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Chapter 6

Perturbative methods

We have encountered a number of exactly solvable problems so far: The quan-
tum harmonic oscillator, and the hydrogen atom. Unfortunately, the list of
exactly solvable problems is actually shorted than one might wish. Usually,
there is an algebraic structure in a problem that can be exploited that renders
problems exactly solvable. Many problems in physics do not have this form.
Then one has to have a general strategy of how to proceed. In this chapter,
we will have a first look at approximate methods. In the center of this will be
standard perturbation theory. We will look at this in some detail. The general
mindset is that if one perturbs a known system a little bit, then one should ex-
pect that the solution still looks quite similar to the original one. And indeed,
this intuition is true to a large extent (unless one is really in the situation of
quantum many-body theory).

6.1 Time independent perturbation theory

Consider a Hamiltonian H(?) that has a “known” solution: The eigenvalues
and eigenvectors are assumed to be known. Let us assume that such eigenvec-
tors exist (and disregard mathematical fine print in case that one has a contin-
uous spectrum). So we can write the eigenvalue decomposition as

V=3 BT W) (6.1)
J

We are now interested to grasp properties of
H(\) =HO + v, (6.2)

for some real A and a peturbing Hamiltonian V, in case that AV is “small”.
More precisely, what we want to estimate is the eigenvalue decomposition of
H,

ZE ) () (@5 (V)] (6.3)
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in terms of the eigenvalue decomposition of H ().

6.1.1 Non-degenerate situation

We first consider the simpler case of a non-degenerate spectrum of H(?). We
assume that for A € [0, A], so “for a sufficiently small perturbation”, H O 4 \V
has non-degenerate eigenvalues E;(\) associated with eigenvectors |;()\)),
each of them with an analytic dependence on A in the above interval. To find
the eigenvectors and eigenvalues, we obviously need so solve

HN)[i () = Ej(A)|1h;(A))- (6.4)
If A € [0, A], then we can make use of a power series expansion in A and write

[ee]

BN = Y B, 6.5)
n=0

) = S A, (6.6)
n=0

The first of the two series is referred to as Rayleigh-Schroedinger series. Inserting
this series into the eigenvalue expression (6.4) gives

(HO +31) Y A0) = SES 3w, (67)
n=0 k=0 n=0

Reordering the series and shifting the indices, we get

0 _ 50,©
(HO = B)[w;”)

Y <H(°>|¢§”>> + VI Y) - ZE§"’>|1/}§”"")>> =0. (68
k=0

n=1

This can only be true for all A if

(H® —EM [y = o, (6.9)
(HO — By = (B~ v + 3 BP0 ), (610)
k=2
forn = 1,2,.... What is more, we still have the freedom to pick the normal-
ization of the vectors |w§")> forn =1,2,.... Itis most convenient to take
(5 (V) = 1 (611)

which means that .
@iy = 0. 6.12)
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The contributions of all other orders are hence orthogonal to the one of zeroth
order. Egs. (6.9, 6.10, 6.12) gives a solution to the problem at hand. The scalar

product of Eq. (6.10) with |’(/)j(-0)> together with Eq. (6.12) gives the perturbed
energy values

(n) _ 1,,(0) (n—1)
B = (4 |V, )- (6.13)

But we can go further than that. We can also compute the scalar product of Eq.
(6.10) with W(O)> with [ # j: Using H(O)Wl(o ) = E(0 W(O)> we get

. 1 . n—1 .
W) = 5 <<w§0>|V|w§ D=2 B ’”>)- ©14)
- L k=1

(0)
E;

Using the fact that the eigenvectors of H(®) are complete, from Egs. (6.12, 6.14)
we find that

iy = 3

(0) (0)
= B B

n—1
<<w§0’|V|w§"‘”> - E§’“><w;§0>wﬁ”"“)>> ). (6.15)

k=1

X

This is the desired expression. We can simplify the notation by introducing the

operator
|w (i
Sj = ; E<°> (6.16)
j
This gives
n—1
[5) = 5, <V|w§”‘”> -3 |¢§""“’>> : (6.17)
k=1

Using this expression, we can determine all perturbed eigenvectors in an itera-
tive fashion. Usually, only the first orders of this expansion are computed. We
summarize these expressions in a box.

