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Using Raman spectroscopy we determined the van-der-Waals component of the low-frequency vibra-
tion in ropes of single-walled nanotubes at 171 cm~'. While Raman peaks in this frequency range are
commonly believed to correspond to the pure radial breathing mode of a single tube, our pressure
and temperature-dependent measurements show that van-der-Waals contribution of the peak ob-
served at 514.5 nm excitation is necessary to explain its large pressure coefficient of 9.7 cm~!/GPa.
Our results are consistent with the small elastic modulus predicted for nanotube ropes.

Single-walled carbon nanotubes have moved into the center of scientific interest since
their discovery in 1993 [1, 2]. Their one-dimensional structure formed by rolling up
graphitic sheets to a long and narrow cylinder led to the anticipation of highly anisotropic
electrical, optical and mechanical properties [3, 4]. Carbon nanotubes exist in single and
multi-walled form, where the common preparation procedures for the former usually
lead to formation of bundles of tubes, so-called nanoropes containing between 20 and
100 individual tubes [1, 2]. Calculations of the cohesive energy of such a nanotube
crystal show that it is favorable to form a rope over retaining a free-standing tube by
10 to 25 meV per atom, the precise value depending on tube diameter [5].

Vibrational spectroscopy has become a widespread tool for the analysis of nanotubes
[6 to 8]. Rao et al. have made a first assignment of observed peaks in the Raman
spectra to mode symmetries. Strong features are usually found near 1590 cm~! and near
170 cm~! with peaks 10 to 100 times smaller in the intermediate frequency range (for
excitation with 4 = 488 or 514 nm). The high-energy structure usually consists of several
closeby peaks assigned to Ajg, Eig and Ey, mode symmetry, where neighboring carbon
atoms vibrate out of phase in axial or tangential directions [6] (in the following tangen-
tial will refer to perpendicular to the axial and radial directions). The low-frequency
mode is commonly referred to as the radial breathing mode, in which all carbon atoms
of a single tube move in phase in radial direction; the eigenvector of such a mode
should thus have the full symmetry of a single tube.

One approach for the calculation of nanotube vibrational frequencies is based on a
zone-folding method which assumes little or no change of the elastic and vibrational
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properties when rolling up a graphite sheet to a nanotube [9 to 12]. First-principles
methods have been applied to the radial breathing mode by Kiirti et al. [13] and to a
series of Raman-active modes by Sanchez-Portal et al. [14]. The results agree mostly
with those of the simple zone-folding methods showing that indeed curvature effects
are small. A property of the radial breathing mode in particular is that its predicted
frequency is proportional to the inverse of the nanotube radius, independent of the
method of calculation. It is this common practice to take the frequencies in the low-
energy region as an indication of the radius of the tubes present in a particular sample
[15 to 17].

We show here that the frequency of the mode at 171 cm™! in single-walled nanotubes
has an unusually strong pressure dependence compared to the high-energy modes. This
is attributed to a significant van-der-Waals interaction between the tubes within the
nanoropes. The implications of this work are that conclusions based on the experimen-
tal determination of the nanotube diameter via the Raman frequency of the low-energy
peak have to be reconsidered.

The single-walled carbon nanotubes used in the present study were as-grown samples
prepared by the arc-discharge method. A metallic catalyst (4.2% Ni and 1.0% Y) pro-
vided the growth of about 80% nanotube ropes in the deposit around the cathode. Each
rope contained about 20 nanotubes; for details we refer to [18]. Flakes of the nanotube
material were cut into 100 x 100 um? pieces and filled into a gasketed diamond anvil
cell; using a 4:1 methanol-ethanol mixture as pressure medium we obtained pressures
up to 10 GPa as determined by the ruby luminescence method [19]. The Raman spectra
were recorded with a triple-grating spectrometer equipped with a charge coupled de-
vice (CCD) detector. The 488 and 514 nm lines of an Ar* and Kr* laser were used for
excitation; all spectra were calibrated separately with neon or argon calibration lines;
the resolution was 3 cm™.

