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Abstract. We studied the high-energy Raman modes of single walled carbon nanotubes by pressure
experiments andab initio calculations. The uniform shift of all three Raman peaks under pressure is
in contrast with what one might expect in strongly uniaxial systems. We show that this apparent
discrepancy is resolved by the eigenvectors of chiral nanotubes, which are of mixed axial and
circumferential character.

Raman scattering is widely used in the study of physical phenomena of carbon nan-
otubes as well as in sample characterization. For the latter, in particular, the frequency
of the radial breathing mode is used to determine the tubes diameters.[1] The Raman
spectrum above 1000 cm�1, in contrast, is rather insensitive to the growth methods and
sample treatment. It shows a disorder mode around 1350 cm�1[2] and a series of peaks
around 1600 cm�1, the high-energy modes. Their shape in this spectral range depends on
the nanotubes being metallic or not. Despite the overall robustness of the Raman spec-
tra and their frequent appearance in the literature, the exact origin of the high-energy
vibrations is still not understood. The eigenvectors of these modes at theΓ point of the
nanotubes may be derived from the graphene optical modes by introducing the confine-
ment (or folding) around the tube’s circumference. Inspite of a number of studies on the
symmetry of the Raman scattered light the peculiar shape of the spectra remains an open
question.[3]

In this paper we present a study of carbon nanotubes under high hydrostatic pres-
sure combined withab initio calculations of the high-energy phonon eigenvectors. The
purpose of the presentation is two-fold: First we demonstrate how high-pressure exper-
iments help our general understanding of Raman scattering by the high-energy vibra-
tions; second we show the importance of chiral tubes in explaining experiments.

Three and six out of the 8 and 15 Raman active modes fall into the high-energy
range in achiral and chiral nanotubes, respectively.[4] Representative Raman spectra
at (almost) ambient pressure and two high-pressure points are displayed in Fig. 1a.
Details on the experiments can be found in Ref. [5]; for an overview over other pressure
experiments see Ref. [6]. Fig. 1b shows the frequency change of the high-energy modes
under pressure in more detail; we - as others - find that the normalized pressure slope is
the same for the three high-energy Raman peaks. As was pointed out by us recently,
this seemingly ordinary result is in fact surprising for a highly anisotropic material
like carbon nanotubes.[7] In uniaxial systems the different elastic properties along the
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FIGURE 1. a) High-energy Raman modes in semiconducting nanotubes under hydrostatic pressures be-
tween 0.2 and 10 GPa (T=300 K). b.) Dependence of the Raman frequencies on pressure. The normalized
pressure slopes of the three Raman peaks are the same within experimental error.

principal axis and perpendicular to it are, in general, manifested in different phonon
frequency shifts under pressure.

To obtain a more quantitative picture of the expected pressure slopes we analyzed
in Ref. [7] the strain which is introduced in a single walled nanotube by applying
hydrostatic stress. All results, those of an elastic continuum model,[8] a calculation
of the elastic constants,[9] and a molecular dynamics simulation,[10] agree in that the
strain in the radial or circumferential direction εθθ of the nanotube is predicted to be� 3
times larger than the axial strain εzz. We also performed ab initio calculations on small
diameter (d � 8Å) achiral and chiral nanotubes and found excellent agreement with
the elastic continuum model when the smaller radii are taken into account.[11] Raman
experiments on multiwalled tubes, where the pressure slopes of the high-energy modes
are 25 % smaller than in single walled tubes, further verify the predicted strain tensors;
the differences in the two types of tubes are nicely explained by the different geometries,
namely, the much larger inner and outer radii of the multiwalled tubes.[8]

In Fig. 2 we depict a (6,6) and an (8,4) tube where the strain in the radial direction
is two times larger than the axial strain. The applied hydrostatic pressure changes not
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FIGURE 2. Schematic picture of the distortion of a (6,6) and an (8,4) tube under hydrostatic pressure,
i.e., εθθ = 2εzz. Note that the strain is fully symmetric in the point groups of the tubes, but not for the
graphene hexagon. On the left we list the logarithmic pressure derivatives expected for modes where the
atomic displacements is along the circumference of the tube ( ) and along the tube’s axis ( ).



only the area of the graphene hexagons, but also distorts their shape and lifts the six fold
symmetry of the graphene unit cell. Such a shear strain splits the doubly degenerate E2g
graphene modes and allows us to estimate the pressure dependence of the high-energy
nanotubes modes by zone-folding arguments.[7, 12]

Let us begin by considering armchair or zig-zag tubes. Here the atomic displacements
for the phonon eigenvectors are always along the nanotube axis or perpendicular to it,
because of the non-trivial stabilizer (mirror plane) of the carbon sites.[4, 13] This directly
yields an expected pressure dependence for the modes vibrating in the circumferential,
higher-strain direction which is � 0:6TPa�1 larger than for axial modes (compare
Fig. 2). This result depends only on the direction of the atomic displacement with
respect to the strain direction1 and is independent of the chirality of the tubes. In other
words, high-energy vibrations in single walled nanotubes which are either parallel or
perpendicular to the nanotube axis must have different pressure slopes regardless of the
tube chirality. This is obviously not the case in semiconducting nanotubes as shown
above in Fig. 1b.[7] In order to explain the absence of the splitting in the pressure
experiments a closer look at the phonon eigenvectors in chiral nanotubes is necessary:
Chiral nanotubes – in contrast to the achiral nanotubes discussed so far – possess no
mirror symmetry operations; they belong to the Dq point groups.[4] Moreover, the
stabilizer of the carbon atoms in chiral tubes is only the trivial identity operation.
Therefore, the direction of the atomic displacement is not restricted by symmetry. A
distribution of atomic displacement directions averages out the splitting introduced by
the shear strain. Only the average, hydrostatic component is then observable in a Raman
experiment.[14] To prove or discard this explanation we calculated the phonon modes
in chiral nanotubes by first-principal methods.

