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Ab initio determination of the phonon deformation potentials of graphene
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We calculated withab initio methods the in-plane phonon deformation potentials of a graphite sheet. The
two-dimensional Gru¨neisen parameter is found to beg52.0 and the shear potential (SDP)50.66. The two
values agree well with experimental results on graphite and on carbon nanotubes.
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The elastic properties of graphene have become of
newed interest recently with the focus of research on car
nanotubes. These tubes, being wrapped-up graphite sh
have vibrational and elastic properties similar to those
graphite, and many analogies have been made. Experim
tally, the vibrational in-plane frequencies are similar~e.g.,
1592 cm21 for nanotubes1 and 1580 cm21 for graphite2!,
and for the purposes of calculating many physical proper
to first order the effect of curvature may be neglected.3 On
the other hand, there have beenab initio calculations of the
vibrational eigenfrequencies,4 which allowed the estimate o
curvature-induced effects on the frequencies, and of the p
non eigenvectors which gave substantial new insight into
actual vibrations of chiral tubes.5

Recently, pressure-dependent Raman experiments
rise to at first sight surprising results concerning the press
derivatives. The low-energy radial-breathing mode arou
200 cm21 exhibited a many times larger logarithmic pre
sure derivative than the high-energy modes. This was un
stood in terms of a substantial contribution of van der Wa
forces between neighboring tubes in a bundle.6,7 The high-
energy modes near 1600 cm21 also exhibited unexpecte
behavior: In semiconducting tubes under hydrostatic p
sure the pressure slopes of the three identified peaks
identical6,7 to within experimental error 3.7 TPa21 while
slopes different by 0.56 TPa21 were found in metallic
tubes.8 The absence of different pressure slopes in semic
ducting nanotubes has recently been explained by a peri
variation of the eigenvector direction forE1 andE2 modes in
chiral tubes when going around the circumference of a tu9

This effect is a property of chiral tubes and not presen
armchair or zigzag tubes.

The situation in metallic tubes—different slopes f
modes with different eigenvectors—is actually expected
a uniaxial system exposed to hydrostatic pressure. This
be nicely seen in Fig. 1 where we depicted an armchair~6,6!
and a chiral~8,4! nanotube under exaggerated hydrosta
pressure; the original hexagons of the armchair tube de
and become more similar to rectangles. This correspond
applying shear strain and hydrostatic strain simultaneousl
a graphene sheet. A similar picture holds for the chiral tu
due to the larger strain in circumferential direction compa
to the axial direction.8 Under these circumstances theE2g
modes, which are degenerate in graphite and slightly spli
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the curvature of a tube at zero pressure, should shift at r
which depend on whether their eigenvector points along
axis or the circumference of the tube. The magnitude of
splitting, however, is not accessible from experiments
graphite, because of its brittleness when a uniaxial stres
applied in the basal plane. In this report we focus on
mode splitting in a graphite sheet and calculate withab initio
methods the volume and shear phonon deformation po
tials. We show that the comparison of our results with e
perimental findings on graphite~Grüneisen parameter o
graphene! and on nanotubes~shear potential of graphene! is
favorable.

The elastic constants of solids determine how they defo
under pressure and the deformation potentials give the
responding change in vibrational frequencies. To first or
in strain the frequencies of a hexagonal solid under pres
are given by only two independent constantsK̃11 and K̃22.
They are expressed in terms of the elements of a tensor
elementsKi jkl , which describe the change of thei j -th ele-
ment of the force constant matrix with respect to thekl-th
component of the strain tensor.K11115K22225m K̃11, K1122

5m K̃12, and K12125m (K̃112K̃22)/2, wherem is the re-
duced mass of the vibrating atoms.10 The Grüneisen param-
eter and shear phonon deformation potential~SDP! are then,
respectively (v0 – eigenfrequency in equilibrium!

g52
K̃111K̃22

4v0
2

and SDP5
1

2v0
2 ~K̃112K̃22!. ~1!

A general strain in the two-dimensional graphene cause
frequency shift composed of a hydrostatic (Dvh) and a shear
term (Dvs):

8,10

FIG. 1. Schematic shear deformation of a~6,6! and an~8,4!
carbon nanotube under large hydrostatic pressure. The ratio o
cumferential to axial strain was taken to be'2. See text for details.
©2002 The American Physical Society03-1
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Dv

v0
5

Dvh

v0
6

1

2

Dvs

v0
5g2D~«xx1«yy!6

1

2
SDP~«xx2«yy!,

~2!

where«xx and«yy are the strains inx andy direction, respec-
tively. We determinedg2D and the SDP of graphene accor
ing to Eq.~2! by anab initio calculation of the phonon fre
quencies in strained and unstrained graphene. We com
our results to hydrostatic pressure experiments on graph11

which yield the Gru¨neisen parameter of graphite and to h
drostatic pressure measurements on carbon nanotubes8 which
allowed an estimate of the shear deformation potentia
graphene.

Ab initio calculations of graphene were performed usin
numerical-atomic-orbital density-functional-theory meth
implemented in theSIESTAcode.12 We worked within the
local-density-approximation as parametrized by Perdew
Zunger.13 Core electrons were replaced by nonlocal, nor
conserving pseudopotentials,14 the valence electrons wer
described by a linear combination of numerical pseu
atomic orbitals. We used a double-z, singly polarized basis
set15 with cutoff radii for thes andp orbitals of 5.95 and 7.45
a.u., respectively.k-space integration was performed ov
840k points; we found it necessary to use a higher densit
the kx and ky directions than for 3D graphite. Real spa
integrations were performed on a regular grid, the grid sp
ing corresponding to a plane wave cutoff around 350
Successful results with this method on carbon nanotu
have been reported elsewhere.4 The reader is referred to Re
12 for details of the method of calculation.

