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Chapter 8

Particles in electro-magnetic
fields

This will be a very brief chapter, concerned with what happens if we put par-
ticles with mass m into an electro-magnetic field.

8.1 Hamilton operator of spinless particles

The Hamilton operator of a particle with mass m and charge e in a electro-
magnetic field with vector potential A and scalar potential Φ is given by the
following operator

Hamilton operator of a charged particle in the electro-magnetic field:

H =
1

2m

(
P 2 − e

c
A
)2

+ eΦ. (8.1)

In the position representation, the Schroedinger equation hence reads

i~
∂

∂t
ψ(x, t) =

(
1

2m

(
~
i
∇− e

c
A(x, t)

)2

+ eφ(x, t)

)
ψ(x, t). (8.2)

For the mixed term in the quadratic expression on the right hand side one finds

− ~e
2imc

(∇ ·A+A · ∇)ψ =
ie~
mc
∇ψ, (8.3)

using the Coulomb gauge∇A = 0. In this gauge, we hence find

i~
∂

∂t
ψ = − ~2

2m
∇2ψ +

i~e
mc

A · ∇ψ +
e2

2mc2
A2ψ + eΦψ. (8.4)
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8.2 Constant magnetic field

8.2.1 Hamiltonian of a particle in a constant magnetic field

For a constant magnetic field B, one can write

A = −1

2
(x×B), (8.5)

as one can easily verify by considering ∇ × A. The second term in Eq. (8.4)
takes the form

i~e
mc

A · ∇ψ = −1

2

i~e
mc

(x×B) · ∇ψ

=
i~e
2mc

(x×∇) ·Bψ

= − e

2mc
L ·Bψ, (8.6)

where L is the angular momentum operator. The third term in Eq. (8.4) be-
comes

e2

2mc2
A2ψ =

e2

8mc2
(x×B)2ψ

=
e2

8mc2
(x2B2 − (x ·B)2)ψ. (8.7)

The second terms is associated with paramagnetism, the third one with dia-
magnetism. The third term is usually negligible for atoms when 〈L3〉 6= 0, so
whenever the second term contributes.

8.2.2 Normal Zeeman effect

Denote with H(0) the Hamiltonian of the hydrogen atom that we consider ear-
lier in this lecture. We now apply a magnetic field to the system. Neglecting
the third term, the Hamiltonian hence becomes

H = H(0) +
e

2mc
BL3, (8.8)

where again theB field has been aligned with e3, so with the z-axis. The eigen-
vectors of H(0) we know: We denoted them with |ψn,l,m〉. But it is easy to see
that these eigenvectors of H(0) are still eigenvectors of H , with eigenvalues

En,l,m = −me
4
0

2~2
1

n2
+ ~ωLm, (8.9)

where

ωL = − eB

2mc
=
e0B

2mc
(8.10)
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is the Larmor frequency. Hence, one would expect the magnetic field to lift the
(2l+1)-fold degeneracy in 2l+1 equidistant energy levels. This is not what one
observes for the hydrogen atom, however: Instead, one observes a splitting
as if the angular momentum took half integer values. (For other atoms, one
can see the version of the Zeeman effect for historical reasons called “normal
Zeeman effect”).

8.2.3 Anomalous Zeeman effect

At this point, this no longer comes as a surprise, as we know that the electron
has both orbital angular momentum as well as a spin. The total Hamiltonian
of the hydrogen atom respecting spin is given by the following Hamiltonian:

Hamiltonian of the hydrogen atom in a constant magnetic field:

H = H(0) − e

2mc
(L+ gS) ·B. (8.11)

Here, g = 2 to a very good approximation, in fact,

g = 2.002319304718(564). (8.12)

This constant is called the Lande factor or the gyromagnetic ratio. This Hamilto-
nian explains then the splitting of the levels of the hydrogen atom in a constant
magnetic field. The anomalous Zeeman effect is hence due to the contribu-
tion of the spin degree of freedom. It turns out that relativistic corrections also
contribute to some extent, but we will not discuss this here.

8.3 Concluding remarks

There is a lot more to say about particles in electro-magnetic fields, but we will
leave it at that at this point. We end this brief chapter by a few concluding
remarks, though.

• Maybe the most remarkable of all elementary effects is the Aharonov-
Bohm effect which describes the motion of an electron in a situation where
B(x) = 0 in a large region, as it is realized outside of an (in an ideal-
ization) infinite coil. It turns out that if one performs an interference ex-
periment in a way that the particle is at all times in the region for which
B(x) = 0, the particle still “feels” the nonvanishing vector potential A.

• A similar effect is that in superconductors, the flux can only take discrete
values.

• The free motion of electrons is actually also quite intricate and one encoun-
ters Landau levels.


