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Zone folding represents a powerful tool for investigating the spectra of quasi particles of carbon nan-
otubes (CNTs) on the basis of the corresponding spectrum in graphene. We introduce the zone fold-
ing scheme by considering the electronic band structure of CNTs and thus investigate the electronic
properties of CNTs depending on their chirality.

1 Introduction

The first numerical predictions for the electronic
band structure of carbon nanotubes (CNTs) were
published in 1992 [1, 2] only a few months after
the discovery of CNTs [3]. Hamada et. al. dis-
cussed firstly in Ref. [2] the existence of metal-
lic and semiconducting CNTs and found within
a heuristic picture that 1/3 of all possible tubes
are metallic which depends only on the chiral-
ity of the corresponding CNT. The used heuristic
picture corresponds to the zone folding approxi-
mation which can be applied to approximate the
spectrum of any quasi particle in CNTs on the ba-
sis of the corresponding spectrum in graphene.

This scheme has proven to be useful as the di-
rect numerical calculation of physical properties
of general CNTs represents a hard problem, due
to the fact that the unit cell of a common chiral
CNT contains usually several hundreds of carbon
atoms.

2 Going from Graphene to Nanotubes in Real
and k-space

In real space, graphene shows a honeycomb-like
lattice structure which can be described with a
two atomic unit cell with lattice basis vectors a1

and a2 where ‖ai‖ = a0 = 2.461Å and ^(a1,a2) =
60°, i. e. a1 and a2 are not orthogonal.

Figure 1: Image of the first Brillouin zone of
graphene with indicated reciprocal lattice ba-
sis vectors k1 and k2 and points of high sym-
metry, K and M. [4]

The k-space of graphene can be easily intro-
duced by using that the reciprocal lattice ba-
sis vectors k1 and k2 are defined by the rela-
tion ai k j = 2πδi j which leads to, written in
the basis {a1,a2}, k1 = 1

a2
0

(8π
3 ,−4π

3

)
a and k2 =

1
a2

0

(−4π
3 , 8π

3

)
a where (. . . , . . .)a emphasises the cho-

sen basis ((x1, x2)a ≡ x1a1 + x2a2). Drawing the
first Brillouin zone yields a hexagon as shown in
Fig. 1 with the K- and M-point as points of high
symmetry with K = 1

3 (k1 −k2). It is useful in sev-
eral cases to work with the inverted relation be-
tween the ai and k j which reads a1 = a2

0
4π (2k1+k2)

and a2 = a2
0

4π (k1 +2k2).
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As a CNT can be described by rolling up a strip
of graphene, its unit cell can be constructed on
basis of the real space of graphene. The basic
structure of the tube is given by the chiral vector

c = (n1,n2)a

along which the tube is rolled up, i. e. ‖c‖ corre-
sponds to the circumference of the tube and ‖c‖

π

to its diameter. Tubes with chiral indices (n,n)
are denoted as armchair tubes, CNTs with indices
(n,0) as zig-zag tubes, where both kinds represent
tubes with high symmetry and are therefore the
favored examples for numerical calculations.

The lattice vector of the CNT is given by the
smallest graphene lattice vector perpendicular to
c, which can be found to be

a =
(
−2n2 +n1

p
,

2n1 +n2

p

)
a

,

with p as the greatest common divisor (gcd) of
2n2 +n1 and 2n1 +n2; note that it is convenient
to split p into p = nR with n gcd of n1 and n2 and
R = 3 if 3 divides n1−n2

n or R = 1 else. Comparing
the area of the unit cell of the tube and graphene
yields the number of graphene unit cells in one
tube unit cell q = 2

nR (n2
1 +n2

2 +n1n2). In Fig. 2 the
unit cell of the (2,1) tube is shown as example.

c

a

a1

a2

Figure 2: Unit cell of the (2,1) tube (green area)
with indicated graphene basis lattice vectors
a1 and a2. Projecting the unit cell of the (2,1)
tube on the c axis yields q = 14 projected ori-
gins of graphene unit cells which yields the
smallest physical real space period in c direc-
tion to be ‖c‖

q .

CNTs are one dimensional lattices as only
along the a axis a translational invariance ex-
ists, which yields that their reciprocal space is
also one dimensional and can be introduced via
ak|| = 2π, which yields k|| = 2π

‖a‖ â, where the first

Brillouin zone is given by the interval
]
− π

‖a‖ , π
‖a‖

]
.