First terms in non-degenerate perturbation theory:

BV = @O, (6.18)

WOV i)
Yy = Sjv|¢§o)>22ﬁ|wl 2 (6.19)
= BB

J
(V™)
EP = @vsvip) = e

© _ (0
7 By B

(6.20)
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In order to compute corrections of first order, therefore, we merely need the
matrix elements

{W Oy 1,5 =01,...}, (6.21)

from these we can then compute the corrections in the eigenvalues as well
as the eigenvectors. The energy shift is obtained from expectation values of
the perturbing Hamiltonian in the unperturbed eigenvectors. The new eigen-
vectors are suitable linear combinations of the unperturbed eigenvectors. For
higher orders, one can iteratively proceed as described above. Usually, in small
orders, this procedure gives rise to a very good approximation of the perturbed
problem.
A number of remarks are in order at this point.

e When considering the ground state energy, the correction EJ@) is always
non-positive.

e When judging the strength of a perturbation, rather not A alone is rele-
vant, but rather A||V'||, where ||.|| is the operator norm of V, so its largest
eigenvalue.

o In general, it is far from clear that the above series are convergent in any
interval [0, A] with A > 0. One should not be too worried about this,
however. Often, the expressions for the energy eigenvalues can be ana-
lytically continued to the complex A plane cut along the negative real axis,
and one finds that the perturbed energy eigenvalues give rise to a strong
asymptotic expansion around A = 0. For practical purposes, this means
that — although the series may not be strictly convergent — the “first per-
turbative terms still yield a very good approximation”. Only when then
again considering very large orders of the series, the approximation be-
comes worse again.

6.1.2 An example: The anharmonic oscillator

In order to exemplify the strategy outlined in the last subsection, we investigate
the problem of an anharmonic oscillator with Hamiltonian

H(\) = HO )y, (6.22)

HO® = iP2+§X2, (6.23)
2m 2

vV = X% (6.24)

Using the above expressions, we find for the perturbed ground state energy
21
Eo(A) =1+ 2/\ - 1—6)\2 +0(\?). (6.25)

Note that the second order contribution is negative. Numerically, one can go
evaluate the above expressions to any order — although this is not the point of
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perturbation theory: the computational effort will grow exponentially with the
order. Say, pick A = 0.1 and let us denote with Ey(n) the full perturbed ground
state energy up to order n, so

Eo(n) =Y NE. (6.26)
j=0

Then we get the following values:

Eo(n)

1.075 000
1.061 875
1.067 078
1.064 062
1.066 300

Ul W NS

As a comparison, the true value of the ground state energy, numerically
computed for A = 0.1, is 1.065285. The approximation is therefore very soon
very good. For practical purposes, one often considers corrections to the first
order that is non-vanishing, so often first or second order (which already pro-
vides a good approximation). It is worth mentioning that due to the fact that
strictly speaking, the series is often not convergent, the very high order terms
can be very much off. E.g.,

Eo(20) = —9.919902, (6.27)

so is totally wrong.

6.1.3 Degenerate situation

So far, we have considered the non-degenerate situation. In case of degenera-
cies, one needs some modifications. Let us assume that

HOW) = Blypi®) (6.28)

forj = 1,...,s, so |’(/J§O)>, cey |1/J§0)) are degenerate. Since the perturbation
series is an expansion of the form

1 WOV o
Wj( )y = Z WEJ(O)WZ( Y, (6.29)
I#j i !
it is clear that something must go wrong when the above formulae are naively
applied. But the solution is also quite obvious: One has to use a basis such
that the terms in the nominator vanish whenever the terms in the denominator
vanish, in order not to have divergent terms. Let us introduce the Hermitian
matrix M = M with components

My = (6O V[, (6.30)
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Obviously, we can diagonalize this matrix M with a unitary, so find a U with
vt =Utu =1 (6.31)

such that
S @O VU D) = 0 for m # . 6.32)

l,j

This is nothing but the unitary for which
UTMU = D (6.33)

is diagonal. In this way, one obtains U and therefore D and can then proceed
as before in order to get the perturbed expressions.

6.2 Time-dependent perturbation theory

6.2.1 Interaction picture

So far, we have discussed the perturbation of eigenvectors and eigenvalues of
Hamiltonians. For time-dependent problems, there is a specific kind of pertur-
bation theory known as time-dependent perturbation theory. This links directly
to the discussion of time evolution that we have studied earlier. We consider
time-dependent Hamiltonians of the form

H(t)=H® + AV (). (6.34)

Of course, time evolution is now governed by the Schroedinger equation. Here,
we would like to follow again a perturbative approach, however, where V' is
again treated as a small perturbation of the problem dictated by H(® alone,
which in turn is assumed to be simply solvable. What is more, we assume that