In Fig. 1 we display the low-energy part of the Raman spectrum of single-walled
nanotubes for various pressures. The position and width of the peak at near-atmos-
pheric pressures are typical for this type of tubes and excitation at A = 514 or 488 nm
[17]. We find that the frequency shifts linearly with a pressure coefficient of
9.7+ 0.5 cm™!/GPa. The peak is also seen to broaden noticeably and to decrease in
intensity. In Table 1 we compare the pressure coefficient of the low-energy mode with
those found for the high-energy modes near 1593 cm~! and those of graphite, which
were taken from Ref. [20, 21]. The most striking result is that the mode at 171 cm™! has
a much larger pressure dependence than the high-energy modes of the nanotubes: we
find a factor of 16 between the normalized quantities w;' dw/dp, where p is the pres-
sure. This implies that the elastic properties related to the low-energy vibration are
much softer than one would expect were it a pure radial breathing mode of the nano-
tube. A similarly enormous difference between the elastic response in the in-plane di-
rection compared to the out-of-plane direction is known from graphite when hydro-
static stress is applied (see Table 1). The factor of 50 between the pressure derivatives
is understood in terms of the much weaker bonding between graphite planes (van-der-
Waals bonding) than within the planes (covalent bonding) [20]. This difference suggests
a significant contribution of a van-der-Waals type bonding for the vibrational eigen-
mode observed at 171 cm™! in ropes of single-walled nanotubes. A similar van-der-
Waals-force determined mode exists in graphite at 127 cm~! as measured by neutron
scattering [21]. Here the mode corresponds to a rigid c-axis displacement of the gra-
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Table 1

The experimentally determined pressure and temperature coefficients of the most promi-
nent peaks in the Raman spectra of single-walled nanotubes (SWNT) in comparison
with those of graphite (Graph.). The temperature dependences of the SWNT were ob-
tained by taking the full experimental shift between 20 and 300 K and dividing it by
280 K

oy wyt dw/dp elastic modulus y —wy! do/dT
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%) Ref. [20].
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phite planes against each other. A pressure coefficient of 7 cm~!/GPa for the low-en-
ergy mode in single-walled nanotubes has been reported recently and, based on a mole-
cular-dynamics simulation, also explained by a van-der-Waals interaction [22]. The
authors of Ref. [22] note that the additional interaction increases their mode frequency
by ~14 cm~'. We analyze our results in terms of elasticity theory and arrive at a larger
frequency increase due to the van-der-Waals term. This difference is partly due to the
different experimentally determined pressure derivative and partly due to the hexago-
nal deformation of the tube cross section, which was observed in the molecular-dy-
namics calculation [22]. As we discuss later, our temperature-dependent measurements
show that a deformation of the tube cross section cannot account for the large pressure
derivative of the low-energy mode.

In order to investigate the frequency shift quantitatively, we derived the elastic prop-
erties of a single nanotube under hydrostatic pressure. We approximated the nanotube
by a hollow cylinder with isotropic elastic properties within the sheet that is rolled up;
the cylinder has a finite wall thickness and closed ends [23, 24]. In view of the similarity
of the vibrational and elastic results of ab initio calculations compared to those not
including curvature effects this approach is justified. We are thus able to determine the
strain components u; = du;/0x; in axial, tangential and radial directions using the nor-
mal coordinates r, 6, and z,

pPA [ _ R? PA [ _ Ri
”ff—‘f(” Vi) we=—p (Vg
PA _
uzz:_fv ) (1)

where A = R}/(R3 — R?) with Ry and R, are the inner and outer radius of the tube, v
is Poisson’s ratio, v© =1+v, v~ =1 —2», and E Young’s modulus. The ratio of strain
in tangential direction to that in axial direction is hence

Ugo 1+v R%
Y0 _ 4 = 2
Uy, +1—2v r? @)

Using typical values for single-walled nanotubes (radius 6.9 A, wall thickness 3.4 A and
Poisson’s ratio v = 0.14 [14]) we find ugg/u;; = 1.9.

