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We present a detailed study of the geometry, structure, and energetics of carbon nanotube caps. We show that
the structure of a cap uniquely determines the chirality of the nanotube that can be attached to it. The structure
of the cap is specified in a geometrical way by defining the position of six pentagons on a hexagonal lattice.
Moving one �or more� pentagons systematically creates caps for other nanotube chiralities. For the example of
the �10,0� tube we study the formation energy of different nanotube caps using ab initio calculations. The caps
with isolated pentagons have an average formation energy �0.29±0.01�eV/atom. A pair of adjacent pentagons
requires a much larger formation energy of 1.5 eV. We show that the formation energy of adjacent pentagon
pairs explains the diameter distribution in small-diameter nanotube samples grown by chemical vapor
deposition.
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I. INTRODUCTION

When carbon nanotubes were discovered more than ten
years ago, they were generally looked at as elongated
fullerenes.1–6 A tube was described as several carbon rings
capped on both ends by half-spherical fullerene fragments.
Over the years this view changed. Presently, carbon nano-
tubes are modeled as one-dimensional solids.7 A cylindrical
unit cell is repeated infinitely along the nanotube axis.7 Con-
sidering single-walled carbon nanotubes as systems with
translational periodicity is appropriate for studying their
physical properties, because nanotube aspect ratios range
from 102−107 �Refs. 8 and 9�. The caps—normally only
present at one end of the tubes—have virtually no effect onto
the properties of a tube. This is the reason why nanotube
caps almost disappeared from the literature, after a number
of studies on this subject in the earlier nanotube
literature.10–12

Recently, however, the attention turned back to nanotube
caps in efforts to understand the growth of carbon nanotubes.
Single-walled tubes nucleate on a catalyst particle and then
normally grow by adding carbon atoms to the base �root
growth mechanism�.8,13–15 Miyauchi et al.16 pointed out the
importance of caps when studying small-diameter tubes
grown by chemical vapor deposition �CVD�. They argued
that there must be a correlation between the apparent prefer-
ence for some nanotube chiralities in their growth method
and the structures of the nanotube caps at nucleation. We
recently suggested that the caps of carbon nanotubes and
their interaction with the catalyst will be the key for control-
ling the chirality of single-walled carbon nanotubes during
growth.17 Our guiding principle for chirality-selective
growth was based on two fundamental concepts: �i� one cap
can only grow into a unique carbon nanotube and �ii� the cap
structure can be controlled by epitaxial growth on a metal
surface.

In this paper we study the correlation between nanotube
caps and the tube that can be attached to it. We show that the
matching nanotube structure is defined by placing six penta-
gons onto a hexagonal lattice. Moving one of the pentagons
creates different caps and hence different tubes in a rational

way. Moving one pentagon along the graphene a1 direction
changes the nanotube chirality �n1 ,n2� to �n1 ,n2+1�, moving
it along a2 creates the �n1−1 ,n2+1� tube. We study the en-
ergetics of various �10,0� nanotube caps using ab initio cal-
culations. For caps obeying the isolated pentagon rule the
average formation energy is 17.4±0.7 eV per 60 carbon at-
oms. One pair of adjacent pentagons requires an additional
energy of 1.5 eV. We show that the large formation energy of
adjacent pentagons explains the diameter distribution in low-
temperature CVD grown samples reported by Bachilo et al.18

and Miyauchi et al.16

This paper is organized as follows. We first show how to
construct a nanotube cap by cutting out 60° cones from a
hexagonal lattice, Sec. II. We discuss the number of possible
caps for a given nanotube—several hundreds to thousands
for tube diameters d�10 Å—and the number of possible
nanotubes for a given cap—just one—in Secs. II and II A.
We then show in Sec. II B how caps for different tubes can
be constructed by moving pentagons. After explaining the
construction of nanotube caps we proceed by calculating the
formation energies of a total of 20 cap structures for the
�10,0� nanotube in Sec. III. Finally, we discuss the diameter
distribution of small-diameter tubes �d=7−10 Å� grown by
CVD, Sec. IV. Section V summarizes this work.

