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Zusammenfassung

Kein physikalisches System kann komplett von seiner Umgebung isoliert werden. Daher ist die

Untersuchung offener Quantensysteme von enormer Wichtigkeit um eine verlässliche und akkurate

Kontrolle komplexer Quantensysteme zu gewährleisten. In der Praxis muss die Zuverlässigkeit eines

Kontrollfeldes durch Zertifizierung der gewünschten Zeitentwicklung des Systems überprüft werden,

während eine hohe Genauigkeit durch präzise Kontrollstrategien in der Gegenwart von Dekohärenz-

effekten garantiert werden muss.

Der erste Teil dieser Arbeit präsentiert einen algebraischer Rahmen zur Bestimmung der min-

imalen Vorraussetzungen zur eindeutigen Charakterisierung beliebiger unitärer Gatter in offenen

Quantensystemen, unabhängig von der speziellen physikalischen Implementierung eines Quanten-

bauelements. In diesem Rahmen werden Theoreme hergeleitet, mit Hilfe derer entschieden werden

kann, ob ein gegebener Satz an Eingangszuständen für solch ein Quantenelement hinreichend zur

Beurteilung der erfolgreichen Implementation ist. Dies ermöglicht insbesondere die Herleitung der

minimale Zahl an notwendigen Eingangszuständen mit dem Ergebnis, dass drei solcher Zustände

genügen - unabhängig von der Größe des physikalischen Systems. Diese Resultate ermöglichen es,

die fundamentalen Grenzen in Bezug auf Zertifizierung und Tomographie offener Quantensysteme

herauszustellen. Eine Kombination dieser Ergebnisse mit modernen Monte Carlo Zertifizierung-

stechniken erlaubt desweiteren eine signifikante Verbesserung der Skalierung in Bezug auf die Sys-

temgröße bei der Zertifizierung allgemeiner unitärer Quantengatter. Diese Verbesserung ist nicht nur

auf Quanteninformationsträger mit zwei Zuständen, genannt Qubits, beschränkt sondern kann auch

für elementare Informationsträger beliebiger Dimension, den sogenannten Qudits, verallgemeinert

werden.

Der zweite Teil dieser Arbeit beschäftigt sich zunächst mit der Anwendung dieser neuen Erkennt-

nisse auf die Theorie der optimalen Kontrolle (OCT). OCT für Quantensysteme verwendet Konzepte

aus den Ingenieurwissenschaften wie Rückkopplung und Optimierung, um konstruktive und destruk-

tive Interferenzen auf solch eine Art und Weise zu erzeugen, dass man mit ihnen physikalische Prozesse

in eine bestimmte Richtung steuern kann. Es zeigt sich, dass die obigen mathematischen Resultate

es ermöglichen, neue Optimierungsfunktionale aufzustellen, welche signifkante Einsparungen für nu-

merische Kontrollalgorithmen mit sich bringen. Dies gilt sowohl in Bezug auf Prozessorlaufzeit als

auch in Bezug auf den notwendigen Speicher.

Zum Abschluss dieser Arbeit werden zwei zentrale Probleme der Quanteninformationsverarbeitung

aus der Perspektive der optimalen Kontrolle diskutiert - die Erzeugung reiner Zustände sowie die Im-

plementierung unitärer Gatter in offenen Quantensysteme. In beiden Fällen werden dabei spezifische

physikalische Beispiele behandelt: Im ersten Fall handelt es sich um das Kühlen der Vibrationsfrei-

heitsgrade eines Moleküls mit Hilfe optischen Pumpens, während im zweiten Fall ein supraleitendes

Phasenqudit betrachtet wird. Dabei wird insbesondere demonstriert, wie spezielle Eigenschaften der

Umgebung dazu verwendet werden können, gewisse Kontrollziele zu erreichen.





Abstract

Since no physical system can ever be completely isolated from its environment, the study of open

quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice,

reliability of the control field needs to be confirmed via certification of the target evolution while

accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence.

In the first part of this thesis an algebraic framework is presented that allows to determine the

minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum

systems, independent on the particular physical implementation of the employed quantum device.