Given that the high-energy mode has an axial eigenvector a radial mode according to
(2) should have a logarithmic pressure derivative about two times higher than the high-
energy mode. We observe, however, a striking factor of 16, thus showing that the low-
energy mode of Fig. 1 cannot be a pure radial breathing mode as is commonly as-
sumed. Our conclusion does not depend much on the value of Poisson’s ratio or
Young’s modulus.?) It can even be shown that the ratio in (2) varies only little if the
ends of the nanotube are considered open.?)

From the known properties of graphite we are able to give a quantitative estimate as
to what fraction of the 171 cm~! mode is of van-der-Waals nature. Assuming simply
additive force constants, we divide the logarithmic pressure derivative into a term origi-
nating from a pure radial breathing mode (index RBM) and a pure van-der-Waals

%) If the high-energy mode were tangential in its displacement the conclusion would hold even
stronger.
3) This follows from an analogous analysis with the corresponding boundary conditions.
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term (vdW),
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Taking the pressure derivative of the RBM term to be that of the intramolecular high-
energy graphite mode (3.0 TPa~!, Table 1) and the van-der-Waals component to corre-
spond to the pure van-der-Waals type Bj, mode of graphite (150 TPa~!), we find the
force constant of the mode at 171 cm™! to be to 37% of van-der-Waals nature. Without
van-der-Waals interaction, the mode frequency of the radial breathing mode would be
wgrem = 136 cm™!. If the intermolecular contribution were only twice as stiff, the van-
der-Waals component of the 171 cm~! mode would even increase to 75%.

The elastic properties of ropes or nanotube crystals have been calculated by Tersoff
and Ruoff [5]. For a nanotube diameter of D = 12 A they find an equilibrium lattice
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constant of L = 15.4 A, a cohesive or formation energy of 18 meV per carbon atom and
an elastic modulus for deformations in a plane perpendicular to the tube axes of
M = 34 GPa. Parallel to the tube axes the elastic modulus is very high like in graphite
when it is stressed in the in-plane directions. We can estimate the cross-sectional elastic
modulus of the nanorope by taking the Griineisen parameter of graphite perpendicular
to the graphite plane (y = 1.9) and find with d In wy/dp of the 171 cm™' mode

M= y (d l:ilpa)()

-1
> ~ 33 GPa (4)

which is in excellent agreement with the value calculated for a nanorope.

For elastic moduli larger than ~45 GPa Tersoff and Ruoff predicted a flattening of
the tubes resulting in a hexagonal-like cross section [5]. To exclude this or other types
of deformations as the cause for the large pressure coefficient of the 171 cm™! peak we
performed temperature-dependent measurements (Fig. 2). We find that the modes at
171 and 1593 cm~! have a small but significant dependence on temperature in the
range 20 to 300 K. Normalized to the absolute frequency, however, the low-energy
mode is seen to be affected again much more strongly (Table 1). In general, a change
in vibrational frequency with temperature is composed of an intrinsic term and one
which results from the volume change due to thermal expansion. We thus find that the
application of a uniform thermal stress to the nanorope produces — via thermal expan-
sion — a similar effect on both modes as does pressure in the diamond anvil cell. This
confirms that the observed changes cannot be ascribed only to deformations.

We thus conclude from the observed pressure and temperature dependences that the
strongest low-frequency Raman peak at 171 cm~! observed with 514 and 488 nm excita-
tion cannot possibly be a pure radial breathing mode of an individual nanotube. In-
stead we have estimated an at least ~40% van-der-Waals contribution to its force con-
stant; the radial eigenvector is thus substantially mixed with displacements involving
entire ropes.

One of us (P. M. R) acknowledges a research fellowship of the Deutscher Akade-
mischer Austauschdienst.
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