Freie Universität Berlin
 Tutorials for Advanced Quantum Mechanics
 Wintersemester 2018/19
 Sheet 4

Due date: 10:15 16/11/2018
J. Eisert

1. Bosonic and Fermionic commutation relations(3×2 points)

(a) Recalling the quantum harmonic oscillator, it is now apparent that the ladder operators,

$$
\begin{equation*}
\hat{a}=\frac{1}{\sqrt{2 \hbar}}(\hat{x}+i \hat{p}), \quad \hat{a}^{\dagger}=\frac{1}{\sqrt{2 \hbar}}(\hat{x}-i \hat{p}) \tag{1}
\end{equation*}
$$

Using these relations, derive the original form of Heisenbergs uncertainty principle, which states that the standard deviation product of position and momentum measurements is lower bounded as,

$$
\begin{equation*}
\Delta \hat{x} \Delta \hat{p} \geq \frac{\hbar}{2} \tag{2}
\end{equation*}
$$

(b) Starting from the fermionic anti-commutation relations

$$
\begin{equation*}
\left\{\hat{f}_{j}, \hat{f}_{k}^{\dagger}\right\}=\delta_{j, k}, \quad\left\{\hat{f}_{j}, \hat{f}_{k}\right\}=\left\{\hat{f}_{j}^{\dagger}, \hat{f}_{k}^{\dagger}\right\}=0 \tag{3}
\end{equation*}
$$

derive the action of the fermionic creation and annihilation operators on the occupation number basis states,

$$
\begin{align*}
\hat{f}_{j}\left|N_{1}, \ldots, N_{j}, \ldots\right\rangle & =(-1)^{\sum_{k=1}^{j-1} N_{k}} N_{j}\left|N_{1}, \ldots, 1-N_{j}, \ldots\right\rangle \tag{4}\\
\hat{f}_{j}^{\dagger}\left|N_{1}, \ldots, N_{j}, \ldots\right\rangle & =(-1)^{\sum_{k=1}^{j-1} N_{k}}\left(1-N_{j}\right)\left|N_{1}, \ldots, 1-N_{j} \ldots\right\rangle \tag{5}
\end{align*}
$$

(c) Consider the single particle Hamiltonian \hat{H}_{0} with eigenstates $\{|\lambda\rangle\}$ - i.e. $\hat{H}_{0}|\lambda\rangle=\lambda|\lambda\rangle$. Let $\left|\lambda_{1}, \ldots \lambda_{N}\right\rangle_{B(F)}$ be the corresponding bosonic (fermionic) N particle basis state in a first quantization representation. We define the number operator as $\hat{n}_{\lambda}=\hat{a}_{\lambda}^{\dagger} \hat{a}_{\lambda}$. Now, by using the second quantization representation of $\left|\lambda_{1}, \ldots \lambda_{N}\right\rangle_{B(F)}$, and the appropriate commutation relations for $\hat{a}_{\lambda}^{\dagger}, \hat{a}_{\lambda}$, prove that the number operator \hat{n}_{λ} simply counts the number of particles in state $|\lambda\rangle$ - i.e. show explicitly that for both bosonic and fermionic N particle states

$$
\begin{equation*}
\hat{n}_{\lambda}\left|\lambda_{1}, \ldots \lambda_{N}\right\rangle_{B(F)}=\sum_{i=1}^{N} \delta_{\lambda \lambda_{i}}\left|\lambda_{1}, \ldots \lambda_{N}\right\rangle_{B(F)} \tag{6}
\end{equation*}
$$

2. Observables in second quantization $(2+2+2+4+4$ points $)$

(a) Consider a system of N particles, and a one-body operator $\hat{O}_{1}=\sum_{j=1}^{N} \hat{o}_{j}$, where \hat{o}_{j} is an ordinary single particle operator acting on the j 'th particle. Furthermore, using the same notation as (1c), assume that \hat{O}_{1} is diagonal in the $\{|\lambda\rangle\}$ basis, i.e. $\hat{o}=\sum_{\lambda} o_{\lambda}|\lambda\rangle\langle\lambda|$. Show that a second quantization representation of \hat{O}_{1}, with respect to the $\{|\lambda\rangle\}$ basis, is given by

$$
\begin{equation*}
\hat{O}_{1}=\sum_{\lambda=0}^{\infty} o_{\lambda} \hat{n}_{\lambda}=\sum_{\lambda=0}^{\infty}\langle\lambda| \hat{o}|\lambda\rangle \hat{a}_{\lambda}^{\dagger} \hat{a}_{\lambda} \tag{7}
\end{equation*}
$$

(b) What is the second quantized representation of \hat{O}_{1} in a different basis $\{|\mu\rangle\}$, in which \hat{O}_{1} is not diagonal?
(c) Consider a single particle in one-dimensional system of length L with periodic boundary conditions. Write down the basis transformations between \hat{a}_{p} and $\hat{a}(x)$ - i.e. the operators which annihilate a particle at a fixed momentum or position.
(d) Now consider a many-particle finite one-dimensional system of length L with periodic boundary conditions. The single particle kinetic energy operator is given by $\hat{T}=\sum_{j}{\hat{p_{j}}}^{2} / 2 m$. Show that the second quantized representation of this operator is given by

$$
\begin{equation*}
\hat{T}=\int_{0}^{L} d x \hat{a}^{\dagger}(x) \frac{\hat{p}^{2}}{2 m} \hat{a}(x) \tag{8}
\end{equation*}
$$

[Hint: Use the strategy developed in (a) and (b), with the tools from (c) - ie. first express the kinetic energy operator in the basis in which it is diagonal, obtain the second quantized representation in this basis, and then transform into the co-ordinate basis carefully.]
(e) Consider a bosonic Hamiltonian $H=\sum_{i, j} h_{i, j} \hat{b}_{i}^{\dagger} \hat{b}_{j}$, with $\hat{b}_{i}^{\dagger}, \hat{b}_{j}$ the usual bosonic creation and annihilation operators. Prove that the Heisenberg picture evolved creation and annihilation operators are given by:

$$
\begin{align*}
\hat{b}_{i}(t) & =\sum_{j}\left(e^{-i t h}\right)_{i, j} \hat{b}_{j} \tag{9}\\
\hat{b}_{i}^{\dagger}(t) & =\sum_{j}\left(e^{i t h}\right)_{i, j} \hat{b}_{j}^{\dagger} \tag{10}
\end{align*}
$$

[Hint: Again it helps to consider a basis in which the Hamiltonian is diagonal.]