We obtained an equilibrium lattice constant ofa0
52.468 Å compared to the x-ray value on graphite
2.462 Å.16 The dynamical matrix was found by a finite
difference approach, i.e., calculating the Hellman-Feynm
forces for displaced atoms. The phonon deformation po
tials were determined by calculating the vibrational frequ
cies under hydrostatic strain and under shear strain; a ge
strain can always be decomposed into these two compon
Hydrostatic strain was applied by reducing the lattice c
stant; shear strain was introduced by multiplying the latt
vectors with the traceless tensor

S 2« 0
0 « D ,

which to first order in strain leaves the volume of the u
cell constant. The so strained unit cell was relaxed until
remaining forces were below 0.02 eV/Å and the eigenf
quencies calculated.

In equilibrium the two degenerateE2g modes where the
carbon atoms vibrate out of phase in the graphene plane
at 1624 cm21 and are equal to within 0.4 cm21. The third
optical mode, anA1g out-of-plane vibration, has a frequenc
of 837 cm21 and will not be considered further. TheE2g
equilibrium frequencies are about 3% higher than the exp
mental value2 of 1580 cm21 of graphite, a shift which was
also found inab initio calculations of carbon nanotubes12

and which is not expected to influence the calculated de
mation potentials noticeably. Figure 2 shows the depende
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of the degenerateE2g mode frequency under hydrostat
strain of the unit cell, i.e., as a function ofDa/a0. We find
that the frequency of theE2g mode increases with pressure
a rate which compares excellently with the experimental v
ues of Hanflandet al., which are also shown in the figure
When comparing with experiment one has to make a cho
of linear bulk modulus for which somewhat different valu
have been reported. The open circles in Fig. 2 were c
verted usingBa52p/(Da/a0)5(15806200) GPa, as ob-
tained from x-ray measurements of the lattice constant un
hydrostatic pressure.16 The value is larger than the one give
by Ref. 11@(1250670) GPa#, but the errors inBa are rela-
tively large. From a full potential calculation Boettger17 de-
rived a value of 1270 GPa. The experimental Gru¨neisen con-
stant was reported to be slightly pressure dependent wi
tendency to decrease with increasing pressure, a result w
we do not find in the calculation. Our value for the tw
dimensionalg2D5(1/2)d ln v/d ln a 5 2.0 equals the experi
mental one (gexp

2D 52.060.3) ~Ref. 11! if the latter is assumed

to be linear, or otherwise corresponds to the averageḡ in the
range 0 to 10 GPa~Fig. 2!. The experimental Gru¨neisen pa-
rameter, of course, is affected by the choice of bulk modu
in the same way as Fig. 2.

Having shown that our volume deformation potentialg
agrees well with experiment we now turn to the shear de
mation potential. In Fig. 3 we show the results for negat
and positive shear strains. It can be seen that the do
degenerateE2g mode splits into two with mutually perpen
dicular eigenvectors. The frequency splitting from Fig.
amounts to

Dvs

v0
51.32

~«xx2«yy!

2
, ~3!

where we have ignored a small constant term resulting fr
numerical inaccuracies. By comparison with Eq.~2! we find
SDP50.66 for the shear phonon deformation potential.

FIG. 2. Dependence of the degenerate high-energyE2g eigen-
frequency of graphene under hydrostatic pressure and the theo
cal Grüneisen parameterg2D. The experimental points of Hanflan
et al. ~Ref. 11! on graphite were converted using a bulk modulus
Ba5(15806200) GPa, the horizontal error bars reflecting the er
in Ba .
3-2
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Experimentally the shear deformation potential is usua
determined in unaxial stress measurements.10,18 Because
such measurement is unavailable for graphite in the lat
direction, a direct comparison with our calculation is n
possible. Carbon nanotubes, however, in principle, offer s
a possibility. The graphene sheet wrapped up to form a na
tube, deforms with different strain along the tube axis
compared to in the direction of the circumference. The ra
of circumferential to axial strain under hydrostatic press
('2 in Fig. 1! has been estimated by various authors w
different models~I–III ! and ranges from 1.9 to 3.7; see Tab
II in Ref. 8 for a compilation of results. In all cases, the stra
along the circumference is much larger than the axial str
and hence hydrostatic pressure on a nanotube correspon

FIG. 3. Splitting of theE2g eigenmode of graphene under pu
shear strain and the shear deformation potential~SDP!.
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a combination of volume and shear deformation of a grap
sheet. The measurements of Reichet al., together with model
I in Ref. 8 ~based on elastic constants! yields a deformation
potential of 0.45, model II~elasticity theory! 0.50, and model
III, a molecular dynamics calculation results in 0.22 for t
shear deformation potential of graphene. Since none of th
models are preferreda priori the experimental value for the
shear deformation potential of graphene is 0.460.2, which
agrees well with our value of 0.66.

In conclusion, we have calculated the volume and sh
phonon deformation potential of a graphite sheet and co
pared them to experimental values. Hydrostatic press
measurements on graphite are in excellent agreement
our calculation of the Gru¨neisen constant (g2D52.0). The
calculated shear deformation potential (SDP50.66) was
compared to values derived from hydrostatic measurem
on carbon nanotubes and agreed as well. Our approach,
culating the deformation potentials for graphene and app
ing them to the phonons of carbon nanotubes thus app
valid. In particular, metallic carbon nanotubes show nea
the full shear splitting expected fromab initio calculations
for E2g modes with eigenvectors pointing along the axis a
perpendicular to it.
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