II. CAP CONSTRUCTION

Carbon caps resemble half-fullerenes. They are composed
of six pentagons and a number hexagons.10–12 The six pen-
tagons are necessary by Euler’s theorem of closed polyhedra
to introduce the necessary Gaussian curvature.6,19–21 There
are three methods to represent carbon caps on a flat plane:
flattening the cap onto a hexagonal lattice,22 unwrapping a
half tube with the cap attached to it,10 and a network repre-
sentation based on graph theory.11 We use the flattening
method originally suggested by Yoshida and Osawa,22 see
also Astakhova et al.12 We found that this method best high-
lights the pattern of six hexagons and its correlation to the
nanotube chiral vector.
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Figure 1�a� shows the construction of a �5,5� nanotube cap
using the flattening method. The light grey �orange� hexa-
gons indicate the positions of the pentagons on the hexagonal
graphene lattice. The dark shaded areas are cut and the black
lines joined to form a half-spherical structure,12 see Fig. 1�b�.
The �red� lines in Fig. 1�a�—the cap hexagon—define the
rim of the cap; this line goes around the circumference in the
capped �5,5� in �b�.

The �5,5� nanotube is the smallest diameter tube that has a
cap obeying the isolated pentagon rule.11 It has only a single
such structure fitting over it �half a C60 fullerene�. The other
tubes with only one cap fulfilling the isolated pentagon rule
are �9,0�, �9,1�, �8,2�, and �6,5� �diameters d=6.8–7.5 Å�.
Tubes of these diameters are found, e.g., in CoMoCat CVD
grown samples.16,18 With this growth method even smaller
tubes such as the �6,4� and the �7,3� have been reported.
Allowing adjacent pentagons the smallest capped tube is the
�5,0� tube. This sets the limit for the tube diameters that can
form by the standard growth method. Interestingly, for the
small-diameter CVD samples there is a marked decrease in
the abundance of tubes when going from the isolated penta-
gon regime ��6,5�, �8,3�, �9,1�� to the diameters where only
caps with adjacent pentagons exist ��6,4� and �7,3��. We dis-
cuss the diameter distribution in these samples in Sec. IV.

Brinkmann et al.11 calculated the number of caps for
nanotube diameters up to 20 Å. Similar numbers as reported
by Brinkmann and co-workers were obtained by Astakhova
et al.12 for the subset of caps obeying the isolated pentagon
rule and tubes up to the �10,10� nanotube. With increasing
diameter the number of possible caps grows very rapidly
following a power law for caps with two or more adjacent
pentagons, see Fig. 2�a� �Ref. 11�.

In a first approximation one expects a d12 dependence for
the number of caps �including adjacent pentagons� by the
following argument. The area of the hexagonal lattice where
we can place the six pentagons as in Fig. 1 grows as d2,
because the cap hexagon is equal to the circumference of the
tube. To specify the cap by the flattening method we select
six out of d2�h2 elements �h integer�. We show in Sec. II A
that specifying the six pentagons fully determines the chiral-
ity of the nanotube. The number of distinct choices for six
elements out of h2 is given by the binomial coefficient h2C5.
The highest power of this binomial is h12; from this we ob-
tain the d12 dependence for the number of carbon caps. As

can be seen from the fit in Fig. 2�a� the number of caps is
proportional to d7.8. There are three obvious reasons why the
number of caps is smaller for a given d than expected from
our argument.

First, the choice of the six pentagons is not independent.
By placing the first pentagon we remove a 60° cone from the
hexagonal lattice, Fig. 1�a�. The remaining pentagons must
not be placed in this area. This becomes more and more
restrictive the more pentagons we specify. Second, two ap-
parently different sets of six pentagons out of h2 enumerated
elements can, in fact, correspond to the same geometrical
pentagon pattern. The pattern might be rotated or moved
with respect to the hexagonal lattice. For example, in Fig.
1�a� we can rotate the six pentagons by 60° degree around
the central pentagon �the cones are rotated together with the
pentagons�. This is a different subset in the argument out-
lined above, but the two caps are identical. Third, the cap
area is not necessarily quadratic; it can be rectangular as well
�examples are the �8,4� caps in Fig. 4 of Sec. II A�. Then, the
number of available hexagons is smaller than h2, which re-
sults in a smaller binomial coefficient and hence a smaller
exponent for the number of caps over tube diameter. Al-
though we have several arguments why the exponent in Fig.
2�a� is smaller than twelve, we cannot explain why it is equal
to 7.8. It would be interesting to explain the exact depen-
dence of the number of caps on tube diameter.

