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Single and double resonances in Raman scattering are introduced and six criteria
for the observation and identification of double resonances stated. The experimental
situation in carbon nanotubes is reviewed in view of these criteria. The evidence for
the D mode and the high-energy mode is found to be overwhelming for a double-
resonance process to take place, whereas the nature of the radial breathing-mode
Raman process remains undecided at this point. Consequences for the application of
Raman scattering to the characterization of nanotubes are discussed.
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1. Introduction

Raman scattering in carbon nanotubes has developed into a method of choice in the
investigation of their physical properties and their characterization. The study of
electronic resonances in the Raman spectra, a method which has been used exten-
sively, for example, in work on semiconductors (Cardona 1982), gives us a wealth of
information about the electronic band structure of a material. This is also true for
the Raman work on carbon nanotubes, where resonance studies have moved into the
focus of research.

Traditional Raman studies of carbon nanotubes focus on the radial breathing mode
(RBM), a mode where all atoms vibrate in phase in the radial direction (Dresselhaus
et al. 1995). Its frequency, as can easily be shown (Jishi et al. 1993), depends inversely
on the diameter of the tube and is thus a straightforward tool for finding the diameter
of an isolated nanotube. One consequence arising specifically from Raman resonances
is that the RBM only appears strong enough in the spectra when the incident (or
scattered) laser energy coincides with an electronic transition in the nanotube. Jorio
et al. (2001) have used this property to map the joint electronic density of states
in a collection of isolated nanotubes by analysing the Raman intensity of the RBM
in Stokes and anti-Stokes scattering as a function of laser energy. The underlying
assumption when doing so is that a single resonance prevails in the RBM Raman
scattering process.

The two other energy regions of most interest in the first-order Raman spectra
when studying electronic resonances are the D mode (around 1200 cm−1) and the
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Figure 1. Schematic of (a) a non-resonant process, (b) a single-resonance (Stokes) process, and
(c) higher-order resonance (Stokes) process in Raman scattering. Actually shown in (c) is a
triple-resonance process; in double-resonance with elastic defect scattering another virtual state
with an energy equal to one of the phonon eigenstates is involved before recombination. (Repro-
duced with permission from Reich et al. (2004).)

high-energy mode (HEM) (at 1590 cm−1). An important point for the understanding
of the Raman spectra is that they originate from double resonances (Maultzsch
et al. 2001, 2002a, 2003). While this fact is generally accepted for the D mode,
there is still some debate over the origin of the HEM (see, for example, Jorio et al.
2003). The experimental evidence, however, is overwhelming that the HEM—at least
predominantly—is a double-resonance process as well.

We will present the concept of single and double resonances in Raman scattering
in general and give a consistent interpretation of the experimental results found on
nanotubes in terms of double resonances. An explicit discussion of where the single
resonance picture fails, and where its strengths are, can be found in the book by
Reich et al. (2004) and other articles in this issue, respectively.

2. Resonances in first-order Raman scattering

Resonant Raman scattering is characterized by a strong enhancement of the detected
intensity when real transitions are involved in the Raman process. The conceptual
difference between non-resonant, single-resonance and double-resonance Raman pro-
cesses is best illustrated in the energy schematic of figure 1. Each solid (horizontal)
line indicates an eigenstate of the system to be studied. A non-resonant process (a)
does not involve the excited eigenstates; the incoming photon is absorbed and places
the excited electron into a virtual state (grey dashed line, transition 1), a phonon is
emitted (transition 2) and the electron is now in a second virtual (lower) state. From
there it can recombine (transition 3) and the Raman shifted photon is emitted. In
total six different time orders contribute to this process, of which we show only one.

A single resonance occurs if one of the intermediate states of the excited electron
is an eigenstate of the system (see figure 1b). Here the incoming light is chosen such
that the electron is excited into the upper eigenstate of the system (transition 1), the
phonon emission puts it into a virtual state (transition 2), and recombination into
the ground state occurs from there (transition 3). The Raman enhancement when
matching a real state is seen from the expression for single-resonance scattering K2f,10
of the process in figure 1b (Martin & Falicov 1983):

K2f,10 =
∑

a,b

〈ω2,f,i|HeR,ρ|0, f, b〉〈0, f, b|Hep|0, 0, a〉〈0, 0, a|HeR,σ|ω1, 0, i〉
(E1 − Ee

ai − iγ)(E1 − �ω − Ee
bi − iγ)

, (2.1)
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Figure 2. A resonance of the Raman active phonon with the superconducting energy gap in
YBa2Cu3O7. (a) Spectra of the five A1g phonons slightly above the superconducting transition
temperature (upper curve) and at temperatures much below Tc (lower curve). Note the strong
increase in intensity of the mode at 340 cm−1. (b) Temperature dependence of the Raman
efficiency, which is the Raman intensity normalized by [ω4

s(n(ωph, T ) + 1)]. The enhancement of
the Raman efficiency is independent of the excitation energy and occurs below Tc, as indicated
by the arrows.

⇀

EL and
⇀

ES refer to the polarization of the incident laser and the scattered light,
respectively. They are both perpendicular to the c-axis of the cup. (After Friedl et al. (1991).)

where |ω1, 0, i〉 denotes the state with an incoming photon of energy E1 = �ω1, the
ground state 0 of the phonon (no phonon excited), and the ground electronic state
i; the other states are labelled accordingly. The initial and final electronic states are
assumed to be the same; the sum is over all possible intermediate electronic states a
and b. The final phononic state is denoted by f . The Ee

ai are the energy differences
between the electronic states a and i; the lifetime of the various excited states γ is
taken to be the same.

