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Abstract. We studied the electronic band structure of isolated and bundled single-walled nanotubes
by ab initio calculations. Curvature effects on the electronic states depend on the chirality of the
nanotube; the strongest deviations from the zone-folding approximation are found in zig-zag tubes.
Bundling of the tubes to ropes further reduces the band gap in semiconducting tubes (20 - 30 %). We
present first-principles calculations of the optical absorption spectra in a (19,0) nanotube.

When a graphene sheet is rolled up to a nanotube the mirror symmetry perpendicular
to the sheet is broken. Therefore, theπ andσ states of graphene are allowed to mix,
which lowers the energies of theπderived nanotube states.[1, 2] At the same time, the
rolling up introducesm, the z component of the angular momentum, as a conserved
quantum number, since a tube is essentially a linear molecule extending infinitely along
thez axis.[3] The hybridization of theσ andπorbitals is usually assumed to be negligible
for realistic nanotubes (d ≈ 1.5nm). In Ref. [2] we showed, however, that curvature
effects depend both on the diameter and the chirality of a nanotube.

In this paper we complete the task of Ref. [2] by comparing theab initio band
structure for a (10,10) armchair tube and a (19,0) zig-zag tube with the corresponding
zone-folding and tight-binding results. Whereas the first-principles band structure of
the armchair tube is perfectly described by zone folding, the electronic states in the
optical regime are shifted by as much as 100 meV in the (19,0) zig-zag tube. Bundling
of the tubes to ropes splits the doubly degenerate electronic states and introduces an
electronic dispersion perpendicular to the nanotube axis. We show first-principles optical
absorption spectra of a (19,0) tube and discuss the selection rules for dipole transitions.

Ab initio calculations with SIESTA[4, 5] were performed within the local density
approximation[6]. Pseudo potentials[7] replaced the core electrons, while the valence
states were expanded in a double-ζ basis set plus polarizing orbitals.[8] The cutoff radii
of the basis functions were 5.12 a.u. for thes and 6.25 a.u. for thep andd orbitals. Real
space integrations were performed on a grid corresponding to a cutoff of≈ 270Ry. In
isolated armchair (zig-zag) nanotubes we used 30 (10)k-points in reciprocal space to
find the total energy; the bundled tubes were calculated on a 10×10×30 Monkhorst-
Pack grid.[9] The band structure was obtained by calculating the eigenenergies of the
Kohn-Sham Hamiltonian at 60 (45) points in reciprocal space along the armchair (zig-
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the graphene π orbitals in Fig. 1c), however, rather poorly describes the band structure
of the (10,10) tube. This failure is due to the fact that this simple description already fails
in reproducing the ab-initio results of graphene. In Fig. 2 we show the same calculations
for the (19,0) zig-zag as for the (10,10) armchair tube in Fig. 1. For zig-zag tubes zone
folding correctly predicts only the two valence and conduction bands closest to the Fermi
level. The conduction bands involved in optical transitions in the visible energy range
are shifted to lower energies by as much as 100 meV. The chirality dependence of the
hybridization effects come from the chirality dependence of the confinement direction
with respect to graphene as we discussed in Ref. [2].

Bundling of the tubes to ropes, in general, shifts the Γ point electronic energies to-
wards the Fermi level. More importantly, however, the coupling between the tubes gives
rise to an intertube dispersion perpendicular to the z axis. As a typical example we show
in Fig. 3 the band structure of a bundle composed of (19,0) nanotubes along the ΓMKΓ
high-symmetry lines of the Brillouin zone. At the Γ point the lowest lying conduction
and valence band in the isolated tubes are split by 135 and 504 meV, respectively. The
black dots in Fig. 3 mark the position of the Γ point energies in the isolated (19,0) tube,
see Fig. 2. The width of the intertube electronic bands is on the order of 100 meV, very
similar to graphene and solid C60.[10, 11] The intertube dispersion strongly broadens
the square-root singularities in the electronic density of states and reduces the band gap
by 20− 30% in semiconducting nanotubes. Note that the (19,0) bundle is an indirect
semiconductor with a band gap energy of only 40 meV, see Fig. 3.

Finally, we show in Fig. 4 the absorption spectrum of an isolated (19,0) nanotube.
Full (dashed) lines correspond to the incoming light polarized parallel (perpendicular)
to the tube z axis. Under parallel polarization we find a series of singularities in the
absorption coefficient. A very similar result is obtained by simply considering the joint
density of electronic states in the (19,0) nanotube for bands with the same m quantum
number (i.e., the valence and conduction band being approximately symmetric with
respect to the Fermi level). Up to ≈ 4eV the singularities originate solely from the Γ
point of the nanotube Brillouin zone. At 3.9eV transitions coming from the Brillouin
zone boundary give rise to a first singularity in the joint density of states and thus
the absorption spectrum in parallel polarization. The situation changes drastically for
incoming light polarized perpendicular to the tube axis. Below ≈ 3.5 eV the absorption
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FIGURE 3. Intertube dispersion in a (19,0) nanotube. The (19,0) bundle is an indirect semiconductor
with a band gap of 40 meV. The black dots indicate the electronic energies at the Γ point of the isolated
(19,0) nanotube.
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