From Graphene to Nanotubes Zone Folding and Quantum Confinement at the Example of the Electronic Band Structure

Christian Krumnow

Freie Universität Berlin

May 26, 2011

Outline

1 Introduction

2 Going from Graphene to Nanotubes in k-space

- Real and k-space of Graphene
- Real and k-space of Nanotubes

3 Electronic Band Structure of Nanotubes

- Zone Folding Approximation
- Limits of Zone Folding

4 Summary

Introduction

Motivation

interesting electronic behavior

about 1/3 of possible nanotubes are (quasi) metallic depending on geometric structure

Hamada et al: Phys Rev Lett 68 1579 (1992)

high degree of complexity

- ∞ -number of realizable tubes
- large number of atoms in unit cell possible \rightarrow efficient tool needed

Reich et al: Carbon Nanotubes, Wiley (2004)

Outline

1 Introduction

2 Going from Graphene to Nanotubes in k-space

- Real and k-space of Graphene
- Real and k-space of Nanotubes

3 Electronic Band Structure of Nanotubes

- Zone Folding Approximation
- Limits of Zone Folding

4 Summary

Real and k-space of Graphene

real space

- 2 atomic unit cell
- lattice basis vectors **a**₁ and **a**₂ with ||**a**₁|| = ||**a**₂|| = a₀ and a₀ = 2.461 Å

Reich et al: Carbon Nanotubes, Wiley (2004)

k-space

- reciprocal lattice basis vectors k₁ and k₂
- *K*-point at $\frac{1}{3}(\mathbf{k}_1 \mathbf{k}_2), (\frac{1}{3}\mathbf{k}_1 + \frac{2}{3}\mathbf{k}_2)$ and $(\frac{2}{3}\mathbf{k}_1 + \frac{1}{3}\mathbf{k}_2)$

Reich et al: Phys Rev B 66 035412 (2002)

Reich et al: Carbon Nanotubes, Wiley (2004)

Unitcell of Nanotubes in Real Space

where

n greatest common divisor of n₁, n₂
R = $\begin{cases} 3 \text{ if } 3 \mid \frac{n_1 - n_2}{n} \\ 1 \text{ else} \end{cases}$

Reich et al: Carbon Nanotubes, Wiley (2004)

- diameter $d = \frac{\|\mathbf{c}\|}{\pi} = \frac{a_0}{\pi} \sqrt{n_1^2 + n_2^2 + n_1 n_2} \frac{\sqrt{n_1^2 + n_2^2}}{T_{\text{homsen et al: Light Scat in Sol IX 108 (2007)}}$
- # graphene unit cells: $q = \frac{\|\mathbf{a}\| \|\mathbf{c}\|}{a_0 \sqrt{3}/2} = \frac{2}{nR} (n_1^2 + n_2^2 + n_1 n_2)$

Quantum Confinement and Boundary Conditions

 k_2

along tube axis

one dimensional reciprocal lattice

•
$$k_t \in \left] - \frac{\|\mathbf{k}_{\parallel}\|}{2}, \frac{\|\mathbf{k}_{\parallel}\|}{2} \right]$$
 with $\mathbf{k}_{\parallel} = \frac{2\pi}{\|\mathbf{a}\|} \hat{\mathbf{a}}$

perpendicular to tube axis

due to rolled up structure, periodic boundary conditions are exact

finite scale yields quantization of allowed k-values $e^{i\mathbf{k}_{\perp}\mathbf{c}} = 1$ yields $\mathbf{k}_{\perp,m} = \frac{2\pi}{\|\mathbf{c}\|} m\hat{\mathbf{c}}$

Number of Modes

what is the maximal value of the quantum number m?

- projecting tube unitcell on c-axis ⇒ q equidistant intersections
- *m* is limited by $e^{i\mathbf{k}_{\perp}\alpha\hat{\mathbf{c}}} = e^{i(\mathbf{k}_{\perp}+\Delta\mathbf{k}_{\perp})\alpha\hat{\mathbf{c}}}$
- smallest physical period in real space given by $\alpha = \frac{\|\mathbf{c}\|}{q}$ $\Rightarrow \|\Delta \mathbf{k}_{\perp}\| = \frac{2\pi}{\|\mathbf{c}\|/q}$

$$m = -\frac{q}{2} + 1, -\frac{q}{2} + 2, \dots, 0 \dots, \frac{q}{2}$$

Examples

(10,10) tube (12,8) tube $d = \frac{a_0}{\pi}\sqrt{10^2 + 10^2 + 10^2}$ $d = \frac{a_0}{\pi} \sqrt{12^2 + 8^2 + 12 \cdot 8}$ $= 1.357 \, \text{nm}$ $= 1.366 \, \text{nm}$ $q = \frac{2}{10.3}(10^2 + 10^2 + 10^2) = 20$ $q = \frac{2}{41}(12^2 + 8^2 + 12 \cdot 8) = 152$ k_1 AHHHHHHH k_1 HHHHHHHHH \vec{k}_2 k_2

tube models created with: Blinder: Carbon Nanotubes, Wolfram Demonstrations Project