Figure 1b corresponds to the incoming photon with energy E1 matching the energy
of the electronic state Ee

ai in equation (2.1). The matrix element would be seen to
diverge if it were not for the (imaginary) lifetime part. As the incoming light is in
resonance, the situation in figure 1b is referred to as incoming (single) resonance.
One speaks of an outgoing resonance when the photon emitted in the recombination
process matches an eigenenergy of the system, i.e. E1 − �ωph = Ee

bi. The Raman
intensity is given by the square of K2f,10, leading to the strong enhancements in
the spectra when the incoming (or outgoing) photon energies are matched to the
eigenenergies of the investigated system. It is obvious that by using appropriate
energies of tunable lasers the real electronic states of a material can be studied
systematically. The authoritative work on solid-state systems using this technique
has been performed by Cardona (1982).

An example where the emitted phonon (rather than incoming or outgoing pho-
ton) matches a transition between eigenstates in a system was shown by Friedl et al .
(1991) in a temperature-dependent study of the high-temperature superconductor
YBa2Cu3O7 (see figure 2). Contrary to what is normally expected in temperature-
dependent Raman spectra, in this system, the intensity of the Raman active phonon
at ωph ≈ 340 cm−1 is greatly enhanced below the superconducting transition temper-
ature Tc. This enhancement is roughly independent of excitation energy: see figure 2b,
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Figure 3. Different resonant processes in systems with linear electronic bands: a good approxima-
tion for graphite or metallic nanotubes. (a) Single resonance; only the incoming light is resonant
(i → a), the possibly emitted phonons and the recombination are not. (b) Double resonance; the
incident photon (i → a) and the emitted phonon (a → b) make transitions between eigenstates
of the system; the elastic (defect) scattering (b → c) and the recombination (c → i) do not.
(After Reich et al. (2004).)

which excludes an incoming or outgoing (photon) resonance. Instead, one of the terms
with different time order has a denominator proportional to [2∆(T ) − �ωph], which
comes to resonance when the superconducting gap 2∆ develops as a function of tem-
perature below Tc. The phonon at ωph ≈ 340 cm−1 matches best the gap energy
and thus the Raman efficiency of this phonon is enhanced at low temperatures (for
details, see Friedl et al. 1990, 1991).

Apart from the energy conservation (�ω1 = �ω2 ±�ωph) we must consider momen-
tum conservation in the Raman processes. For the first-order Raman term (equa-
tion (2.1)) this implies that

q1 = q2 ± qph (2.2)

must be fulfilled, leading to the usual Raman rule that only phonons with very small
momentum (qph ≈ 0, Γ -point phonons) are observed when exciting with visible
light because of its small momentum. This restriction can be circumvented by using
photons with large momenta, comparable with that of the Brillouin zone of the
solid. Recently, Maultzsch et al. (2004) used X-rays as the light source for first-order
Raman scattering, allowing the momenta of the incoming and scattered photon to be
chosen in such a way that the entire in-plane optical-phonon dispersion of graphite
could be measured, following the initial X-ray work on diamond and GaN (Ruf et
al. 2001; Schwoerer-Böhning et al. 1998).

Graphite and metallic carbon nanotubes have the specific and common property
that their electronic bands in the visible region are strongly dispersive; their dis-
persion near the Fermi surface is in fact nearly linear, and the schematic in figure 3
describes the possible transitions in the Raman process in graphite and metallic nano-
tubes. In figure 3a we show the resonant incoming photon absorption as a vertical
arrow. Note that that transition is resonant regardless of the photon energy. Every
photon can make such a resonance because of the monotonically increasing energy of
the electronic bands. The emitted phonons (grey dashed arrows) correspond to var-
ious possible non-resonant carrier scattering processes. The recombination between
eigenstates occurs again such that equation (2.2) is fulfilled, i.e. only a q ≈ 0 phonon
can occur in a single-resonance process. In general, as long as the phonon emission is
not tied to another transition of an electron or hole to an eigenstate of the system, one
speaks of a single-resonance Raman process. Compared with non-resonance Raman

Phil. Trans. R. Soc. Lond. A (2004)



Resonant Raman spectroscopy of nanotubes 2341

spectra (figure 1a), the only essential difference in single-resonance spectra (figures
1b and 3a) is the large intensity enhancement according to the vanishing denomina-
tor in equation (2.1). Often this enhancement is needed to make the excitation at all
detectable in the Raman spectra.

3. Resonances in higher-order Raman scattering

In analogy to single-resonance scattering one speaks of a double resonance, when two
of the transitions involve excited eigenstates of the investigated system, and a triple
resonance when three transitions are real (figure 1c). These multiple resonances have
also been observed in solids before, but it is clear that the photon and phonon energies
involved must both match quite well the electronic system for a multiple resonance
to occur. Experimentally, a double resonance was achieved for some specific settings
of parameters, for example, by tuning the eigenenergies in a magnetic field or by
applying pressure (see Gubarev et al. 1991; Sapega et al. 1992).

With the many possible non-resonantly emitted phonons in figure 3a, there exists
also the possibility of scattering the electron from eigenstate a to another eigen-
state, b say, on the other (linear) band (figure 3b), adding a second resonance to the
Raman process. Note that this process is only allowed for a particular combination of
energy and momentum of the phonon that scatters the electron. The specific energy–
momentum relation of the phonon is, however, its dispersion relation, and it is in
this way that phonons with a general quasi-momentum q, far from the Γ point, come
into play in double-resonance processes. Of course, momentum has to be conserved in
double resonance as well; the recombination must occur (for visible-light excitation)
near the point in k-space where the initial absorption occurred. One way of scatter-
ing the electron back to ki is to scatter it elastically off a defect, the other possibility
is to scatter it with another phonon. The former process is indicated in figure 3b
(process b → c runs horizontally, i.e. elastically); it is non-resonant, as c is not an
eigenstate of the system, and recombination occurs from there, conserving (quasi-)
momentum. The latter process involves the emission of another phonon, leading to
a Raman signal at twice the phonon energy (second-order Raman scattering).

