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We calculated the electronic properties of high-index free-standing silicon nanowires. [112] nanowires are 

indirect semiconductors for diameters down to 0.8 nm; [110] wires have a direct band gap at the  

G -point, but the density of states is very small at the conduction band edge. Confinement arguments show 

that only [001] nanowires are expected to develop a direct gap with a large density of electronic states at 

the band edges for diameters in the nm range. The magnitude of the gap depends strongly on the wire 

growth direction, which is due to the different effective confinement length and effective masses for the 

XG -derived silicon states. Correcting for the extension of the wave functions we find our calculated en-

ergies to agree with recent scanning tunneling experiments. 

© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Nanoscale semiconductor structures exhibit new physical properties. In silicon the dependence of its 

indirect band gap on confinement [1–10] is of great interest. Silicon is believed to develop a direct band 

gap in nanometer-size structures [4, 5, 10, 12], which is a necessary requirement for silicon-based opto-

electronics. The electronic properties of silicon nanowires (SiNWs) were widely studied theoretically 

and experimentally. Calculations were performed on wires extending along the [001] direction [13–17] 

with only a few exceptions [18–20]. In practice, however, it is observed that free standing silicon 

nanowires grow along high-index directions like [110], [111], or [112] [9, 21]. The question arises 

whether high-index silicon nanowires have direct band gaps as well. 

 In this work we present first-principles calculations of the electronic band structure and the density of 

states for two types of high-index silicon nanowires. We show that a direct band gap is only obtained in 

silicon if at least one of the XΓ -directions is perpendicular to the wire axis. A large electronic density of 

states at the Γ -point additionally requires confinement of the bands with a transverse effective mass, i.e., 

[001]  silicon nanowires. We discuss the magnitude of the calculated band gaps and explain their de-

pendence on the growth direction. We get excellent agreement with experiment after taking into account 

the penetration of the electronic wave function into vacuum. 

 We studied two types of SiNWs with hexagonal cross sections and an axis pointing in the [110]  and 

the [112] directions and compared the results with rectangular SiNWs extending along [001] . The silicon 

core of our [110] wire is shown in Fig. 1. For the [112] wire we calculated four different diameters. The 

Si core of the largest wire with an average diameter of 1.7 nm, and the facets are show in Fig. 1(c) and 

(d), respectively. The three quadratic [001] SiNWs were formed of 8 8¥ , 6 6¥  and 6 5¥  Si atoms in the 

unit cell. Dangling bonds were terminated with hydrogen atoms, see Table 1. 

 Ab initio calculations were performed using the SIESTA code [22] within the local-density approxi-

mation [23]. The core electrons were replaced by normconserving pseudopotentials in their fully seper-

able form [24]. A double-ζ , singly polarized basis set was used for the valence electrons [25]. The cutoff 

radii were 5.7 a.u. for the s and 7.1 a.u. for the p- and polarizing d-orbitals of silicon; the cutoff radius of  
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the s-orbital in hydrogen was 5.6 a.u. The calculations were performed using periodic boundary condi-

tions. Neighboring wires were separated by more than 7.3 Å; with this distance the interaction between 

two wires is strictly zero, because of the finite length of the atomic basis sets [22, 25]. Integrations in  

k -space along the wire axis were performed over 4 k-points. Real-space integrations were done in a grid 

with a cutoff of ª160 Ry. We optimized the nanowire structures by a conjugate gradient minimization 

until all forces were below 0.04 eV/Å. Stress components along the wire axes were minimized with re-

spect to the z-lattice constant. The deviations from the bulk lattice constant were found to be small 

(<1%). Then the band structure and electronic density of states (DOS) were calculated. 

 With this basis set and a k-point sampling of 8 8 8¥ ¥  we found a lattice constant of 5.4390 Å for 

bulk Si in good agreement with experiment (5.425 Å). The LDA band gap of silicon was 0.524 eV. As 

usual, all LDA band structures and DOS were corrected by the scissors operator to match the experimen-

tal gap of 1.17 eV. 