Outline

1 Introduction

- 2 Going from Graphene to Nanotubes in k-space
 - Real and k-space of Graphene
 - Real and k-space of Nanotubes

3 Electronic Band Structure of Nanotubes

- Zone Folding Approximation
- Limits of Zone Folding

4 Summary

Zone Folding

calculate allowed k-states for corresponding tube

approximate band structure of carbon nanotubes by using the band structure of graphene along allowed lines in k-space

Samsonidze et al: J Nanosci Nanotech 3 (2003)

Zone Folding

calculate allowed k-states for corresponding tube

approximate band structure of carbon nanotubes by using the band structure of graphene along allowed lines in k-space

why?

Samsonidze et al: J Nanosci Nanotech 3 (2003)

Zone Folding

calculate allowed k-states for corresponding tube

approximate band structure of carbon nanotubes by using the band structure of graphene along allowed lines in k-space

why?

 because it is simple! involves only once one calculation for graphene for all tubes

Samsonidze et al: J Nanosci Nanotech 3 (2003)

Band Structure of Graphene

- analytic expressions by tight binding model
- p_z and p_z*-orbitals cross at K-point

Reich et al: Phys Rev B 66 035412 (2002)

Construction

band structure of graphene

Construction

allowed k-states [(6,6) tube]

Construction

allowed k-states [(6,6) tube]

band structure of nanotube

Closed Expression

Closed Expression

Closed Expression

Closed Expression

Closed Expression

Examples: (12,0) and (13,0)

Hamada et al: Phys Rev Lett 68 1579 (1992)

Electronic Classification

metallic tubes

from quantization condition: *K*-point allowed if $2\pi z = \mathbf{K}\mathbf{c} = \frac{1}{3}(\mathbf{k}_1 - \mathbf{k}_2)\mathbf{c} = \frac{2\pi}{3}(n_1 - n_2)$

nanotube band structure contains graphene K point if $3 \mid (n_1 - n_2)$

semiconducting tubes

 all other 2/3 possible tubes are gapped

by courtesy of Prof. Dr. Reich

Mintmire, White: Phys Rev Lett 81 2506 (1998)

Approximations within Zone Folding

band structure of graphene

 approximation of graphene band structure directly implies deviations of obtained tube band structures

Wave vector k,

Reich et al: Phys Rev B 66 035412 (2002)

Approximations due to Zone Folding: Curvature

geometric effects

- changes bond length in c-direction
- shifts point of crossing bands \rightarrow opens secondary gaps

rehybridization

- affects higher bands
- mixing of σ and π bands due to nonorthogonality

0.08

0.06

0.00

ΔE(eV) 0.04

Α

4 Å tubes

zone folding

ab initio

Zhaoming: University of Hong Kong, PhD thesis (2004)

Outline

1 Introduction

2 Going from Graphene to Nanotubes in k-space

- Real and k-space of Graphene
- Real and k-space of Nanotubes

3 Electronic Band Structure of Nanotubes

- Zone Folding Approximation
- Limits of Zone Folding

4 Summary

Summary

Summary and Outlook

summary

knowledge about graphene allows approximations for nanotubes

Summary

Summary and Outlook

summary

knowledge about graphene allows approximations for nanotubes

in zone folding

1/3 of possible tubes are metallic

Summary and Outlook

summary

knowledge about graphene allows approximations for nanotubes

in zone folding

1/3 of possible tubes are metallic

in reality

1/3 of possible tubes are metallic or small gapped quasi metallic

Summary

Summary and Outlook

summary

knowledge about graphene allows approximations for nanotubes

in zone folding

1/3 of possible tubes are metallic

in reality

1/3 of possible tubes are metallic or small gapped quasi metallic

outlook

 bundles break symmetry and e.g. open pseudogaps

Ouyang et al: Science 292 702 (2001)

Summary

Summary and Outlook

summary

knowledge about graphene allows approximations for nanotubes

in zone folding

1/3 of possible tubes are metallic

in reality

1/3 of possible tubes are metallic or small gapped quasi metallic

outlook

 bundles break symmetry and e.g. open pseudogaps

Ouyang et al: Science 292 702 (2001)

- multiwalled nanotubes
- correlations and Luttinger liquid
- applications?