Nevertheless, as the tube corresponds to a rolled
up graphene sheet, periodic boundary conditions
have to be imposed to any real-space function liv-
ing on the tube. Due to the finite circumference
of the tube, the momentum representation of any
such function is given by a Fourier series with
discrete modes k⊥ as e i k⊥c = 1, which directly
yields k⊥,m = 2π

‖c‖mĉ with m ∈ Z. The number
of modes is given by the smallest physical real-
space period in ĉ-direction which can be found
to be ‖c‖

q by projecting the whole tube unit cell
on the c-axis as illustrated in Fig. 2 which yields
q equidistant projections of the q contained ori-
gins of graphene unit cells. Therefore, the q = m
mode corresponds to the q = 0 mode and, as q
is even, we find m = −q/2 + 1,−q/2 + 2, . . . , q/2.
Note that we could also have used that 2π

‖c‖q ĉ =
2n1+n2

nR k1 + 2n2+n1
nR k2 which is obviously the small-

est possible reciprocal graphene lattice vector in
the corresponding direction, as nR was defined
as the gcd of 2n1 +n2 and 2n2 +n1, which yields
with the periodicity of the graphene lattice again
the existence of maximal q different modes.

k2

k1

k||

k⊥

Figure 3: Connection between graphene and the
(6,6) tube in reciprocal space. The Γ-point of
the CNT is indicated by a dot on every allowed
k-state line. Note that the area of the rectangle
spanned by the allowed lines (including the
not drawn m=-q mode) agrees with the area of
the first Brillouin zone of graphene.

The connection between graphene and a CNT
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in k-space is therefore given by drawing all k-
states of the tube in the reciprocal space of
graphene by using k|| and k⊥, where one always
has to remember that the bare reciprocal space
of the tube is only one dimensional and cor-
responds to the interval mentioned above; this
yields especially that the Γ-point of the tube ap-
pears on every allowed tube k-state line as shown
in Fig. 3.

3 Zone Folding

Using the connection between CNTs and
graphene and the spectrum of a certain quasi
particle, like a lattice electron or a phonon, in
graphene yields the possibility to approximate
the spectrum of the corresponding quasi particle
in the tube by slicing the band structure in
k-space with the allowed k-states, as illustrated
in Fig. 4, and reading out the dispersion along
these lines.

Figure 4: Illustration of the slicing of the
graphene band structure with the allowed
k-states of a CNT. [5]

The terminology of zone folding refers here in
general to the spreading of allowed tube k-states
over the considered band structure (zone unfold-
ing) and the corresponding collection of the dis-
persion along the allowed lines (zone folding). By
applying the zone folding approximation, we re-
duce the problem of calculating the band struc-
ture of every tube by its own to the determination
of the allowed k-states for a certain CNT and once
to the calculation of the graphene band structure.

This is, as mentioned, a general procedure,
which can be applied for different quasi particles.
In the following we want to examine the elec-
tronic band structure of CNTs based on the zone
folding approximation; an additional similar dis-

cussion for the phonon spectrum and a general
comprehensive introduction to the zone folding
scheme can be found for example in Ref. [5].

4 Electronic Band Structure of Nanotubes

In order to apply the zone folding approxima-
tion for a general tube, the graphene band struc-
ture is needed. For a qualitative discussion of the
electronic properties of a CNT, whether a tube is
metallic or semiconducting, the tight binding de-
scription of graphene within the nearest neigh-
bor approximation is sufficient as it captures the
correct behavior of the electronic band structure
around the Fermi energy, the crossing of the π

bands at the K point. Defining the energy scale

by EF = 0 yields for graphene E nn
TB(k) ∝ ±

{
3 +

2cos(ka1)+2cos(ka2)+2cos
[

k(a1 −a2)
]}

[4].

Restricting E nn
TB(k) only to allowed k-states

of the CNT by writing k = kt + k⊥,m where
kt = kk|| with k ∈ ]−1

2 , 1
2

]
yields as gen-

eral expression for the allowed k-states k =[
−n2k

q + (2n1+n2)m
nRq

]
k1 +

[
n1k

q + (2n2+n1)m
nRq

]
k2 and

therefore E nn
TB(k,m) ∝±[

3+ck,m(2n1 +n2,−n2)+
ck,m(2n2 + n1,n1) + ck,m(n1 − n2,−n1 − n2)

]
with

ck,m(x, y) = 2cos
(

2πmx
nRq + 2πk y

q

)
as closed expres-

sion for the electronic band structure of a gen-
eral CNT in the nearest neighbor tight binding
approximation which is also discussed in Ref. [6].
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Figure 5: Band structure of the (12,0) and (13,0)
tube obtained from the closed expression for
E nn

TB. The shown bands agree well with the re-
sults obtained in Ref. [2]. In accordance with
Fig. 6 the (12,0) tube is metallic and the (13,0)
tube semiconducting.

Plotting for example the band structure of the
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Figure 6: Contour plot of the electronic band structure of graphene (in arbitrary units) above the
Fermi level in nearest neighbour tight binding approximation sliced by the allowed k-states for the
(12,0) and (13,0) tube. Note that for the (12,0) tube the K point belongs to the allowed states, for
the (13,0) tube it is forbidden.