For caps fulfilling the isolated pentagon rule in Fig. 2�b�
the number of caps is smaller for small diameters than for
general caps, but for d→� we recover the power law behav-
ior of Fig. 2�a�.11 This is understandable, since for a large cap
area �large tube diameters� the fraction of caps with adjacent
pentagons becomes negligible. For a given nanotube diam-
eter there are fewer caps for armchair and zigzag �closed
symbols� tubes than for chiral tubes �open�. This is due to the
higher symmetry of the achiral tubes, which reduces the
choices of caps. Although a given nanotube can have thou-
sands of distinct caps, quite the opposite is true for the in-
verse problem. A given cap only fits onto one particular
nanotube as we show in the following section.

A. One cap, one tube: The pentagon pattern determines the
tube chirality

As we showed in Figs. 1�a� and 1�b� a hexagon that in-
cludes all six pentagons on the graphene lattice ends up as a

FIG. 1. �Color online� Constructing a cap for a �5,5� nanotube.
�a� Cut out the shaded areas and join the sides to obtain the cap
in �b�. Light grey �orange� mark the pentagons. The cap hexagon
�thick line, red� in �a� points around the nanotube circumference
in �b�.

FIG. 2. �Color online� Number of carbon caps versus tube di-
ameter; �a� all possible cap structures and �b� cap structures obeying
the isolated pentagon rule. The line in �a� is a fit by a function
�d−dc�v with v=7.8 and dc=1.2; in �b� dc=2.6. Data from Ref. 11.
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closed line around the nanotube circumference. Giving the
vector around the nanotube circumference, on the other
hand, uniquely determines the microscopic structure of the
tube �diameter d and chiral angle ��. As is well known an
�n1 ,n2� nanotube is obtained by rolling up a graphene sheet
along the vector7

c = n1a1 + n2a2 �1�

where a1 and a2 are the graphene lattice vectors. Once the
cap hexagon is defined as in Fig. 1�a� the edge of this cap
fixes the nanotube structure that can be attached to it.

In Fig. 3 we show the edge construction for a chiral nano-
tube. In this case the cap hexagon cannot be closed by cut-
ting the shaded areas. The steps �dashed lines in Fig. 3�a��
correspond to going twice into the −a1+a2 direction of
graphene, see Fig. 3�b�. The full �red� line representing the
cap hexagon has a length of 11a1. Adding the full and dashed
lines we obtain a chiral vector c= �11−2�a1+2a2, i.e., the
�9,2� nanotube as shown in Fig. 3�b�.

The cap construction by flattening the half sphere onto the
graphene lattice involves three steps:12 �i� define the posi-
tions of the hexagons, �ii� define the directions of the 60°
cones to be cut, and �iii� define the cap hexagon. Which step
fixes the nanotube structure?

The last step—drawing the cap hexagon—is completely
arbitrarily and will not change the cap structure. Increasing
the size of the hexagon by moving the lines in Fig. 3�a� away
from the pentagons, will simply add a tube segment to the
cap. It is also possible to “rotate” the hexagon, i.e., to change
the orientation of the line connecting two pentagons by 60°
and correspondingly the remaining lines between the other
pentagons. This changes the orientation of the full lines and
the steps with respect to a1 and a2. Adding up the lines and
steps one obtains the same chirality.

