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1. Electrons with a Coulomb interaction in the atomic limit(5×3 points)

In lectures you investigated the Hamiltonian of electrons with a Coulomb inter-
action in the thermodynamic limit. Now we will consider the same problem in
a somewhat different limit, sometimes called the atomic limit. In this limit (see
Fig. 1) we imagine a lattice of atoms widely separated by a distance a. The idea
is that this situation should be close to the non-interacting case (i.e. essentially
isolated atoms). By writing out the interacting problem in a basis of orbitals
localised around the N lattice points, we can identify terms that should be small
and construct an effective Hamiltonian for this limit.
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Figure 1: N atoms in one spatial dimension separated by a distance a arranged over a length
L with periodic boundary conditions (i.e. on a ring). The smallest case that makes sense is
therefore N = 3.

The Hamiltonian is given by,

Ĥ = Ĥ(0) +
1

2

∫
dx

∫
dx′
∑
σσ′

c†σ(x)c†σ′ (x′)
e2

|x− x′|
cσ′ (x′) cσ(x) (1)

where

Ĥ(0) =

∫
dx
∑
σ

c†σ(x)

[
p̂2

2m
+ V (x)

]
cσ(x) (2)

is the non-interacting Hamiltonian for electrons in a periodic potential (i.e. simply
interacting with the background ions but not with each other) and the second term
is the Coulomb interaction.

(a) Make a phenomenological argument for why the effective Hamiltonian in this
widely separated limit should turn out to be of the form,

Ĥ = −t
∑
〈mn〉

∑
σ

c†mσcnσ + U
∑
m

n̂m↑n̂m↓ (3)

where the operators c†mσ, cmσ and nmσ create, annihilate and count spin-σ
particles at lattice site m and 〈mn〉 is a sum denoting nearest neighbour
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interactions. [Hint: think about what the favoured (energy lowering) and
discouraged (energy raising) terms mean]

We proceed to define these localised orbitals (also called Wannier orbitals).

First we begin with the eigenstates of the non-interacting Hamiltonian Ĥ0

which we denote |ψkσ〉 created by operators c†kσ indexed by a quasi-momentum
k. We then define localised orbitals in terms of these states as

c†nσ|Ω〉 = |ψnσ〉 =
1√
N

∑
k[−π/a,π/a]

eikna|ψkσ〉 (4)

where k = 2πm/aN with −N/2 < m ≤ N/2. The reverse transform given
by,

|ψkσ〉 ≡
1√
N

N∑
n=1

e−ikna|ψnσ〉 (5)

(b) Argue why for large separations, a Wannier orbital is similar to an isolated
atom located around the point x = na.

The field operators associated with these orbitals are

c†nσ =

∫ L=Na

0

dx ψn(x)c†σ(x), c†σ(x) =
N∑
n=1

ψ∗n(x)c†nσ (6)

where ψn(x) = 〈x|ψnσ〉.
(c) Show that writing the field operators in terms for the Wannier operators

results in

Ĥ = −
∑
mn

∑
σ

tmnc
†
mσcnσ +

∑
mnrs

∑
σσ′

Umnrsc
†
mσc

†
nσ′crσ′csσ′ (7)

where

tmn = −
〈
ψm

∣∣∣Ĥ(0)
∣∣∣ψn〉 = t∗nm (8)

are the site hopping matrix elements and

Umnrs =
1

2

∫ L

0

dx

∫ L

0

dx′ψ∗m(x)ψ∗n (x′)
e2

|x− x′|
ψr (x′)ψs(x) (9)

are the interaction terms.

So far, all we have done is rewrite the Hamiltonian exactly. Now we can
examine some of the terms, identify their meaning and also discard some of
them. Consider the interaction term first,

(d) For the repeated terms Umnnm but with m 6= n explain why these these can be
seen as coupling charge densities at different sites. [Hint: the total electron
number at site m is

∑
σ c
†
mσcmσ]

(e) Repeating the phenomenological arguments you made in part a), show that
you indeed recover the effective Hamiltonian from (3).
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