(12,0) and (13,0) tube, as they were investigated
by Hamada et. al. in Ref. [2], in an usual E-k-
diagram and a contour plot in Fig. 5 and 6 reveals
that the (12,0) tube is metallic, as two bands cross
at the Fermi level, and the (13,0) tube is semicon-
ducting; inserting the correct prefactors for E nn

TB of
about 2.7eV would lead to a gap of about 0.7eV.

The contour plot reveals the reason for this be-
havior, for the (12,0) tube the K-point of graphene
is allowed whereas for the (13,0) tube the K-point
is forbidden. We conclude that as graphene, at
half filling, has only a 0-dimensional Fermi sur-
face, CNTs can be either metallic or semiconduct-
ing which depends on the inclusion or exclusion
of the Fermi point, the point of crossing bands at
the Fermi level, in the allowed tube k-states.

In order to relate this to the chiral indices n1

and n2, we can use the zone folding approxima-
tion and assume that the Fermi point is located
at the K-point. Using the quantization condi-
tion yields that the K-point is among the allowed
states if ∃m ∈Z : Kc = 2πm. Inserting the expres-
sion for K leads to the condition 2πm = 2π

3 (n1 −
n2), so that 3 has to divide n1−n2 in order to have
a general CNT to be metallic. From this condi-
tion we easily conclude that all armchair tubes
are expected to be metallic, where zig-zag tubes
are only metallic if 3 divides n which agrees with
the finding of Hamada et. al. for the (12,0) and
(13,0) tube. The same result can be obtained by
considering the real space image of the graphene
wave function at the K point, which is shown in
Fig. 7, where this wave function can only live on
a certain tube if it respects the periodic bound-
ary conditions, which is again fulfilled for all arm-

chair tubes but only for those zig-zag tubes where
n is a multiple of 3.

Figure 7: Plot of the real space image of the elec-
tron wave function of graphene for an electron
with wave vector at the K-point (by courtesy of
Prof. Dr. Reich).

5 Limits of the Zone Folding Approximation

Using the zone folding scheme yields in gen-
eral two different kinds of approximations, one
within the scheme and one due to its applica-
tion. Within the zone folding scheme we approx-
imated the electronic band structure of graphene
by using only nearest neighbour tight binding re-
sults. However this does not affect the qualita-
tive discussion made above, as the Fermi points
are well described in this approximation. Never-
theless if we are interested in concrete numbers,
in order to calculate for example optical transi-
tions, more involved techniques like a 3rd near-
est neighbour tight binding model or first prin-
ciple calculations are required to determine the
graphene band structure, see for example Ref. [4].

4



Certainly more important, as not that easy con-
trollable, is the approximation done due to the
application of zone folding. Using this scheme
neglects all curvature effects, the change of bond
lengths along the c-direction and the rehybridiza-
tion due to the non-orthogonality of the pz and
s, px , and py orbitals. Where the rehybridiza-
tion in general only affects higher states above the
Fermi level [4], the change in bond-length shifts
the Fermi point in k-space. Therefore in tubes,
which are metallic in the zone folding approxi-
mation, secondary gaps in the order of 10meV to
100meV can open and the tube becomes quasi
metallic, which is for example discussed in Ref.
[4, 7]; in fact only in case of armchair tubes the
shift of the Fermi point happens to be along an al-
lowed k-line so that only armchair CNTs are truly
metallic.

The electronic properties of CNTs are for ex-
ample accessible by scanning tunneling spec-
troscopy which can probe the density of states
(DOS) around the Fermi level via the normalized
conductance directly which shows for semicon-
ducting tubes a vanishing DOS in the band gap
[4, 8]. Even secondary gaps are detectable by this
procedure and for instance their diameter depen-
dence can be compared to theoretical predictions
[9].

zone folding ab initio

Figure 8: Comparison of the band structure of
small diameter tubes, the (5,0) and (4,2) tube,
obtained from zone folding and ab initio cal-
culations. The zone folding scheme fails in
describing the corresponding band structures
as it predicts both tubes to be direct semicon-
ductors where the (5,0) tube turns out to be
metallic and the (4,2) tube a small gapped in-
direct semiconductor [10].

These curvature effects naturally increase with
decreasing diameter of the tube. In case of 4Å-

diameter tubes we clearly see in Fig. 8 that a
zone-folding description fails completely in even
capturing the qualitative properties of the corre-
sponding tubes. A further discussion of small di-
ameter CNTs can be found in Ref. [10]. Neverthe-
less for larger tubes with diameters of about 1nm,
the zone folding approximation provides reason-
able results.

6 Summary

By considering the zone folding scheme, we have
implemented on basis of the example of the elec-
tronic band structure a powerful and efficient
tool for calculating the spectrum of quasi parti-
cles in CNTs. Within the zone folding approxima-
tion we obtained that 1/3 of all possible CNTs are
metallic or, if we take into account curvature ef-
fects, quasi metallic.
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