How abou step �ii� of the flattening method? Can we con-
struct two distinct caps from a given arrangement of penta-
gons by cutting different segments of the graphene lattice?
The answer is no as is illustrated for the �8,4� nanotube in
Figs. 4�a�–4�d�. Cutting different segments of the graphene
lattice �Figs. 4�a� and 4�b�� results in the same chiral vector.
The construction of the �8,4� cap in Fig. 4�a� is equivalent to
the construction of the �9,2� cap in Fig. 3�a�. The full line has
a length of 12a1 and we have four steps along −a1+a2. This
adds up to the �8,4� nanotube. In Fig. 4�b� we rotated the
shaded cones by 60°. On first sight the cap looks remarkably
different. The full lines have a length of 4a1 �we rotated the
cap hexagon together with the shaded cones to keep the full
lines parallel to a1�. There are a total of 8 steps; they are
along a1−a2. Thus, Fig. 4�b� shows a cap for the �12,−4�
tube. This is symmetry equivalent to the �8,4� nanotube be-
cause the �n1 ,n2� and the �n1+n2 ,−n2� tube have the same
microscopic structure.7 In Fig. 4�c� we cut along the arm-
chair instead of the zigzag direction. Once more, we obtain a
cap for the �8,4� nanotube as is shown by the chiral vector in
Fig. 4�d�.

The chiral vector of a nanotube is fixed by placing six
pentagons onto the graphene lattice, i.e., the first step in the
construction of the cap. This topological construction
uniquely specifies the structure of the carbon cap and the
tube that can be attached to it. This also determines the for-
mation energy of the cap during nanotube nucleation and the
nanotube that finally grows from the carbon nucleus. We
now study how caps for different nanotube are constructed
by changing the pentagon pattern.

B. Constructing caps for different tube chiralities

To create different caps from a starting pentagon pattern
we need to move one �or more� of the pentagons. We now
show that this creates �n1� ,n2�� nanotubes in a rational manner.

FIG. 3. �Color online� �a� Pentagon pattern, cutting direction
and cap hexagon of a �9,2� cap. �b� The sum of the full �red� and
dashed �white� lines in �a� equals the �9,2� chiral vector �arrow�.

FIG. 4. �Color online� �a� Construction of an �8,4� cap. �b� The
same arrangement of the six pentagons but a rotation of the cut
cones �dark grey areas� yields the same tube, see text. �c� Cutting
along the armchair direction and rotating the cap hexagon yields
likewise an �8,4� cap as shown in �d�.
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In Fig. 3�a� the lines forming the cap hexagon �full, red� are
parallel to the a1 direction of what later becomes the rolled
up graphene sheet. Moving one pentagon along a1 we in-
crease the length of the cap hexagon by a1 and introduce an
additional −a1+a2 step, Fig. 5�a�. Thus, the resulting nano-
tube is given by �n1� ,n2��= �n1 ,n2+1�. In our example this is
the �9,3� nanotube. For the cap the a1 direction is fixed with
respect to the cap hexagon, not the graphene sheet. At every
point of the lattice in Fig. 5�a� a1 is parallel to the line de-
fining the cap hexagon. When the direction of the full line
changes by 120° a1 changes as well. Therefore, the displace-
ment of a pentagon in the directions shown in Fig. 5�b� also
creates caps for the �9,3� nanotube. These are six out of 364
patterns that match the �9,3� nanotube or five out of 33 if we
impose the isolated pentagon rule.11 Moving the pentagon
along a2 results in an additional −a1+a2 step, but does not
change the length of the hexagonal line. We thus obtain an
�n1−1 ,n2+1�= �8,3� cap. All other displacements can be de-
scribed as the sum of a1 and a2 displacements.

Figure 6�a� shows the caps we obtain starting from the
�9,2�. The displacement of just one pentagon creates a large
variety of chiral indices. Some of the caps in Fig. 6�a� are
irregular. By this we mean that five pentagons are concen-
trated in one part of the hexagonal lattice, whereas the sixth
pentagon is far away from the others. More regular caps can
be constructed by displacing more than one pentagon. Take,
for example, the �12,2� nanotube in Fig. 6�a�. To construct a
regular cap for this tube we start from the �9,2� pattern in
Fig. 3�a�. We take the rightmost pentagon as the first penta-
gon �the one we moved around in Fig. 6�a�� and then go
counterclockwise through the six pentagons II, III, IV, and so
forth. Moving one after the other yields the series

�9,2�→
I

0

�9,2� ——→
II

−a2

�10,1� ——→
III

a1

�10,2� ——→
IV

a1−a2

→ �11,2� ——→
V

−a2

�12,1� ——→
VI

a1

�12,2� , �2�

where the vectors above the arrows indicate the displace-
ment; the roman numerals count the hexagons. The resulting
�12,2� cap consists of two columns of pentagons along the

armchair direction of graphene. It looks similar to the �8,2�
pattern in Fig. 6�a�, but with more space between the arm-
chair columns.