These processes are of second order and the Raman matrix element given by
one more matrix element and one more resonant denominator than in first-order
scattering (Martin & Falicov 1983; Thomsen & Reich 2000):

K2f,10 =
∑

a,b,c

MeR,ρMe–defMepMeR,σ

(E1 − Ee
ai − iγ)(E1 − �ωph − Ee

bi − iγ)(E1 − �ωph − Ee
ci − iγ)

, (3.1)

where we have abbreviated the matrix elements in the numerator by Mi. Specifically,
Me–def refers to the elastic interaction of the defect and the scattered electron. Not
much is known about this interaction and the assumption that it is elastic and
symmetry conserving for the scattered carrier is the simplest but not necessarily
the only one. By Occam’s razor we believe it to be the correct one. In analogy
to the single-resonance term, the Raman intensity is strongly enhanced when the
denominator goes to zero, i.e. when transitions between eigenstates take place in the
process. As usual, all of these processes can occur in a different time order and for
the hole instead of the electron. A full description takes all time orders and both
carrier types into account.
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The fascinating point about the double-resonance process is that a different incom-
ing photon energy (say, i′ → a′) leads to a different excited electron. To fulfil the sec-
ond resonant transition a phonon of different momentum and energy is now required.
Specifically, a larger incoming photon energy requires a larger phonon momentum
and—depending on the phonon dispersion—involves a higher or lower phonon energy.
Scanning the incident photon energy thus corresponds to scanning the phonon energy
in k-space. We will show this explicitly later, in figure 9, where an experimental
energy scan is compared with a calculated wave vector scan of an isolated nano-
tube. The (approximate) phonon wave vectors are given and (in general not linearly)
related to the incoming photon energy. Neglecting the phonon energy when com-
pared with the much larger laser energy, the double-resonance phonon wave vector
may be approximated by q = 2ki. This relationship is often used for quick evalua-
tion of the double-resonance conditions for different laser energies. For linear bands
equation (3.1) can be evaluated analytically and a linear relation between incoming
photon energy and phonon momentum may be found (see Thomsen & Reich 2000).
Based on our double-resonance Raman interpretation, Saito et al. (2002) re-evaluated
a selection of literature data and plotted them onto the phonon-dispersion curves of
graphite. For a full analysis see Reich & Thomsen (2004). The phonon dispersion of
an isolated nanotube was measured and evaluated using this technique by Maultzsch
et al. (2003) (see figure 9).

We show here an example where double resonance was suggested by Mowbray et
al. (1990) to be an explanation of an additional —i.e. not Raman allowed—mode in
the Raman spectra of Ge reported by Gaisler et al. (1987). The additional mode,
in energy below the Γ -point phonon of Ge, is seen in figure 4a as a small shoulder.
Characteristic for all double-resonance processes is the excitation-energy dependence
of the energy of the elementary excitation studied. It is clearly seen in figure 4a that
the small peak shifts in energy with respect to the Γ -point phonon at 320 cm−1.
Surprisingly, this shift depends on the surface of the Ge sample studied (figure 4b).
The frequency separation from the Γ -point phonon increases approximately linearly,
with the extrapolation to zero-shift intersecting the excitation-energy axis at E1, the
lowest direct gap of Ge (figure 4b). The three surfaces show different slopes in this
plot.

The idea of the double-resonance process in Ge is that as soon as the excitation
energy is large enough to make a direct transition there is the additional possibility of
scattering an electron resonantly with a phonon across the band minimum, i.e. into
an eigenstate (see figure 4c). Before recombination, the electron is scattered back
into a virtual state, from where it can recombine with the excited hole. The slope
of the excitation-energy dependence is given by the effective masses of the carriers
in Ge, which is highly anisotropic near the critical point (for details, see Mowbray
et al. 1990). The double-resonance process is a convolution of the phonon dispersion
with the electronic dispersion, because the excited carrier is scattered to a second
eigenstate of the system. In case of a known phonon dispersion, this process can thus
be used to extract information about the electronic dispersion. In the case of Ge,
Mowbray et al. (1990) derived the effective masses for the three principal directions
in Ge. We see from this example that it is by no means necessary to have linear
bands for a double resonance to occur; any strong dispersion suffices.

Another characteristic of a double resonance is the step before recombination.
Generally it is sufficient for the twice-resonantly scattered carrier to make a transition
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Figure 4. Double-resonance Raman scattering in Ge. The small shoulder in (a) and (b) has the
characteristics of a double resonance: firstly, an excitation energy dependent shift; secondly, a
shift which depends on the electronic structure (here surface) of the investigated material, and
a symmetry-breaking element is involved to conserve quasi-momentum (here again the surface).
In (c) we show a schematic of the double resonance. (After Mowbray et al. (1990).)

into a virtual state in order to conserve quasi-momentum in the entire process. In
the case of Ge the scattering happens through the symmetry-breaking surface; the
absorption depth of Ge at 2.5 eV is only ca. 160 Å, and the carriers ‘feel’ the surface.
In graphite or carbon nanotubes this process is mediated by a defect or a second
phonon (in second-order scattering). We focus now on double resonances in carbon
nanotubes; for a review of double resonances in graphite, see Reich & Thomsen
(2004).