To this end, a set of theorems is devised that can be used to assess whether a given set of input states

on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows

to determine the minimal input for such a task, which proves to be, quite remarkably, independent

of system size. These results allow to elucidate the fundamental limits regarding certification and

tomography of open quantum systems. The combination of these insights with state-of-the-art Monte

Carlo process certification techniques permits a significant improvement of the scaling when certifying

arbitrary unitary gates. This improvement is not only restricted to quantum information devices

where the basic information carrier is the qubit but it also extends to systems where the fundamental

informational entities can be of arbitary dimensionality, the so-called qudits.

The second part of this thesis concerns the impact of these findings from the point of view of

Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such

as feedback and optimisation to engineer constructive and destructive interferences in order to steer

a physical process in a desired direction. It turns out that the aforementioned mathematical findings

allow to deduce novel optimisation functionals that significantly reduce not only the required memory

for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for

the optimised process.

The thesis concludes by discussing two problems of fundamental interest in quantum information

processing from the point of view of optimal control - the preparation of pure states and the imple-

mentation of unitary gates in open quantum systems. For both cases specific physical examples are

considered: for the former the vibrational cooling of molecules via optical pumping and for the latter

a superconducting phase qudit implementation. In particular, it is illustrated how features of the

environment can be exploited to reach the desired targets.
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1 Introduction

“Spukhafte Fernwirkung”, or as it is commonly translated “spooky action at a distance”, this is the

slightly derogatory term that Albert Einstein used in a letter to Max Born [1] to describe one of the

peculiar aspects of quantum theory we nowadays call “entanglement”. In 1935 Einstein, Podolsky

and Rosen wrote their famous paper about one of the most intricate implications of quantum theory,

the fact that a measurement on a part of a system can have an instantaneous effect on observable

quantities on other parts of the system, no matter how far these parts are spatially separated [2]. This

contradicts either the locality of the physical theory, i.e. that a local perturbation on a system only

has an immediate effect on this very spatial region of the system, or its realism, i.e. the fact that to

any observable property or measurement outcome there needs to be a well-defined variable. Einstein,

Podolsky and Rosen proposed that there is a more general theory to which quantum mechanics serves

only as an approximation such that this more general theory will uphold both the concepts of locality

and realism. This more general theory is commonly termed “local hidden variable theory”. Bell

showed in 1964 that if such a theory was underlying quantum mechanics, then certain inequalities,

the so-called Bell inequalities, could never be violated [3]. However, the experiments by Aspect

et al. in 1982 showed that a statistically significant violation of those inequalities could in fact be

observed [4]. Very recently, Yin et al. showed even “[...] a 12 h continuous violation of the Bell

inequality and concluded that the lower bound speed of spooky action was 4 orders of magnitude of

the speed of light [...]” [5].

Entanglement and its striking consequences are a central part of quantum physics. One might

even go so far as to say that entanglement is the main ingredient that separates the theory of quantum

mechanics from that of classical mechanics. As soon as quantum systems interact, their respective

states become entangled. The consequences of this effect are numerous. Most notably, entanglement

represents a resource that can be used to extend the computational power of a machine beyond that of

classical computation with remarkable consequences for communication and message encryption [6].

However, there are forms of undesired entanglement. For example, the entanglement of a system

with environmental degrees of freedom usually leads to a loss of fidelity in practical realisations of

quantum information devices. Furthermore, the fact that quantum systems can exhibit entanglement

leads to a strongly exponential scaling in the number of basic information carriers when the task is

to characterise or certify a quantum state or a quantum operation.

To reach the ultimate goal of harvesting quantumness in practical applications, one needs to

answer the question of how to best exploit the beneficial effects of entanglement while minimising

its detrimental consequences. In the first place this requires efficient schemes for tomography and

certification of quantum systems in the presence of environmental effects in order to determine

whether high-fidelity quantum processes can be experimentally realised for complex open quantum

systems. Moreover, the question arises how to practically exploit features of quantum theory for

specific tasks in the face of experimental limitations and noise effects. Answering the question of how

to most efficiently utilise these limited resources from the perspective of characterisation and control

of open quantum systems will be the central focus of this work.

