

Vibrational Properties and Raman Spectroscopy- Radial Breathing and High Energy Phonon Modes of Nanotubes and Graphene

Presented for the selected topics in physics seminar by Pierce Munnelly 09/05/11 Supervised by Sebastian Heeg and Benjamin Hatting

Image adapted by Benjamin Hatting from M.S. Dresselhaus et al., "Characterizing Graphite, Graphene and Carbon Nanotubes by Raman Spectroscopy"

Outline

- Graphite/graphene phonons and zone-folding
- Anisotropic polarizability and selection rules
- Low energy mode (RBM)
- High energy modes (TO and LO)
- Raman Spectroscopy and Resonance
- Example Kataura plot
- Summary

Raman Spectrum of Graphite

Phonon Band Structure of NTs

C. Thomsen and S. Reich, "Raman Scattering in Carbon Nanotubes" (2007) and D. Sanchez-Portal et al., "Ab Initio Structural, Elastic and Vibrational Properties of Carbon Nanotubes"

Phonon Band Structure of NTs

C. Thomsen and S. Reich, "Raman Scattering in Carbon Nanotubes" (2007) and D. Sanchez-Portal et al., "Ab Initio Structural, Elastic and Vibrational Properties of Carbon Nanotubes"

Antenna Effect

 $\begin{array}{c} \mathbf{Z} \perp \mathbf{z} \\ \mathbf{Z} \rightarrow \\ \mathbf{E} \parallel \mathbf{z} \end{array}$

NT's in many orientations

NT's in parallel: Darker area indicates absorption

Further reduction of number of visible modes:

$$m_{ph}=0$$

Radial Breathing Mode

100-400 cm⁻¹

1100-1600 cm⁻¹

Raman Spectroscopy

- Excitation to a real or virtual state
- Inelastic scattering by phonon
- Relaxation by emission

•
$$\hbar \omega_1 = \hbar \omega_2 \pm \hbar \omega_{ph}$$

• $k_1 = k_2 \pm q_{ph}$ $m_1 = m_2 + m_{ph}$

Raman Spectroscopy

Spectrometer

Resonant Raman Scattering

- Optical transitions are vertical
- Resonant transitions separated by phonon energy
- Transition energies vary with chirality

Raman Spectrum

Kataura Plot

HEM in metallic vs. semiconducting tubes

Summary

- Zonefolding for graphite predicts many phonon branches in Nanotubes
- Raman active modes = a tiny fraction (3)
- Resonant Raman demonstrates RBM and HEM
- Useful for identification, orientation, doping and is non-destructive

Thanks to Sebastian Heeg, Benjamin Hatting and Professor Reich for their time.

