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Elastic properties of carbon nanotubes under hydrostatic pressure
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We present first-principles calculations of the bulk and linear moduli of carbon nanotube bundles and
individual tubes. The calculations were done using the local-density approximation of density-functional
theory. We found the bundle bulk modulus~37 GPa! to be essentially the same as that of graphite~between 34
and 42 GPa experimentally!. The elastic properties of the individual tubes in the bundles are excellently
described by the elastic continuum approximation. The linear modulus along the nanotube axis is 1.5–2 higher
than the radial modulus for nanotube radii between 0.8 and 1.4 nm.
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The elastic properties of carbon nanotubes were wid
studied both for promising application, e.g., in compos
nanotube materials, and to gain a better understanding of
one-dimensional carbon based material. Experimenta
uniaxial and hydrostatic stresses were realized and inv
gated, e.g., by x ray, transport, and optical-absorption m
surements and Raman scattering.1–4 Theoretical studies con
centrated on the evaluation of Young’s modulus a
Poisson’s ratio, which are the most interesting elastic c
stants for application.5–9 After first reports of an unusually
high Young’s modulus, a value around 1 TPa, i.e., close
graphite, is now commonly accepted. The bulk modulus
carbon nanotube bundles was predicted to be 35–40 TP
a force constants calculation, in good agreement with x-
experiments.10,1,2For isolated tubes or the individual tubes
a bundle, however, the calculated bulk moduli show cons
erable scatter. For nanotubes with a diameterd'1.4 nm
bulk moduli ranging from 130 GPa in a tight-bindin
molecular-dynamics simulations11 to 260 GPa from a force
constant model5,6 were reported. A similar discrepancy wa
found for the linear compressibilities along the radial dire
tion and parallel to the tube axis in this highly anisotrop
material~see the compilation in Table II of Ref. 12!.

Here we report anab initio calculation of carbon nano
tube bundles under hydrostatic stress. The volume of
bundle unit cell shows a sublinear pressure dependence
a bulk modulus ofB0

b537 GPa. The individual tubes within
the bundle are'6 times stiffer (B0

t 5230 GPa for tubes
with d58 Å). We show that our results for the individua
tubes are very well described by the elastic continuum
proximation.

We simulate the structure of nanotube bundles us
three-dimensional crystalline arrays of identical nanotu
arranged in a hexagonal two-dimensional~2D! lattice. The
tubes are therefore of infinite length and not capped. Thi
a good approximation to the real bundles in which the na
tubes are of finite but very long length and the number
tubes forming the bundle is large. Calculations of~6,6!,
~10,0!, and~8,4! nanotube bundles were performed with t
SIESTA13 code within the local-density approximation~LDA !
parametrized as by Perdew and Zunger.14 Nonlocal norm-
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conserving pseudopotentials15 replaced the core electrons
The valence wave functions were described by a doubz
polarized basis set of localized orbitals with cutoff radii
5.12 a.u. for thes and 6.25 a.u. for thep and d orbitals as
obtained using an energy shift of 50 meV.16 Real space inte-
gration was performed on a grid corresponding to a cutof
'240 Ry. In the~6,6! armchair bundle we included 64 spe
cial k points in the calculation, 40 for the~10,0!, and only the
G point in the bundle of chiral~8,4! nanotubes. The bundle
unit cell and the atomic positions were relaxed for each pr
sure point between 0 and 8.5 GPa by a conjugate grad
minimization under the constraint of a hydrostatic stress t
sor. The relaxation was considered to be converged whe
components of the stress tensor were'5 –10% within the
required value~tolerances between 0.02 GPa at 0.25 G
pressure and 0.45 GPa at 8 GPa pressure! and the forces on
the atoms,0.04 eV/ Å. At zero pressure the equilibrium
structure of the individual tubes in the bundle agreed
within 1% with the values expected for an ideal graphe
cylinder. For comparison we also calculated graphite a
graphene and found an in-plane lattice constant of 2.465
which agrees well with the experiment (2.461 Å). We o
tain a cohesive energy for graphene of 8.66 eV/atom, in g
agreement with previous pseudopotential plane waves17 and
all-electron18 calculations~8.80 and 8.87 eV, respectively!.
The stacking energy of the graphite planes in our calcula
is 0.025 eV/atom~after correcting for basis set superpositio
errors!, also in very good agreement with previous LD
results.17 A more complete description of the parameters a
the equilibrium structure at zero pressure can be found
Ref. 19.