In Figs. 6�b� and 6�c� we present the caps obtained start-
ing from the �5,5� and �9,0� caps and displacing one penta-
gon. The high symmetry of the original pentagon patterns is
reflected in the chiralities that result from the displacement
of one pentagon. The patterns of five pentagons shown in
Figs. 6�b� and 6�c� in grey �orange� have mirror planes.
We thus obtain pentagon patterns that are mirror images
of each other when we move the remaining pentagon over
the hexagonal lattice. These mirror images are �identical�
caps for the same pair of chiral indices. To highlight this, we
always brought the �n1 ,n2� indices back into the standard
0° ���30° graphene segment �n1 ,n2�0,n1�n2� in Figs.
6�b� and 6�c�. For example, the series �9,1�, �10,0�, �10,1�,
and �10,2� in Fig. 6�c� is equivalent to �9,1�, �10,0�,
�11,−1�, and �12,−2�, because the �n1 ,n2� and �n1+n2 ,
−n2� tube are identical. For tubes close to the armchair di-
rection we interchanged n1 and n2 in the left part of Fig. 6�b�.
This turns a left-handed tube into a right-handed tube; oth-
erwise the two tubes are identical.

Many chiral indices appear in more than one panel of Fig.
6. For example, the �8,4� and �9,4� tubes are present in �a�
and �b� and all chiral indices of �c� can be found in �a� as
well. Some of the repeated indices correspond to the same
pentagon pattern, i.e., the same cap, see the �10,1� caps in
Fig. 6�a� and 6�c�. Most repeated indices, however, describe
two distinct caps for one nanotube chirality. For example, the
�10,0� cap in Fig. 6�c� is very regular and obeys the isolated
pentagon rule, whereas the �10,0� cap in �a� contains two
adjacent pentagons.

III. FORMATION ENERGIES OF (10,0) CAPS

Our original motivation for studying nanotube caps was to
calculate the formation energies of the caps on catalytic

FIG. 5. �Color online� �a� �9,3� cap obtained from the �9,2�
pattern in Fig. 3 by moving the rightmost hexagon along a1. For the
cap a1 is parallel to the line of the cap hexagon �full, red�. The
displacement of one of the six hexagons in �b� along a1 �arrows�
creates six distinct �9,3� caps �one violates the isolated pentagon
rule�.

FIG. 6. �Color online� �a� Caps created from the �9,2� tube by
fixing five pentagons �light grey, orange� and moving the remaining
pentagon over the hexagonal lattice; �b� same as �a� but starting
from the high-symmetry �5,5� configuration in Fig. 1; �c� same as
�a� staring from a high-symmetry �9,0� cap. If we move the free
pentagon next to another pentagon the cap violates the isolated
pentagon rule �bold, red indices�.
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particles.17 We found that the two important contributions for
the total energy of a nanotube nucleus were the cap forma-
tion energy and the carbon-metal binding energy. Here the
question arises whether distinct caps matching the same
nanotube have different formation energies and would hence
be preferred in a growth process. To answer this question we
calculated the total energies of �10,0� caps from first-
principles.

Ab-initio calculations were performed using the SIESTA

code.23 The core electrons were described by nonlocal norm-
conserving pseudopotentials,24 the valence electrons by a
double-� basis set.25 The cutoff radii were 4.2 a.u. for the s
and 5.0 a.u. for the p orbitals. The cutoff in real space was
�300 Ry. We used the generalized gradient approximation
�GGA� as parametrized by Perdew, Burke, and Ernzehof.26

These input parameters are the same as we used for our
calculations of the nanotube caps on Ni.17 The starting cap
structures were obtained using the CAGE program.11 Two
caps were joined to form a fullerene and placed into a cubic
unit cell. The cell length was 20 Å, i.e., interactions between
repeated images were strictly zero because of the finite
length of the basis functions.23 The fullerenes were relaxed
by a conjugate gradient optimization until all forces were
below 0.04 eV/Å. Our formation energies are given with
respect to the total energy of a graphene sheet with the same
number of carbon atoms.