4. Double resonances in carbon nanotubes

While we restrict ourselves here to resonances in carbon nanotubes we keep in mind
that historically the excitation-energy dependent shift, which is the characteristic
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feature of a double-resonance process, was first found in graphite by Vidano et al.
(1981) and—only much later—explained by double-resonance scattering (Thomsen
& Reich 2000). Given that the electronic band structures of carbon nanotubes and
graphite are related through wrapping up a graphene sheet, it seems natural to look
for the corresponding double-resonance process in nanotubes as well. This analogy
is even more obvious as the unusual Raman feature of a strong excitation-energy
dependent shift of one of the modes in graphite occurs with similar magnitude in the
first- and second-order spectra of single-walled and multi-wall carbon nanotubes as
well (Kastner et al. 1994; Thomsen 2000).

We summarize here the characteristics of a double resonance in solids; from what
we know they always appear in a double-resonance process, although each individ-
ual characteristic cannot always be determined sufficiently accurately to conclude
reliably the nature of the process from it alone:

(1) Dispersive electronic and phonon bands and

(2) a symmetry-breaking scattering process to conserve quasi-momentum (or a
higher-order scattering with two or more phonons), resulting in

(3) an excitation-energy dependence of the Raman peak position,

(4) not necessarily simple Lorentzian line shapes,

(5) a comparatively large Raman intensity, and

(6) frequency and possible line shape differences in Stokes and anti-Stokes spectra.

Characteristics (1) and (2) are conditions for the double resonance to occur, the
others ((3)—(6)) are experimental features from which a double resonance can be
identified in Raman spectra. Each one of these experimental features may also have
a different origin, for example, the non-Lorentzian line shape may result from inter-
actions of the excitation with a continuum (Brown et al. 2001; Fano 1961; Jiang et
al. 2002), or may be the result of two or more unresolved individual Lorentz peaks.
The Raman intensity is generally difficult to determine reliably in absolute terms,
and in order to quantify it relative to a second peak in the spectrum one has to be
sure of the double or single-resonance nature of the second peak. All these features
have been studied extensively in carbon nanotubes, and we will discuss them in what
follows. They have been confirmed for the high-energy mode and the D mode, while
we feel that the extent to which the RBM is double resonant is still unresolved.
We discuss the three energy regions in order of decreasing frequency in the Raman
spectrum.

Apart from the double-resonance process itself, the density of states may enhance
the observed Raman intensity significantly. Generally speaking, the singularities in
the electronic density of states of carbon nanotubes contribute most to the sum in
equation (3.1). In the simplest view, one may say that only nanotubes where the
incoming or outgoing light matches the singularity in the electronic joint density of
states (to within some line width γ) are seen in the Raman spectra. When considering
only single resonances this is an acceptable approximation—an approach taken, for
example, by Jorio et al. (2001) when characterizing the joint density of states of an
isolated nanotube over a small energy range. In a double-resonance process, however,
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Figure 5. (a) Peak frequencies in the excitation energy range 1.7–2.7 eV. All peaks have an exci-
tation-energy dependence, due to the double-resonance process. The jump in absolute phonon
energies and slopes at 2.3 eV is due to a higher electronic band coming into double resonance, as
explained by Maultzsch et al. (2002a). (b) Raman spectra of carbon nanotubes excited at three
different laser energies. Clearly seen is the downshift of the second largest peak for increasing
phonon energy. (Reproduced with permission from Thomsen (2003).)

the two simultaneously occurring resonances play a dominant role in determining the
Raman intensity, which may not be ignored in the analysis. Note that in the sum
of equation (3.1) the density-of-states effects are always explicitly included; they do
not need separate consideration as is sometimes claimed (Kürti et al. 2002).

(a) The energy shift and the defect-scattering mechanism

Let us take a look at the features of a typical Raman spectrum of carbon nanotubes
in figure 5. The dispersive nature of electron and phonon bands in nanotubes leads to
shifts in the peak energies as shown in (a). The largest peak has the smallest energy
dependence; those of the smaller satellites are larger. The shifts are negative and
positive; both sign and magnitude depend on the details of the dispersions involved.
Similar shifts in the high-energy mode were found by Jiang et al. (2003) although they
have not been identified as due to double resonances. Criteria (1) and (3) are thus
fulfilled. The symmetry-breaking process (2) responsible for scattering the excited
carrier back (in k-space) to where it was excited ((b) → (c) in figure 1b) was identified
in graphite by Tuinstra & Koenig (1970) (see also Wang et al. 1990). They found
defects responsible for the amplitude of the D mode peak, and it is reasonable to
assume the same for carbon nanotubes. Direct evidence for the intensity dependence
of the high-energy mode (and the D mode) in multi-wall nanotubes was given in a
defect-concentration dependent study by Maultzsch et al. (2002c). They showed that
both high-energy and D mode intensity are proportional to the number of defects
(given by the concentration of a dopant atom in the rods used for nanotube prepara-
tion). In an experiment where nanotubes were exposed to γ-irradiation, Skákalová et
al. (2003) found qualitatively similar results. Other researchers have found a varying
intensity of the high-energy mode when going along the tube with high spatial res-
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Figure 6. Comparison of the high-energy mode in theory and experiment. (a) The line shape
and the splitting of the two components of the high-energy mode are nicely reproduced in the
calculation. (b) The experimental frequencies—as with the case for the theoretical ones—are
seen to exhibit positive and negative energy shifts as a function of excitation energy. While the
highest mode agrees quantitatively, the two lower ones shift more strongly than observed. This
may be due to the fact that we selected a specific tube (15, 6) in the calculation while averaging
over a sample distribution in the experiment. The frequencies of the graphite Γ -point phonon
are shown for comparison (triangles). They do not exhibit any shift to within the accuracy of
the experiment and must be assumed to originate from a single-resonance process. See text for
details. (Reproduced with permission from Maultzsch et al. (2002a).)

olution (Jiang et al. 2003), consistent with a Raman intensity dependence on defect
concentration. We thus consider criterion 2 to be fulfilled for a double-resonance
process.