The equilibrium lattice constantb for the unit cells of the
~6,6!, ~10,0!, and ~8,4! nanotube bundles varied betwee
11.00 and 11.43 Å for radii between 3.92 and 4.11 Å. T
corresponds to a wall-to-wall distance between the tubes
bundle of 3.1 Å, slightly lower than in graphite (3.3 Å i
our calculation!. The same wall-to-wall distance was ob
tained by Tanget al.1 in a combination of x-ray experiment
and a calculation based on elasticity theory.

In Fig. 1 we present the pressure dependence of the
ume of the nanotube unit cell~bundle unit cell! and of the
©2002 The American Physical Society07-1
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individual tubes in the bundle~individual tube!. The dots
show the calculated results for the three bundles of tubes~see
figure caption!. The squares were obtained from the x-r
measurements of the bundle lattice constants in Refs. 1 a
assuming that the lattice constant along thez axis is not
changed by the applied hydrostatic pressure. The agree
between theory and experiment is excellent. The volume
the nanotube unit cell shows a sublinear pressure de
dence; from a fit with the universal equation of states20 we
find the bulk modulusB0

b537 GPa and its first derivative
Bb8511. Our calculated moduli of graphite are practica
the same as those of the nanotube bundles~see Table I!. The
graphite bulk moduli reported in the literature scatter cons
erably; two experimental results and an all-electron calcu
tion are included in the table for comparison. The nanotu
bulk modulus we obtained is more than twice as large as
obtained from force constants calculations by Lu;6 similar

FIG. 1. Normalized volume change of the unit cell of nanotu
bundles~bundle unit cell! and of the individual tubes within the
bundles~individual tube! under pressure. Closed black dots cor
spond to~6,6! nanotubes, open dots to~10,0! tubes, and closed gra
dots to~8,4! nanotubes. The closed and open square are the ex
mental values of Tanget al.1 and Sharmaet al.,2 respectively. The
lines were obtained from fits to the calculated total energy using
universal equation of state by Vinetet al.20

TABLE I. Calculated and measured bulk modulusB0 and its
first derivative at zero pressureB8 of graphite and graphene com
pared to the calculated elastic properties of carbon nanotubes.

B0 (GPa) B8 V0 (Å3)

Graphite
This work 39 10 34.961
LDA ~LCGTOa!, Ref. 18 38.8 8.3 35.204
X ray, Ref. 21 42 9.5 35.152
X ray, Ref. 22 33.8 8.9 35.12
Graphene~2D! 700 1 6.076

Nanotubes
Bundle 37 11
Individual 230 4.5

aLinear combinations of Gaussian-type orbitals.
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calculations by Popovet al.10 are, however, in very good
agreement with theab initio result. The nanotubes calculate
with the first-principles method have a diameter of on
8 Å, whereas the experiments were performed on'15 Å
diameter tubes. Popovet al.10 predicted a dependence of th
bulk modulus on the diameters of the bundled tubes betw
d50 and 60 Å, which peaked atd512 Å with B0

b

538 GPa. Since the diameter range between 10 and 1
covers almost all single-walled nanotubes found in r
samples, the bulk modulus varies only little for the particu
tubes under study in experiments.

Up to now, we discussed only the dependence of
bundle unit cell on pressure. In Fig. 1 also the volum
change for the individual~6,6!, ~10,0!, and~8,4! tubes in the
bundle is shown~lower trace!. To find the volume of the
individual tubes under pressure we assumed the nanotub
have a cylindrical shape, i.e.,V(p)5pr 2(p)a(p). We use
the axial lattice constanta(p) found from the conjugate gra
dient minimization and as the radiusr (p) the mean distance
of all carbon atoms from the center of the tube. This a
proach neglects a small hexagonal distortion of the circu
cross section, which, however, even for the highest pres
points was below 5% ofr (p). All three nanotubes show th
same pressure dependence in Fig. 1 regardless of their ch
ity. The pressure slope is found to be almost linear, with
bulk modulusB0

t 5230 GPa, see Table I. The correspondi
value of two-dimensional graphene is about three tim
higher.