The �10,0� tube has seven caps obeying the isolated pen-
tagon rule.11,12 We calculated the formation energy of all
these seven caps plus 13 caps with adjacent pentagons �out
of 251�. The formation energies we obtained are given in
Table I. The caps contained between 40 and 60 carbon at-
oms. For a fixed number of adjacent pentagons the formation
energy Ec per carbon atom decreases with increasing number
of atoms in the cap. This was expected, because the forma-

tion energy of fullerenes scales with ln N6, where N6 is the
number of hexagons in the fullerene.27,28 We corrected for
this dependence by adding the energy of carbon atoms in the
�10,0� nanotube Ec�10,0� to obtain a constant number of
hexagons �or carbon atoms�. This is equivalent to assuming
that the chemical potential for carbon is controlled by the
sides of the tube. E60 in Table I thus represents a capped
�10,0� segment with 60 atoms

E60 = Ec�cap� + �60 − na�Ec�10,0� , �3�

where Ec�cap� is the ab initio formation energy for the
cap, na the number of carbon atoms in the cap and
Ec�10,0�=0.137 eV/C, see Table I.

The average formation energy for a segment with 60
carbon atoms is 17.4 eV if the cap obeys the isolated penta-
gon rule. E60 varies by up to ±0.7 eV for the different caps;
the most stable structure is half a C84 fullerene with
E60=16.8 eV. Allowing one pair of adjacent pentagons E60
increases by 1.4 eV or 8%. A notable exception is the cap
with 52 atoms that only differs by 0.1 eV between the
isolated-pentagon and two adjacent-pentagons cap. With two
pentagon pairs the average formation energy is 3.2 eV �18%�
higher than for isolated pentagons. The typical formation en-
ergy of a pair of adjacent pentagons is thus around 1.5 eV.
Note that this is �1/4th of the energy necessary for a Stone-
Wales defect �5.3–6 eV, Refs. 29 and 30�.

The increase in formation energy as shown in Table I is,
in fact, only a lower boundary for the energy required for
caps with adjacent pentagon pairs. The reason for this is the
geometry of the relaxed fullerenes with zero, two and four
pentagon pairs. The relaxed fullerenes obeying the isolated
pentagon rule typically had a circular cross section, i.e., the
part of the cap where the tube would be attached. The

TABLE I. Formation energy of �10,0� caps. Ec is the formation energy of the cap alone; E60 corresponds
to the formation energy for a half capped tube containing 60 carbon atoms, see text for details. The formation
energy for the �10,0� tube and C70 are given for comparison. All energies are referred to the total energy of
a graphene sheet. A dash means no structure exists with isolated pentagons or this number of adjacent
pentagons for a given na.

na

isolated two adjacent four adjacent

Ec �eV� Ec /C �eV� E60 �eV� Ec �eV� Ec /C �eV� E60 �eV� Ec �eV� Ec /C �eV� E60 �eV�

