work.
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