DNAplatt

Publications

[40] Batebi, H. and Imhof, P.
Phosphodiester hydrolysis computed for cluster models of enzymatic active sites.
Theor. Chem. Acc. 135 (2016) 262

[39] Schöne, S., Jurk, M., Bagherpoor Helabad, M., Dror, I., Lebars, I., Kieffer, B., Imhof, P., Rohs, R., Vingron, M., Thomas-Chollier, M., and Meijsing, S.
Sequences flanking the core binding site modulate glucocorticoid receptor structure and activity
Nat. Commun. 7 (2016) 12621

[38] Reidelbach, M., Betz, F., Mäusle, R. M., and Imhof, P.
Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states
Chem. Phys. Lett. 659 (2016) 169-175

[37] Bagherpoor Helabad, M. , Ghane, T., Reidelbach, M., Woelke, A. L., Knapp, E. W., and Imhof, P.
Protonation state dependent communication in Cytochrome c Oxidase
Biophysical J. 111 (2016) 492-503

[36] Imhof,P.
A Networks Approach to Modeling Enzymatic Reactions
in Methods in Enzymology: Computational approaches for studying Enzyme Mechanism, (ed. G. A. Voth), 578 (2016) chapter 11, p.249-271

[35] Kanaan, N., Crehuet, R., and Imhof,P.
Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations
J. Phys. Chem. B 119 (2015) 12365-12380

[34] Bagherpoor Helabad, M., Kanaan, N., and Imhof, P.
Base Flip in DNA Studied by Molecular Dynamics Simulations of Differently-Oxidized Forms of Methyl-Cytosine
  Int. J. Mol. Sci 15 (2014) 11799-11816

[33] Ivchenko, O., Bachert, P., and Imhof, P.
Umbrella sampling of proton transfer in a creatine-water system
Chem. Phys. Lett 600 (2014) 51-55

[32] Ivchenko, O., Whittleston, C.S., Carr, J.M., Imhof, P., Goerke, S., Bachert, P. and Wales, D.J.
Proton Transfer Pathways, Energy Landscape, and Kinetics in Creatine–Water Systems
J. Phys. Chem. B 118 (2014) 1969–1975

[31] Vasu, K., Nagamalleswar, E., Zahran, M., Imhof, P., Xu, S.-Y., Zhu, Z., Chan, S.-H. and Nagaraja, V.
Increasing cleavage specificity and activity of restriction endonuclease KpnI
Nucl. Acid. Res. 41 (2013) 9812-9824

[30] Imhof, P. and Zahran, M.
The effect of a G:T mispair on the dynamics of DNA
Plos ONE 8 (2013) e53305

[29] Imhof, P.
A computational study of the absorption spectra of the photoconvertible fluorescent protein EosFP in different protonation states
J. Chem. Theory Comput. 8 (2012) 4828-4836

[28] Held. M, Imhof, P., Keller, B. and Noe, F.
Modulation of a Ligand's Energy Landscape and Kinetics by the Chemical Environment
J. Phys. Chem. B 116 (2012) 13597-13607

[27] Berezniak, T., Jäschke, A. and Smith, J. C and Imhof, P.
Stereoselection in the Diels-Alderase Ribozyme: A Molecular Dynamics Study
J. Comp. Chem. 33 (2012) 1603-1614

[26] Zahran, M., Berezniak, T., Imhof, P. and Smith, J. C.
Role of Magnesium Ions in DNA Recognition by the EcoRV Restriction Endonuclease,
FEBS Letters 585 (2011) 2739-2743

[25] Parks, J. M., Imhof, P. and Smith, J. C.
Modelling Enzyme Catalysis by Computer Simulations
Istvan T. Horvath (ed.), Encyclopedia of Catalysis, John Wiley & Sons Ltd.

[24] Berezniak, T., Zahran, M., Imhof, P., Jäschke, A. and Smith, J. C.
Magnesium-Dependent Active-Site Conformational Selection in the Diels-Alderase Ribozyme
J. Am. Chem. Soc, 132 (2010) 12587-12596

[23] Zahran, M., Daidone, I., Smith, J. C., and Imhof, P.
Mechanism of DNA recognition by the Restriction Enzyme EcoRV
J. Mol. Biol., 401 (2010) 415-432

[22] Imhof, P., Fischer, S. and Smith, J. C.
Catalytic Mechanism of DNA Backbone Cleavage by the Restriction Enzyme EcoRV: A Quantum Mechanical/Molecular Mechanical Analysis
Biochemistry, 48 (2009) 9061-9075

[21] Zahran, M., Imhof, P., and Smith, J. C.
Sequence specific DNA recognition by EcoRV
Hansmann, U. H., Meinke, J. H., Mohanty, S., Nadler, W., and Zimmermann, O. (eds.), From Computational Biophysics to Systems Biology 2008 (CBSB08), Jülich, vol. 40, (2008) pp. 417–420, Proceedings, NIC Series Juelich