40 14.8 0.370 17.5 — — — 17.2 0.438 20.0

42 14.4 0.342 16.8 15.7 0.375 18.2 16.7 0.400 19.2

14.7 0.350 17.2

46 16.0 0.348 17.9 17.3 0.376 19.2 19.4 0.422 21.3

48 15.3 0.320 17.0 17.3 0.359 18.9 20.2 0.421 21.8

52 17.0 0.328 18.1 17.1 0.329 18.2 19.1 0.367 20.2

54 — — — 18.9 0.350 19.7 21.2 0.392 22.0

60 17.4 0.290 17.4 18.8 0.313 18.8 19.6 0.326 19.6

average 17.4 18.8 20.6

�10,0� tube 0.137 8.2a

half C70 13.2 0.376 17.8b

aformation energy of 60 atoms of an infinite �10,0� nanotube.
bCalculated using 40 C70 atoms for the cap and 20 �10,0� atoms for the tube segment. This segment is then
equivalent to the 40 atoms cap in the first row.
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fullerenes constructed from caps with two or more adjacent
pentagon pairs, in contrast, were elliptical. Figure 7 shows as
an example the fullerenes corresponding to the cap with 48
carbon atoms in Table I. The cross section changes from
almost circular for the isolated pentagon cap in Fig. 7�a� to
elliptical for the caps with two and four adjacent pentagons.
The cross section in Fig. 7�c� has an aspect ratio close to 2.
Attaching an elliptical cap to a circular nanotube induces
additional strain in the cap or a part of the tube. This results
in a further increase in the energy required for the formation
of adjacent pentagons. Relaxed fullerene equivalents of caps
with adjacent pentagons are flat, because the adjacent penta-
gon pairs create large curvature in a part of the cap. The
remaining part of the cap contains mainly hexagons and be-
comes flat. This gives rise to the elliptical shape of the re-
laxed caps.

The �1.4 and 3.2 eV difference in formation energy for
caps with adjacent pentagons is on the same order or larger
than the demarcation energy of carbon nanotubes during
nucleation ��2.8 eV at 1000 K, see Ref. 17�. By this we
mean the energy difference necessary for the exclusive
growth of a specific carbon structure. When the formation
energy of two carbon nuclei differs by more than the demar-
cation energy, the nucleus with the higher energy is formed
with a very small yield. We thus find that for low-
temperature growth, the formation of nanotube caps obeying
the isolated pentagon rule is much preferred. The �10,0� tube
has caps obeying the isolated pentagon rule. Its cap and
hence the �10,0� tube can grow when isolated pentagons are
preferred energetically. This changes dramatically when we
consider single-walled carbon nanotubes with smaller diam-
eters. We now show that the narrow diameter distribution in
certain CVD grown nanotubes can be understood from the
formation energy of adjacent pentagon pairs.

IV. ADJACENT PENTAGONS AND DIAMETER
DISTRIBUTION OF CVD SAMPLES

Bachilo et al.18 and Miyauchi et al.16 reported single-
walled nanotube samples with mean diameters below 10 Å.
The remarkable thing about these tubes was that they showed
a very narrow diameter and chiral angle distribution. To
measure the chirality distribution both groups used

photoluminescence.16,18,32 This has to be treated with some
care, because the luminescence cross section varies from
tube to tube.31 This is most important for comparing tubes
with different chiral angles. In our analysis here we will
concentrate on the diameter dependence of the tube abun-
dance.

In Fig. 8 we show the abundance of tubes reported by
Bachilo et al.18 and Miyauchi et al.16 The data were cor-
rected by the calculated photoluminescence intensities ob-
tained by us.31 The correction depends on diameter as 1 /d2,
and in a nontrivial way on the chiral angle and nanotube
index family.31,33 The conclusions presented here are, how-
ever, insensitive to the details of the correction.

Starting from large diameters, the abundance of nanotubes
in the CoMoCat �Ref. 18� and the ACCVD �Ref. 16� sample
in Fig. 8 increases with decreasing diameter. It peaks around
7.8 Å. Below 7.2 Å the abundance of tubes drops sharply to
zero. This drop happens exactly at the radius that separates
semiconducting nanotubes into tubes with isolated pentagon
caps ��6,5�, �9,1�, �7,5�, and larger� and tubes that only have
caps with adjacent pentagons ��6,4�, �7,3�, and smaller�, see
the chiral indices and the dashed line in Fig. 8. The thermal
energy at nucleation was thus too small for the formation of
adjacent pentagons, which cost 1.5 eV per pair as we showed
above.