V(t) =0, for t <tgy (6.35)

for some time .
For ¢ < ty the state vector is denoted by [1/(?)(¢)), following

O (1)) = HO YO (1), (6:36)
For t > t, the state vector follows the Schroedinger equation

m%'w» = (HO + V)l (1)), (6.37)

with initial condition
(1)) = [ (1)) (6.38)

for t < to. In order to proceed, it is helpful to separate off the part of the
dynamics due to H): We anticipated such an approach already earlier when
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we discussed the Heisenberg and the Schroedinger picture. Here we introduce
the interaction picture which in a sense interpolates between the two previous
pictures. The state vectors in the interaction picture are given by

(1)) = ™ ap(t)). (6.39)

Differentiating Eq. (6.39) in time and using the Schroedinger equation, one
finds

OO = —HOp()r+ OV (HO £ V@) o). (640)

In other words, 5
ihahﬁ(t)h = AVi(t)|¥(t)r, (6.41)

where we have introduced the following:

Interaction operator in the interaction picture: For ¢ > t,, define

Vi(t) = e Oty (g)emiH Ot/h, (6.42)

Time integration now yields the integral equation
A t
W) =0+ 5 [ dsVis)uGe)r (643)
to

Iterating this equation, one obtains

O = o)+ [ dsvice o)

)\2 t s
+ —2/ ds/ drVi(s)Vi(r)|(to)) s +O()\3). (6.44)
(ih) to to
This series is referred to as von Neumann series.

6.2.2 Applications: Transitions of first order

We now discuss a simple application of time-dependent perturbation theory:
The theory of transitions of first order.

e Let us assume that initially, at time ¢¢, a system is in an eigenvector \1/1;.0)>
of the unperturbed Hamiltonian H(®), so |¢(tg)) = |w§0)>.

e At time to we switch on V (¢).
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We would like to know the probability of finding at time ¢ > ¢( the system in

O (1)) = e iH /ROy _ e—z’E,i°)t/h|¢]<€0>> (6.45)

for some k # j. The probability amplitude for this transition (or rather, the
probability of obtaining such an eigenvector upon measuring, but it should be
clear what is meant) is

WP (1)) = W21 (1)) = W1 (8)) 1 (6.46)

Inserting |9 (to)) = W](-O)) into Eq. (6.44), we find to first order

w0 = [0+ 2 [ dsViol?) + 0(2) (647)

Hence we get for the transition amplitude

)\ t
i+ | dst®|Vi(s)[wi”) + 0(N?) (6.48)

(Wi Ohe(0) -

to

At iW(BO B/, (0) (0) 2
Gk + o dse""r T (W [V (s)[g;7) + O(A%).
to

The probability of a transition P; () is the absolute value of this expression
Pirt) = 1w O)
2

A [P LB o),
‘h/ dse! P =B O v ()| 0) |+ 0N, (6.49)
to

This is a very useful expression in many contexts. Note that again, in order to
evaluate this formula, we merely need to know the eigenvectors and eigenval-
ues of the unperturbed Hamiltonian H(?), which is assumed to be “simple”. In
the situation of a scattering in a continuum of modes, this formula is referred
to as the “golden rule”.

6.3 Some words on more general concepts of pertur-
bation

Indeed, the remark that perturbation series are often not convergent should
not be a reason for too much worry. For good reasons, low order perturbation
theory is a work horse in quantum theory. Frankly, it is countlessly employed
in studies in quantum physics. What is more, we have seen just the tip of the
iceberg so far. There are many concepts of perturbation in quantum theory. In
each instance, the intuition that “a small perturbation has a small effect” is at
the basis of reasoning.
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e A quite general idea of perturbation is Kato’s theory of perturbation, which
is based on a discussion of the resolvent of a Hamiltonian H, defined as

the function )

GO =ga-m

for z € C. A complete treatment of this is however beyond the scope of
this course.

(6.50)

e In the many-body context, the concept of relative boundedness if often rel-
evant, where a perturbation AV is small compared to H(? in the sense
that

(HO)2 > \2p2, (6.51)

This means — just as for the density operator that we considered earlier —
that the eigenvalues of the operator (H(®)? — A\2V/2 are non-negative.

¢ An intuition that is correct to a large extent is that “eigenvalues are better
behaved than eigenvectors”. In particular, degeneracies matter less. As
an educational example, consider the matrices

1+4+¢ 0

A - [ ! 1_5}, 6.52)
1 ¢

B = [5 1]_ (6.53)

The eigenvalues of A are 1 + ¢ and 1 — €. The same is true for B. The
normalized eigenvectors of A are [1,0] and [0, 1], while they are [1,1]/v/2
and [1,—1]/v/2 for B. As e — 0 the two matrices approach each other,
but the eigenvectors do not.