[20] Imhof, P., Noé, F., Fischer, S., and Smith, J. C.
AM1/d parameters for magnesium in metalloenzymes
J. Chem. Theory Comput., 2 (2006) 1050–1056

[19] Jagoda, M., Warzeska, S., Pritzkow, H., Wadepohl, H., Imhof, P., Smith, J. C., and Krämer, R.
Catalytic transesterification of dialkyl phosphates by a bioinspired dicopper(II) macrocyclic complex
J. Am. Chem. Soc, 127 (2005) 15061–15070

[18] Imhof, P., Fischer, S., Krämer, R., and Smith, J. C.
Density functional theory analysis of dimethylphosphate hydrolysis: effect of solvation and nucleophile variation
J. Mol. Struct. (Theochem), 713 (2005) 1–5

[17] Imhof, P., Krügler, D., Brause, R., and Kleinermanns, K.
Geometry change of simple aromatics upon electronic excitation obtained from Franck-Condon fits of dispersed fluorescence spectra
J. Chem. Phys., 121 (2004) 2598–2610

[16] Bühl, M., Schurhammer, R., and Imhof, P.
Peroxovanadate imidazole complexes as catalysts for olefin epoxidation: Density functional study of dynamics, 51V NMR chemical shifts, and mechanism
J. Am. Chem. Soc., 126 (2004) 3310–3320

[15] Bühl, M., Imhof, P., and Repisky, M.
Rovibrational corrections to transition metal NMR shielding constants
Chem Phys Chem, 5 (2004) 410–414

[14] Spangenberg, D., Imhof, P., and Kleinermanns, K.
The S1 state geometry of phenol determined by simultaneous Franck Condon and rotational constants fits
Phys. Chem. Chem. Phys., 5 (2003) 2505–2514

[13] Imhof, P., Brause, R., and Kleinermanns, K.
Determination of ground state vibrational frequencies of jet-cooled resorcinol by means of dispersed fluorescence spectroscopy and ab Initio calculations
J. Mol. Spec., 201 (2002) 65–70

[12] Imhof, P. and Kleinermanns, K.
Dispersed fluorescence spectroscopy of pchlorophenol
Phys. Chem. Chem. Phys., 4 (2002) 264–170

[11] Nir, E., Janzen, C., Imhof, P., Kleinermanns, K., and de Vries, M. S.
Pairing of the nucleobases guanine and cytosine in the gas phase studied by IR–UV doubleresonance spectroscopy and ab initio calculations
Phys. Chem. Chem. Phys., 4 (2002) 732–739

[10] Nir, E., Janzen, C., Imhof, P., Kleinermanns, K., and de Vries, M. S.
Pairing of the nucleobase guanine studied by IR–UV double-resonance spectroscopy and ab initio calculations
Phys. Chem. Chem. Phys., 4 (2002) 740–750.

[9] Nir, E., Janzen, C., Imhof, P., Kleinermanns, K., and de Vries, M. S.
Guanine tautomerism revealed by UV–UV and IR–UV hole burning spectroscopy
J. Chem. Phys., 115 (2001) 4604–4611

[8] Imhof, P. and Kleinermanns, K.
Dispersed fluorescence spectra and ab initio calculations of o-Cyanophenol
J. Phys. Chem. A, 105 (2001) 8922–8925

[7] Imhof, P. and Kleinermanns, K.
Dispersed fluorescence spectra of chlorobenzene
Chem. Phys., 270 (2001) 227–236

[6] Roth, W., Imhof, P., and Kleinermanns, K.
Laser induced dispersed fluorescence spectroscopy and ab initio calculations of p-cyanophenol
Phys. Chem. Chem. Phys., 3 (2001) 1806

[5] Nir, E., Imhof, P., Kleinermanns, K., and deVries, M. S.
REMPI spectroscopy of laser desorbed guanosines
J. Am. Chem. Soc., 122 (2000) 8091–809

[4] Roth, W., Imhof, P., Gerhards, M., Schumm, S., and Kleinermanns, K.
Reassignment of ground and first excited state vibrations in phenol
Chem. Phys., 252 (2000) 247–256

 [3] Spangenberg, D., Imhof, P., Roth, W., Janzen, C., and Kleinermanns, K.
Phenol-(ethanol)1 isomers studied by double-resonance spectroscopy and ab initio calculations
J. Phys. Chem.A, 103 (1999) 5918–5924

 [2] Imhof, P., Roth, W., Janzen, C., Spangenberg, D., and Kleinermanns, K.
Hydrogen-bonded phenol-acid clusters studied by vibrational resolved laser spectroscopy
and ab initio calculations - I. Formic acid

Chem. Phys., 242 (1999) 141–151

 [1] Imhof, P., Roth, W., Janzen, C., Spangenberg, D., and Kleinermanns, K.
Hydrogen-bonded phenol-acid clusters studied by vibrational resolved laser spectroscopy
and ab initio calculations - II. Acetic acid

Chem. Phys., 242 (1999) 153–159