 We first briefly explain why [001] Si nanowires are direct band gap semiconductors before turning to 

the high-index wires. [001] wires are unique among all possible nanowires, because their confinement 

plane contains four of the six equivalent X-point conduction band valleys of silicon [13]. Since the unit 

cell  is enlarged in the wire, the conduction band minima are folded onto the Γ-point of the nanowire  

 

Table 1 Parameters of the wires studied; the diameter d , defined as twice the average distance of the 

terminating hydrogen atom from the wire center, and the number of Si and H atoms per unit cell are 

given. 

axis d (nm) Si H  

[001]  1.81  64  32  

 1.36  36  24  

 1.25  30  22  

[110]  2.25  74  28  

[112] 1.70 71 54  

 1.53  54  42  

 1.05  26  30  

 0.82  14  18  

Fig. 1 (online colour at: www.pss-b.com) (a) Sche-

matic view of a [110] SiNW with the facets indicated; 

silicon core (b) of the investigated wire with an aver-

age diameter 2 25d = . nm. (c) Schematic view and (d) 

the silicon core for the 1 7d = . nm [112] silicon 

nanowire formed of four (311) -type and two (111)-

type facets. The surfaces were terminated by hydrogen 

atoms (not shown). 
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resulting in a direct band gap silicon nanowire. Changing the axis to a lower-symmetry direction always 

changes the confinement plane. As can be seen in Fig. 1 the [110] wire contains only one of the [001] 

directions in the confinement plane and the [112]  none. The “useful” conduction band minima are thus 

less efficiently (or not at all) folded onto the Γ-point, rendering the high-index directions a priori less 

attractive from the optoelectronic point of view. 

 We discuss now the calculated band structures of our high-index wires. Figure 2 shows the calculated 

band structure and electronic density of states of the [110] silicon nanowire. As expected, we find a di-

rect band gap for the [110] wire. The number of states in the minimum of the conduction band, however, 

is almost negligibly small. The influence on the band structure, in the energy gap region, by electronic 

states originating from Si–H bonds can be neglected since they are located far away from the band 

edges. Although the maximum of the valence band and the minimum of the conduction band are located 

at the Γ-point, the overall character of the [110] wire remains indirect. The DOS is small in the lowest 

conduction band states because of the large longitudinal masses in the confinement plane. The valleys 

with the 4.8 times smaller transverse mass, which would substantially contribute to the DOS, are not 

folded onto the Γ-point in the [110] nanowires. For quantum confinement of the transverse [001] valleys 

two of the Γ, X-directions have to be perpendicular to the wire axis. This can only be achieved for wires 

growing along the [001] direction. 

 The band structure and density of states of the [112] wire are shown in Fig. 3. Clearly, both from the 

band structure and the DOS the wire is an indirect semiconductor. The [112] wire is a prototype for other 

high-index nanowires where the growth axis is not perpendicular to the [100] direction like, e.g., the 

[111] direction. In these wires the minimum of the conduction band remains at the boundary of the wire 

Brillouin zone, see Fig. 3. 

 Having discussed the direct and indirect nature of the gap we now concentrate on the magnitude of the 

gap in the different nanowires. In Fig. 4 we plot the calculated gaps together with tunneling spectroscopy 

measurements on [112] wires and previous LDA calculations versus the inverse of the nanowire diameter 

[9, 13, 16]1. The horizontal line is the low-temperature band gap of bulk silicon (1.17 eV). 

 The band gaps of the nanowires 
g

E  are larger than the gap of silicon because of confinement. The 

magnitude of the band gaps shows a noticeable difference between the experimental and the calculated 

wire band gaps. In order to discuss the validity of our calculated band gaps we will evaluate the depend-

ence of the band gap 
g

E  on the wires diameter. The dependence on the diameter d  can be described by 

 g 0

C
E E

d
α

= + ,  (1) 

 

 1 The diameters of the wires of Read et al. [13] were recalculated to coincide with our diameter definition. We made sure, that 

the determination of the diameters by Zhao et al. [16] agrees with our method.  

Fig. 2 Electronic band structure of the [110] wire 

(d  = 2.25 nm) and the associated density of states 

(Gaussian broadening of 0.01 eV). The direct band 

gap lies at the zone center, providing only very few 

states. Energies were corrected using the scissors 

operator. 
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as proposed by Delerue et al. [26], where d  is defined as in Table 1. The diameter exponent α ª 2 for the 

experiment, but smaller for all calculations, see fits in Fig. 4 and Table 2.2 An exponent of α  = 2 is also 

expected from the particle-in-a-box model [27] when the barrier height is infinite. 

 Theoretical determination of nanowire diameters are – in one way or the other – determined by taking 

the positions of the outmost Si atoms. The wire diameter is thus related to the atomic nuclei. We denote 

the diameter found by this procedure as d . Experimentally, the wire diameters are found, e.g., by scan-

ning tunneling microscopy. The wire diameters are thus determined by the extension of the electron 

clouds, which we will call d� . The difference between these two definitions becomes crucial if we con-

sider a finite height for the confining barrier and thus a penetration of the electrons into the vacuum. 