(b) The Raman line shape

Next, it is obvious that the line shape of the high-energy mode in figure 5b is not a
simple Lorentzian (criterion 4). This fact has been known from the very beginning of
nanotube research but has largely been ignored as an indicator for double-resonance
scattering. The challenge of actually calculating the specific line shape from a given
electronic band structure and a phonon dispersion was met by Maultzsch et al.
(2002a), and the results are shown in figure 6a, where both the shift and the line
shape of the high-energy Raman spectrum are calculated. These, and the work on
metallic nanotubes by Jiang et al. (2002), are, to our knowledge, the only calculations
of the line shape of the high-energy mode that are available. We find in agreement
with the double resonance that: the highest peak frequency is above the Γ -point
phonon frequency of graphite; the high-energy peak is split into two or more peaks
with an intensity ratio quite close to that of the experiment; there are negative
and positive slopes in the excitation-energy dependence of the peak frequencies.
Quantitatively, the calculated values agree or are somewhat larger than what is
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Figure 7. Phonon eigenvectors giving rise to the high-energy modes (a) and (b) and to the D mode
(c). (a) Fully symmetric axial displacement (arrows) with wave vector q �= 0 in a zig-zag tube. At
the Γ point, this mode has A1g symmetry. The wavelength of the vibration, which can be found
from the nodes in the displacement magnitude, is indicated. (b) Fully symmetric circumferential
vibration in an armchair tube (A1g at the Γ point). (c) Vibration with q = 4π/3a0 (λ = 1.5a0),
where a0 is the lattice constant of graphite and of the armchair tube. It corresponds to the A′

1

mode at the K point of graphite and gives rise (with q near 4π/3a0) to the D mode.

observed experimentally, see figure 6b, a fact which we have attributed to the presence
of many tubes in the sample measured in figure 6a, whereas only a single tube of
chirality (15, 6) was taken into consideration in the calculation.

In isolated nanotubes the high-energy mode line width is indeed smaller, as was
shown first by Duesberg et al. (2000) and corresponds much more to the calculation
in figure 6.

The calculation in figure 6 includes only the two fully symmetric high-energy
phonon branches of the (15, 6) tube. Because of the double resonance, more than two
peaks appear in the lower curves in figure 6. Thus the calculation is fully consistent
with selection rules, which allow only A1(g) modes for light with parallel polarization
to the tube axis. The eigenvectors giving rise to the high-energy modes are shown
schematically in figure 7a, b. They are non-Γ point modes according to the double
resonance (see the indicated wavelength). In zig-zag tubes, the axial vibration is
Raman allowed (figure 7a), whereas in armchair tubes the circumferential vibration
contributes to the high-energy peak (figure 7b). In chiral nanotubes, both vibrations
are Raman active; the eigenvectors can mix and lose their purely longitudinal or
transverse character (Reich et al. 2001b). Figure 7c shows the displacement with
wavelength λ = 1.5a0 corresponding to the A′

1 phonon at the K point in graphite.
The corresponding displacements with λ ≈ 1.5a0 result in the D mode (see also § 6).

(c) The Raman intensity

Criterion 5 for a double resonance considers the comparatively large Raman peak
intensity. Qualitatively speaking, the Raman signal in nanotubes is quite intense;
single isolated nanotubes, as mentioned, can be detected without much difficulty
in a standard Raman set-up. However, it is difficult to give a serious estimate of
the Raman intensity, since experimentally it is convoluted with the detector and
spectrometer sensitivities as well as the aperture and quality of the Raman collection
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Figure 8. Calculated double-resonance (a) anti-Stokes and (b) Stokes Raman line shapes of a
(16, 4) nanotube excited at �ωL = 2.0 eV. It can easily be seen that both shape and inten-
sity maxima are significantly different for the two processes compared with a single-resonance
assumption, where they would scale by at most a simple factor. The vertical grey lines are drawn
at ±1590 cm−1 and emphasize the difference in the maxima of Stokes and anti-Stokes peaks.
(Reproduced with permission from Reich et al. (2004).)

lens. Theoretically, we see from equation (3.1) that the matrix elements M of the
numerator are needed for evaluation. The electron–phonon and electron–radiation
matrix elements have been calculated by Machón et al. (2004a). This has not been
done for the interaction of carriers with defects in carbon nanotubes, and the matrix
element Me–def is unknown. Still, it is possible to compare the amplitude of the
equivalent single-resonance process of equation (2.1) and state whether it has the
right order of magnitude or is much too small. The latter would indicate that a
higher-order process, such as a double resonance, is needed to explain the absolute
magnitude of the Raman signal. A full analysis of this point is forthcoming.