The formation energy of the tubes with smallest diameters
increases further when taking into account the curvature en-
ergy of the tube in addition to the energy required for adja-
cent pentagons. The �6,4� cap, for example, contains 30 car-
bon atoms. An adjacent pentagon pair thus costs �50 meV
per atom in the cap. The difference in strain energy between
the �6,4� and the �6,5� nanotube is �30 meV/C �Ref. 34�.
The total energy difference between a capped �6,4� and �6,5�
nanotube �neglecting the catalyst� will thus decrease from
80 meV/C for the cap alone to 30 meV/C for a long tube

FIG. 7. �Color online� Relaxed fullerene equivalent of the nano-
tube caps with 48 carbon atoms and �a� isolated pentagons, �b� two
adjacent pentagons, and �c� four adjacent pentagons, compare Table
I. The z axis of an attached �10,0� tube should be thought of as
perpendicular to the paper. FIG. 8. �Color online� Abundance of nanotubes as determined

from photoluminescence �PL� spectroscopy versus tube diameter.
PL data were taken from Bachilo et al. �Ref. 18� �CoMoCat, closed
symbols� and Miyauchi et al. �Ref. 16� �ACCVD, open� and nor-
malized to the intrinsic tube intensities following Reich et al. �Ref.
31�. Tubes with diameters smaller than 7.25 Å have only caps that
violate the isolated pentagon rule �dashed line�. The full line is a
guide to the eye �Gaussian centered at 7.75 Å with �=1.7 Å�. The
chiral indices are indicated for selected nanotubes. Only semicon-
ducting tubes can be detected by PL.
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where the effect of the adjacent pentagon becomes negli-
gible. From ab-initio calculations we found a difference in
formation energy 100 meV/C for the �6,4� and the �6,5� cap
in good agreement with the estimate given above.17 It is,
however, important to realize that the dependence of the
strain energy on tube diameter will never explain, e.g., the
low abundance of the �9,1� nanotube as compared to the
�6,5�, see Fig. 8. These two tubes have exactly the same
diameter. The formation of the nanotube nucleus—the cap on
the metal particle—is a limiting step for the growth of a tube.

The line in Fig. 8 is a guide to the eye. It is a Gaussian
with a mean diameter d�7.75 Å and �=1.7 Å. As can be
seen, the abundance of tubes follows reasonably well a
Gaussian distribution for large diameters, but the tail towards
small diameters is missing. In particular, there is a marked
asymmetry between the very small or vanishing abundance
below 7.2 Å and the comparatively broad distribution to-
wards the large-diameter end in Fig. 8.

The low-temperature CVD experiments confirm the im-
portance of the cap structure and the cap formation energy
for the distribution of nanotube chiralities in a sample.17

Once a cap is formed, it determines the �n1 ,n2� nanotube that
grows from it. This is somewhat similar to the growth of
tubes using other nanotubes as a seed.35 If the formation
energy of a certain cap is larger than the energy available
during nucleation, this prevents the growth of the tube cor-
responding to the cap. This holds even when the tube itself is
otherwise favourable energetically.

In this study we only considered the energy of the cap
itself. The second important contribution to the formation
energy during nucleation is the carbon-metal binding
energy.17 This can, in particular, introduce energy differences

between caps of similar diameter and hence similar cap for-
mation energy �curvature energy�. The variations in the total
carbon-metal binding energy �1–2 eV� are similar to the en-
ergy required for adjacent pentagons �1.5 eV�. The carbon-
metal binding energy can thus be the origin of the preferen-
tial growth of certain chiralities, whereas the adjacent-
pentagon energy prevents the growth of tubes with very
small diameters.

V. CONCLUSIONS

In summary, we studied the structure and energetics of
nanotube caps. We showed that the arrangement of penta-
gons in the cap defines the chirality of the tube that matches
to it. Moving one �or more� pentagons across the hexagonal
lattice creates caps for different nanotubes in a rational way.
The isolated-pentagon caps for a �10,0� nanotube vary in
formation energy by ±0.7 eV or 12 meV/atom. Introducing
adjacent pentagons requires an energy of �1.5 eV per pen-
tagon pair. The large formation energy for two adjacent pen-
tagons explains why tubes with diameters below 7.2 Å had a
very small yield in low-temperature CVD growth. Our study
shows that the structures and energetics of carbon caps on a
catalytic particle will be the key for chirality selective
growth of single-walled carbon nanotubes. A nanotube cap
on a catalytic particle is the nucleus of a tube and uniquely
determines its chirality.
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