Then, the confinement induced upshift deviates from the 2
1/d  scaling when using the nuclei positions for 

the wire dimension. Conversely, if the extension of the electronic clouds is taken into account the upshift 

remains proportional to 2
1/d� . This is exactly the situation observed in Fig. 4. 

 We will now apply this idea to the calculated diameters of the [112] nanowires to see whether it ex-

plains the different exponents in the band-gap dependece on diameter in theory and experiment. We 

calculated the penetration depth, the length, for which the amplitude of the wave function has decayed to 
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 2 The difference between the measured and calculated band gaps in Fig. 4 is even larger than from what appears from Fig. 3C of 

Ref. [9]. In the reference the experiments on [112] wires were compared to calculations for [001] wires. 

Fig. 3 Electronic band structure and density of states 

for the [112] wire (d = 1.7 nm). The indirect character 

of the nanowire is nicely pictured. Energies were 

corrected using the scissors operator. 

Fig. 4 (online colour at: www.pss-b.com) LDA band 

gaps calculated for [001] (filled red diamonds), [110] 

(filled blue circle) and [112] (filled green squares) wires. 

For comparison experimental band gaps of [112] wires 

by Ma et al. [9] as well as previous calculations by Read 

et al. [13] and Zhao et al. [16] are plotted. The solid 

horizontal line indicates the band gap of bulk silicon 

(1.17 eV). The black arrows indicate the diameter cor-

rection due to the particle-in-a-box model, see text. 
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Table 2 The fit parameters of Eq. (1) for theoretical and experimental data of Fig. 4. 

nanowire axis α  C ⋅ nm (eV) 

[001] 1.4 2.36 

[110] 1.8 1.24 

[112]  1.3 1.90 

Ma et al. [9] 2.1 4.33 

 

1 e/ , for a square well using the work function of Si (4.7 eV) as the barrier height and an effective mass 

e
* 0 2m m= . . In the diameter range considered here (1–2 nm) the finite-barrier correction leads to a  

diameter increase of ª0.43 nm. Replacing d  in Fig. 4 by d�  = d + 0.43 nm we find excellent agreement 

between experiment and theory for [112] nanowires (see open green squares)3. This model thus gives an 

adequate correction of the geometric, i.e., balls-and-sticks derived, wire diameter to the quantum me-

chanical penetration of the wave function into vacuum. 

 For a given diameter the nanowire band gap depends strongly on the wire type. The [001] wire shows 

the largest and the [110] wire the smallest gap. This is due to the different contributions of the transverse 

and longitudinal effective masses. For a given diameter the [001] wire has the largest gap, because the 

[100] and [010] valleys are efficiently confined in the wire plane. The band gap of the [110] wire is the 

smallest due to the large longitudinal effective masses of the X conduction band valleys. In the [112] 

silicon nanowire the minimum of the conduction band is at the boundary of the wire Brillouin zone, see 

Fig. 3. Because the Γ, X-directions are not perpendicular to [112], the relevant confinement length for 

[001] related states is, in fact, larger than the wire diameter. For a rough estimate of the effective con-

finement length we take the sine of the angle between [112] and the [100] direction as a lower limit, 

finding 
eff

1 1d dª . . In Fig. 4, replacing the calculated diameters for [112] by the estimated 
eff

d  shifts all 

points towards the (red) fit of the [001] wires by about 10%, bringing them to a near overlap. This con-

firms our analysis in terms of an effective confinement length, which explains why the band gap of a 

[112] wire is smaller than the gap for a [001] wire of the same diameter. 

 In summary, we calculated the electronic band structures and density of states for high-index silicon 

nanowires from first principles. The band-gap character, direct or indirect, strongly depends on the crys-

tallographic direction of the wire axis. Only wires with at least one axis perpendicular to the [100], [010], 

or [001] direction have the conduction band minimum at the Γ-point. The magnitude of the direct or 

indirect bandgap is due to quantum confinement. It depends on the direction of the wire axis and the wire 

diameter, which we explained by the effective masses and an effective confinement radius for the X 

valleys. Estimates of the penetration depth of the wave functions into vacuum yield a good agreement of 

experimental and theoretical diameter and gap values. Our results clearly show that high-index SiNWs 

fail to be promising candidates for light emitting devices. 
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