(d) Stokes and anti-Stokes spectra

The difference in shape and frequency maxima in Stokes and anti-Stokes spectra
was noticed in graphite by Tan et al. (1998) and is discussed by Reich & Thomsen
(2004) (see also Reich et al. 2004; Zólyomi & Kürti 2002). We note here simply that
the difference in Stokes and anti-Stokes spectra that (from a standard Raman point-
of-view) should not exist is a consequence without further assumptions from the
double-resonance process (Thomsen & Reich 2000). This can be seen easily from the
schematic in figure 3. In the anti-Stokes process corresponding to figure 3b, a phonon
is absorbed and the electron energy increased by the phonon energy (instead of being
decreased, as in figure 3b). To scatter the electron into the band, the electron must
obtain a larger k and hence a different phonon (one with larger wave vector) and, if
dispersive, a different ωph is involved. As a consequence, the Raman spectrum looks
different in Stokes and anti-Stokes. In figure 8, the calculated Stokes and anti-Stokes
spectra of the high-energy mode of a (16, 4) nanotube are shown. They display the
characteristic differences in shape and maxima known from experiment (Brown et al.
2000). The differences in Stokes and anti-Stokes spectra constitute the sixth criterion
for a double-resonance Raman process (for more details, see, for example, Reich et
al. 2004).
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Figure 9. Excitation-energy dependence of the high-energy mode of an isolated carbon nanotube
in double resonance. (a) Experimental values; the lines are guides to the eye. (b) Calculated
excitation-energy dependence of the phonon frequencies of an (8, 8) nanotube. The approximate
phonon wave vector of the double-resonance phonon is given. Note that the wave vector scale is
not linear. (After Maultzsch et al. (2003).)

(e) Two optical-phonon dispersions in a carbon nanotube

All of the characteristic ingredients (1)–(6) for a double resonance are thus more or
less fulfilled in carbon nanotubes, and it should be possible to calculate reliably the
excitation-energy dependent double-resonance Raman spectrum. Given the disper-
sion of the electronic bands of nanotubes involved in the absorption process (Reich
et al. 2002) and the phonon dispersions (Maultzsch et al. 2002b), one can calcu-
late the Raman spectrum from the sum in equation (3.1) and compare it with the
experimentally found frequencies.

Such a comparison was performed by Maultzsch et al. (2003) and is shown in
figure 9: the experiment on an isolated nanotube in part (a), the model calculation
for an (8, 8) metallic nanotube in (b). We will discuss the specifics of the metallic
band structure of the (8, 8) tube later, and state here the excellent agreement between
theory and experiment. In particular, of the two high-energy modes, the upper one
first decreases and then increases in energy for increasing photon excitation energy.
The lower branch increases continuously in the range investigated. In an achiral
(armchair or zig-zag) nanotube the corresponding branches have different symmetry,
and hence they may cross as indicated by the dashed lines (guides to the eye). In a
general chiral tube the two branches have the same symmetry and they must anti-
cross (full lines), which appears to describe the data slightly better. Moreover, in
achiral tubes phonons from one of these branches are forbidden by symmetry.

Note that this experiment was performed on an isolated nanotube such that the
single-resonance view sometimes claimed to be dominant in the high-energy Raman
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Figure 10. Flow chart summarizing the essential arguments distinguishing (a) the dou-
ble-resonance process from (b) the single-resonance process. The excitation-dependent spectra
on individual nanotubes presented by Maultzsch et al. (2003) (see figures 9 and 14) show that the
double resonance is dominant in the high-energy spectra of carbon nanotubes. (After Thomsen
(2003).)

process—namely that a different tube is selected out of an ensemble by a single res-
onance for each excitation energy—no longer holds. We summarize the arguments
given for double resonance in an individual tube in the flow chart of figure 10 (Thom-
sen 2003). We feel that, together with the convincing experimental results, they prove
beyond reasonable doubt that the high-energy mode is due to double resonance.

(f ) The electronic dispersion in relation to the double resonance

Now we ask which is the underlying electronic band structure of carbon nanotubes
where we observe double resonance. In figure 11 we show the electronic band structure
of an armchair nanotube with the characteristic Fermi level crossing of the electronic
bands at ±2π/3a of the Brillouin zone. In graphite this point corresponds to the
K-point. A and B mark two allowed optical transitions at the same photon energy
between two different sets of bands. The transition between the two crossing bands is
not allowed by symmetry. Transition A is thus the lowest transition in this particular
band structure. Two possible double-resonance scattering processes are indicated in
the figure, one with a large (compared with the Brillouin zone) wave vector (dashed
arrow), and one with a smaller wave vector (say one-third of the Brillouin zone).
The former process corresponds to the large-wave vector scattering involved in the
D mode, while the latter shows up in the spectra as the high-energy mode. The
second transition (B) has a similar but slightly larger D mode wave vector (not
shown), but the high-energy wave vector is comparatively much smaller than for
transition A, and the phonon involved is thus much closer to the Γ point than that
involved in transition A. A small change in excitation energy can cause an upshift in
one component of the high-energy mode while the other one experiences a downshift
at the same time: depending on whether the phonon q is larger or smaller than the
maximum in the overbending phonon dispersion, an increase in phonon wave vector
is going to cause a frequency downshift or an upshift, respectively. We saw both of
these features in figure 6.
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Figure 11. (a) Electronic band structure of an armchair carbon nanotube. The double-resonance
process for the high-energy mode (HEM) is indicated by solid arrows following the absorbing
transitions (A) or (B), the dashed line shows the resonant transition in case of the D mode. The
defect-scattering process and the recombination are not shown. Transition B is into a higher
band than transition A; correspondingly, the wave vector involved in the double resonance is
smaller for B than for A and a different phonon energy expected for a dispersive phonon band.
(b) Band structure of a zig-zag nanotube. The high-energy mode is doubly resonant here as well.
The transition corresponding to the D mode cannot take place in the so-called R = 1 nanotubes.
See text for details. (After Maultzsch et al. (2001).)