Ab initio calculations were performed for (8,4) and (9,3) chiral nanotubes with the
SIESTA code as described in detail elsewhere.[15, 13] Compared to previous phonon
calculations for nanotubes with this code we improved the basis set (double-ζ, polarized)
and the real space cutoff (240 Ry).[16] We first calculated the phonon eigenvectors of
a (6,6) and a (10,0) tube and found very good agreement (deviations < 5%) with the
symmetry imposed eigenmodes in achiral tubes.

In Fig. 3 we present two examples of the high-energy phonon eigenvectors in chiral
nanotubes. On the left we show a non-degenerate A1 eigenvector for a (9,3) tube. The
atomic displacements indicated by the ticks at the atoms point neither along the z axis nor
along the circumference. Instead the displacement direction coincides with the direction
of the carbon-carbon bonds; the angle between the circumference and the displacement
direction is α = 16Æ. In the (8,4) nanotube we found the corresponding modes, i.e., the
tangential A1 eigenvectors where the two graphene sublattices move out of phase, to
be along the circumference (α = �3Æ) and the z axis (87Æ), respectively. The phonon
eigenvectors in chiral nanotubes may thus not be divided into axial and circumferential
or LO and TO-like vibrations. Instead, they are, in general, of mixed character.

We now turn to the degenerate modes in chiral nanotubes. As an example one of the
E1 high-energy eigenvectors of an (8,4) tube is shown in Fig. 3. Going from left to right

1 This follows because graphene has only two linearly independent phonon deformation potentials: the
Grüneisen parameter γ and one shear-strain potential.
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FIGURE 3. Left: A1 mode of an (9,3) chiral nanotube (1627 cm�1) with α = 16Æ. The other four tubes
show an E1 eigenvector (1610 cm�1) of the (8,4) tube. Going from left to right the tube was successively
rotated by an angle of 32Æ around the z axis. As can be seen in the figure this angle corresponds to a
helicical symmetry operation of the tube. The magnitude and the direction of the atomic displacements
changes when going around the tube as can be seen by following the atoms marked by a circle.

we rotated the nanotube unit cell in steps of � 32Æ around the z axis; the sequence of
four pictures corresponds to going around the tube. In each picture we highlighted one
atom to point out to the reader the circumferential or angular dependence of the atomic
displacement. First, it can be seen that the magnitude of the displacement is changing as
expected for an E1 mode, which has two nodes around the circumference. But second,
the direction of the displacement varies as well: In the first picture (0Æ) the displacement
tick is almost perpendicular to one of the carbon-carbon bonds, whereas it is roughly
parallel to a bond in the last two pictures of the sequence (64Æ and 94Æ).

The varying or “wobbling” of the displacement direction becomes more obvious when
plotting the z component of the displacement versus the circumferential component
(Fig. 4). In this plot a non-degenerate eigenmode corresponds to a single point, because
both the magnitude and the direction of the displacement are constant within the unit
cell [compare the (9,3) A1 mode]. A degenerate but purely circumferential or axial
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FIGURE 4. z versus the circumferential component of the displacement direction for six different
phonon eigenmodes. A degenerate eigenvector is fully specified by its symmetry and the principal axes of
the displacement ellipse.



eigenvector shows up as points on the x or y axis of the diagram; as an example
we plotted the E1g circumferential eigenvector of a (10,0) zig-zag tube. The large
open ellipse labeled as the (8,4) E1 with ω= 1610cm�1 corresponds to the phonon
eigenvector already shown in Fig. 3; its degenerate mode has the same ellipse. The
ellipse of the second high-energy E1 eigenmode (1591 cm�1) is perpendicular to it.
Finally, we plotted the E1 modes of a (9,3) tube as an example of a degenerate mode with
a large z and circumferential component, but a closed ellipse. Here the two components
are in phase and the displacement direction is constant when going around the nanotube.

In conclusion we presented a study of the high-energy Raman modes in single walled
carbon nanotubes. From the pressure dependence of the phonon frequencies it follows
that the modes in chiral tubes are, in general, not of purely axial or circumferential
character. We verified our considerations by ab initio phonon calculations of two chiral
nanotubes. Indeed, the calculated eigenvectors were of mixed LO and TO character. For
degenerate E modes we found that the direction of the atomic displacement may even
“wobble” when going around the circumference. Finally, we introduced a method to
specify an eigenvector by its symmetry and displacement ellipse.
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