The discrepancy between the nanotube and the grap
value can be understood when the cylindrical shape of
tubes is properly taken into account. The highly uniax
structure of the tube yields a higher linear compressibility
the radial than in the axial direction. In Fig. 2 we show t
radial («uu) and the axial («zz) deformation of the nanotube
under applied hydrostatic pressure. At a given pressure
radial or circumferential strain is always larger than the ax
strain. From Fig. 2 we find the axialMz

t and radialM u
t linear

moduli,

-

ri-

e

FIG. 2. Calculated radial or circumferential («uu) and axial
strain («zz) for the individual tubes in a nanotube bundle und
hydrostatic pressure. The~6,6! nanotubes are shown by the blac
dots, ~10,0! tubes by open dots, and~8,4! tubes by gray dots. The
linear dependence of the two strains on pressure is shown by
full lines; the broken lines are the result of the elastic continu
model. For«zz the two lines coincide, therefore, the result of theab
initio calculation is only shown forp,7 GPa.
7-2
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Mz
t 52Fd ln a~p!

dp G21

51075 GPa ~1!

and

M u
t 52Fd ln r ~p!

dp G21

5650 GPa. ~2!

WhereasMz
t is similar to the graphite in-plane modulu

~1410 GPa in our calculation, see Table II!, the compressibil-
ity in the radial directionM u

t 21 is much larger.
To separate the geometrical part of the pressure de

dence, i.e., the cylindrical shape, from additional contrib
tions we calculate the two moduli within a continuum mod
Consider a nanotube as a rolled up hollow cylinder with
finite wall thickness made out of graphene. Within elastic
theoryMz

e andM u
e are then obtained as23

Mz
e5

E

122n

Ro
22Ri

2

Ro
2

, ~3!

M u
e5

E

122n

Ro
22Ri

2

Ro
2 S 11

11n

122n

Ri
2

r 2 D 21

, ~4!

whereE is Young’s modulus,n is Poisson’s ratio,r is the
nanotube radius, andRo andRi are the inner and outer rad
of the cylinder. Possible choices forr, Ri , andRo in a given
tube and the dependence of the moduli on these values
discussed in Ref. 23. We used the mean radiusr 54 Å as
calculated for the~6,6!, ~8,4!, and ~10,0! tube at ambient
pressure; the inner and outer radii are given by subtractin
adding half of the wall-to-wall distance between the tubes
the bundle (3.1 Å in our calculation!. We then obtain (E
51 TPa andn50.14)23 the broken lines in Fig. 2~compare
also Table II!. They are in excellent agreement with theab
initio result showing that the elastic response is well

TABLE II. Linear moduli calculated for the individual nano
tubes by first-principles methods and within elasticity theory. T
ab initio value for graphite is given for comparison. All moduli a
in GPa.

Mz52(d ln a/dp)21 M u52(d ln r/dp)21

Nanotubes
Ab initio (d58 Å) 1075 650
Elasticity (d58 Å) 1100 750
Elasticity (d514 Å) 930 490
Graphite~ab initio! 1410
S

.K
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plained by the nanotube’s cylindrical shape. In particular,
continuum model also implies that the elastic properties
the nanotubes are insensitive to their chirality, which we a
found in theab initio calculations. It is quite surprising that
continuum model accurately describes the elastic prope
of a system constructed from only a single monolayer.
two-dimensional semiconductors a similarly wide range
validity was found by Bernard and Zunger.24

An interesting point currently under controversial deba
is a structural phase transition in nanotubes under pressu
was proposed by Peterset al.25 that the tube’s cross sectio
collapses to an oval shape under pressure to explain the
appearance of the radial breathing mode in high-pressure
man spectra around'2 GPa. Tanget al.1 concluded simi-
larly on the basis of x-ray measurements, whereas Sha
et al.2 stressed that the triangular lattice persisted up to
GPa in their measurements. In theab initio calculation we
found a small hexagonal distortion of all tubes wh
bundled. It slowly increased with increasing pressure,
even forp58.5 GPa remained below 5%. At even high
pressure ('10 GPa) the armchair nanotubes collapsed
flat ellipses. The elliptical structure might be preferred
high pressure because the volume inside the tubes is m
reduced compared to the circular cross section, but it requ
a strong bending of the nanotube’s wall. We currently inv
tigate whether the same behavior is found in the other tu
as well. For a comparison with experiment, however,
need to calculate larger diameter (d'14 Å) nanotubes,
which will be the subject of a future work.

In conclusion, we studied the elastic response of car
nanotube bundles to hydrostatic pressures up to 8.5 GPa.
bulk modulus of the bundles was found to be 37 GPa,
same value as in graphite. For the individual tubes in
bundle an elastic continuum model is in excellent agreem
with our ab initio calculation. Based on the continuum a
proximation we can estimate the bulk modulus in typic
nanotubes (d'14 Å) as 200 GPa and the linear compres
ibility in the radial and axial direction as 490 GPa and 9
GPa, respectively.
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