In summary, we find the criteria for a double-resonance process of the high-energy
mode fulfilled, most with rigour (criteria (1)–(4) and (6)), and one (5) qualitatively
so far only. We have not mentioned a further important point, which is the sym-
metry of the high-energy mode. Experimentally it was shown to be mostly of A1
symmetry (Duesberg et al. 2000; Reich et al. 2001a; Thomsen et al. 1999). The
double-resonance process as described here involves only A1(g) phonons (see also fig-
ure 7) and is thus fully consistent with experiment. On the other hand, all phonon
assignments based on single resonance are confined to the Γ point (by equation (2.2))
and necessarily include branches that are not of A1(g) symmetry (Rao et al. 1997).
The significant presence of such modes can, however, be ruled out from experiment.
There is thus convincing evidence that the high-energy mode is doubly resonant in
carbon nanotubes.

5. ‘Metallic’ versus ‘semiconducting’ spectra

There is an interesting point in the shape of the Raman spectra in isolated tubes when
they are excited with different excitation energies, as shown in figure 12. Going from
�ωL = 2.05 to 2.41 eV the line shape changes from what is generally considered to be
a more ‘metallic’ line shape to one that is considered more ‘semiconducting’ (Pimenta
et al. 1998; Rafailov et al. 2000). This notion was introduced because the ‘metallic’
line shape occurred for excitation energies where metallic nanotubes with typical
diameter have their first singularity in the joint density of states. Several attempts
that link the broader line shape and lower peak frequency to Fano resonances of the
phonon with the metallic continuum have been published (see, for example, Brown
et al. 2001; Jiang et al. 2002).
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Figure 12. For increasing excitation energy the line shape of the isolated nanotube investigated
in (a) appears to change continuously from ‘metallic’ looking to ‘semiconducting’ looking. (b) A
schematic showing how this change in appearance may come about in a single (metallic) tube
through double resonance and the larger phonon wave vectors involved with larger transition
energies. (c) Calculated dispersion curves of a (3, 3) nanotube. (d) Calculated Raman spectrum
of a (3, 3) nanotube for two different excitation energies, corresponding to the two transitions
shown schematically in (b). The solid line resembles more the ‘metallic’ (Peierls softened) line
shape of the high-energy mode, the dashed line that of a ‘semiconducting’ tube, although the
(3, 3) nanotube is in fact metallic. (Reproduced with permission from Maultzsch et al. (2003),
Thomsen (2003) and Maultzsch et al. (2002d).)

Apparently this argument falls into the simple single-resonance view (see also fig-
ure 10): different laser energies select different tubes from an ensemble of nanotubes;
for some laser energies metallic nanotubes are present more in the Raman spectra
than semiconducting ones; for other laser energies the reverse is true. We discuss
this point explicitly because of its relevance to classifying nanotubes as metallic or
semiconducting, which becomes important in all of the electronic applications of car-
bon nanotubes. The measurements on isolated nanotubes shown in figure 12 in the
ensemble view should be a more or less linear superposition of a ‘metallic’ and a
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‘semiconducting’ spectrum, with the ‘semiconducting’ one becoming stronger when
going further from the metallic resonance. Instead, however, we find experimentally
a nearly continuous transition from one line shape and one frequency to the other.

From a double-resonance point-of-view this may be well understood (see the
schematic in figure 12b). For a particular metallic nanotube the band shown cor-
responds to the lowest one allowed to participate in an optical transition (see also
figure 11). The phonon wave vectors involved in the double resonance are thus small
and correspond to frequencies near the Γ point. These frequencies, in metallic nano-
tubes, have been calculated by Dubay et al. (2002) to soften significantly from the
graphite value due to a Peierls-like mechanism. For a similar calculation, see fig-
ure 12c, from Maultzsch et al. (2002d). For excitation energies close to the minimum
of the allowed band the small-q phonons with the softened energies contribute most
to the double-resonance Raman spectra. This is seen in figure 12d (solid line), where
we calculated the spectrum for a (3, 3) nanotube with the Peierls-softened mode. For
an excitation energy much larger than the band minimum in figure 12b we find the
high-energy mode to have a more ‘semiconducting’ appearance (figure 12d dashed
line): the phonon wave vector involved in the double resonance is large and the corre-
sponding phonon frequency closer to the graphite frequency (Maultzsch et al. 2002d).
Note that the actual tube measured in figure 12a is not a (3, 3) tube; such small nano-
tubes grow only under special conditions (Wang et al. 2000). The calculation serves
merely to demonstrate the effect of different excitation energies on metallic tubes.
The softening of the Γ -point frequencies in metallic tubes and the Fano resonance
have the same origin: the strong coupling of the phonon to the electronic system. A
calculation of the Fano line shape requires non-Γ -point phonon wave vectors (Kempa
2002), consistent with the picture of double-resonance Raman scattering. As a con-
sequence of the double resonance, a ‘semiconducting’ Raman spectrum can be due
either to a semiconducting tube or to a metallic tube excited above the minimum
of the bands involved in the optical transitions. A ‘metallic’ spectrum indicates a
metallic tube.

6. The D mode

The D mode in carbon nanotubes as proposed by Maultzsch et al. (2001) is accepted
as being a double-resonance process; this is probably because it has a similarly large
excitation-energy dependent shift as the D mode in graphite (at ca. 50 cm−1 eV−1).
What is not always appreciated is that there is a selection rule that goes with the
double resonance in carbon nanotubes. Namely, only nanotubes with an integer value
of (n1 −n2)/3n (so-called R = 3 tubes) contribute to the D mode spectrum because
of the particular electronic structure of those tubes. In other words, only those tubes
fulfil appropriately criterion 1 and symmetry-imposed selection rules for the involve-
ment of a D mode phonon. Other tubes (those with R = 1) can also have a double-
resonance process, but the phonons involved are close to the Γ point and thus are
in the energy region of the high-energy mode. There is thus an ambiguity in the
interpretation of first-order Raman spectra of isolated carbon nanotubes as regards
the amplitude of the D mode peak: the absence (or small amplitude) of a peak in the
D mode region could indicate a low defect concentration or the presence of an R = 1
nanotube under the microscope. In order to get reliable information about the defect
concentration, it is necessary to include the intensity of the second-order mode, which
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Figure 13. Calculated D mode Raman spectra for an (11, 11) nanotube for various excitation
energies (a) (on an extended scale, inset) and a comparison of the experimental frequencies
with the calculated ones; open symbols, (10, 10); closed symbols, (8, 8) (b, upper). Experimental
frequency shifts with the average slopes of the two fitted components are given next to the curves
(b, lower). Note the non-Lorentzian line shape in both the calculation and the experiment (b,
inset). (Reproduced with permission from Maultzsch et al. (2001).)

is due to two-phonon processes and hence to first approximation independently of
defect concentration (Maultzsch et al. 2002c).

We show in figure 13 the calculated D mode peaks for an (11, 11) nanotube for
various excitation energies compared with a calculation based on double resonance
from Maultzsch et al. (2001). It is nicely seen how the phonon shifts rapidly to higher
energies, how its calculated line shape is not a single Lorentzian in both theory and
experiment (see inset of figure 13b (lower)), and how its intensity decreases with
increasing distance from the van Hove singularity. The experimental Raman intensity
is of the order of that of the high-energy mode and thus also large (the D mode is
detectable in individual nanotubes (Duesberg et al. 2000)). The expected differences
in Stokes and anti-Stokes spectra were reported by Brown et al. (2000), and thus
the experimental result fulfils all criteria put forward in order for double resonance
to be the dominant process in D mode scattering. There have been several further
investigations of the D mode based on double resonance; we refer to the literature
for those studies (Kürti et al. 2002).

We mention here also the measurements of the D mode double resonance in isolated
nanotubes. According to the flow chart in figure 10 the excitation-energy dependent
shift should be present in isolated tubes just the same as in ensembles of tubes which
is indeed the case. In figure 14 we show the D mode as derived from measurements
of isolated nanotubes by Maultzsch et al. (2003). They show consistently the same
numerical shift as known for the D mode of carbon nanotubes. For the D mode
there is thus little doubt that its appearance in the Raman spectra is due to double-
resonance scattering.

7. The RBM

We now turn briefly to the RBM. All interpretations of its frequency in the spectra
have been based on the assumption that it is a Γ -mode frequency. In particular, the
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Figure 15. The double resonance may cause an apparent shift between the experimentally deter-
mined ωRBM (solid circle) and the actual Γ -point frequency (intersection of the phonon disper-
sion with the ordinate at k = 0) needed in equation (7.1). (After Thomsen et al. (2003).)

well-known diameter–frequency relationship (Jishi et al. 1993; Kürti et al. 1998)

ωRBM =
C

d
(7.1)

is based on knowing the Γ -mode frequency, and not the frequency at a point some-
where in the Brillouin zone. We show the possible effect of double resonance on
ωRBM in figure 15; it is clear that for a typical double-resonance wave vector the
frequency determined in a Raman experiment could deviate from the Γ -point fre-
quency. Depending on the actual dispersion and the magnitude of the phonon wave
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vector this could amount to somewhere between 1 and 10 cm−1. The dispersion in
figure 15 was calculated by Dobardžić et al. (2003); the frequency shift for a phonon
wave vector of about one-third of the Brillouin zone leads to a shift of 10 cm−1, as
indicated by the opposing double arrows. In an attempt to use equation (7.1) for
finding the diameter d of an investigated tube, this would yield a diameter too small
by ca. 5% for a typical nanotube. In view of the ca. 5% uncertainty in the constant C
(for a discussion of this point, see Reich et al. (2004)), this may not seem an excessive
additional error; it should be kept in mind, though, that without correcting for the
apparent shift due to double resonance one obtains systematically too small diame-
ters from equation (7.1). Criterion 1 for the double resonance is thus fulfilled in case
of the RBM.

What about the other characteristics of a double resonance? Criterion 3 has not
yet been sufficiently systematically studied, to our knowledge, while criterion 2 could
be fulfilled the same way as for the D mode and the high-energy mode. The line shape
of the RBM (criterion 4) does not appear to deviate much from a Lorentzian. The
line width is, however, much narrower than that of the high-energy mode, so that we
cannot be sure of its Lorentzian nature. As for the absolute intensity of the RBM, the
procedure outlined above to calculate the Raman intensity in single resonance and
compare it with experiment was performed by Machón et al. (2004b). They found
that the Raman intensity as calculated is one to two orders of magnitude smaller
than those observed experimentally. In spite of the error associated with such a
comparison, this can be taken as an indication that criterion 5 for a double resonance
is fulfilled. And, finally, the Stokes–anti-Stokes difference in shape (criterion 6) is
small because of the small phonon energy of the RBM.

To summarize, the RBM has not been proven to originate from a double-resonance
process. There are indications, though, that it might, and further experiments on iso-
lated nanotubes are needed to clarify this point, which will have notable consequences
for the application of equation (7.1) to determine nanotube diameters.

8. Summary

We have presented an introduction to single and double resonances in the Raman
spectroscopy of solids. We established six criteria which allow the identification of a
double-resonance process over a single-resonance one. We then applied these criteria
to the experimental results obtained for ensembles and isolated carbon nanotubes
for the high-energy mode, the D mode and the RBM. We concluded that both the
D mode and the high-energy mode are predominantly double-resonance processes,
whereas there are only indications that the RBM is a double-resonance process. More
work is needed to confirm this latter point.
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Nature 408, 50.
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