In this thesis, we derive a set of fundamental mathematical theorems outlining the lower bounds

on the required information to characterise and certify a unitary gate implementation in an open

quantum system. This is achieved by finding the mathematical conditions that determine which

sets of physical states are suitable to extract the relevant information for this particular task. We
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show that these results can be applied to experimental gate certification and optimal control theory

to significantly reduce the required experimental, respectively numerical, effort. We furthermore

illustrate how optimal control theory can be used to find control schemes that successfully implement

pivotal tasks of quantum information in open quantum systems. By using a realistic model for two

physical systems of current interest, we illustrate the potential beneficial impacts of environmental

degrees of freedom on the one hand while outlining strategies to mitigate their detrimental effects on

the other hand.

This thesis is organised as follows: Section 2 is devoted to a brief overview on the general descrip-

tion of states of open and isolated quantum systems as well as the notion of observables and their

measurement. Furthermore, we will review the mappings on the set of states that an open quantum

system can physically implement. In particular, we will discuss the case of vanishing initial environ-

mental correlations which leads to the notion of dynamical maps. An especially important case is

given by unitary dynamical maps, in the context of quantum information usually called (unitary)

gates, representing an evolution that is effectively identical to that of an isolated system. In Sec. 3

we will identify an algebraic criterion for the assessment of whether a given set of input states is

sufficient for the identification of the unitary transformation that gives rise to a unitary dynamical

map. We show how this criterion can be expanded to answer the question regarding minimal sets of

input states which allow for unique characterisation of a unitary dynamical map and reconstruction

of the corresponding unitary gate. Section 4 discusses the consequences of these results for practical

certification of unitary dynamical maps and illustrates how fidelity measures deduced from reduced

set of states behave with respect to a physically meaningful gate error. Furthermore, we will show

how combining these sets of input states with state-of-the-art statistical schemes can lead to a re-

duction in computational resources as well as various experimental resources for the task of unitary

gate certification.

After concluding the analysis of experimental certification we turn in Sec. 5 to the question of how

to control open quantum systems such that they implement a certain task. To this end we will employ

optimal control theory (OCT), in particular Krotov’s algorithm [7–9]. We show how the reduced set of

states derived in the previous sections can be applied in the context of OCT to formulate optimisation

functionals that allow for a significant reduction in the numerical effort required for the optimisation

algorithm. Finally, Sections 6 and 7 are devoted to the analysis of control strategies for two problems

of great current interest: preparation of pure states, in particular the cooling of internal degrees of

freedom of a quantum system, and the realisation of quantum gates. We will extensively discuss the

vibrational cooling of molecules as an example for the former and show how environmentally induced

Markovian evolutions can be efficiently exploited for cooling tasks. Moreover, we will generalise the

employed scheme to a larger class of cooling processes. In a second example, we will show how

environmentally induced non-Markovian evolutions of a superconducting phase qudit can be utilised

to extend the reachable set of quantum gates under the limited experimental control resource of

having amplitude control only. Section 8 concludes and gives a brief outlook on the impact of the

results obtained in this work.



2 Quantum States, Observables and Dynamical Maps 3

2 Quantum States, Observables and Dynamical Maps

Before we can attempt to answer the question of how to most efficiently characterise a quantum

system, we have to establish the mathematical framework which allows an adequate description of

the state of a physical system. Effectively, this means one should be able to associate to any such

state an element of some set S, apply operations to it (corresponding to for example its evolution

in time) and obtain another element of S which we can then uniquely identify with another state.

We will take in this thesis a quantum information perspective in that we are firstly interested in

the description of states on a physical system and point-to-point transformations on these states,

representing a computational operation. Only when we introduce the concept of quantum control

will we need to describe the continuous evolution of a state in time, i.e. full quantum system dynamics,

which will be treated in Sec. 5.

The most general choice of the set S for an isolated quantum system turns out to be a complex

L2-Hilbert space. We will illustrate how the physical requirements on the mathematical frameworks

are being reflected in the characteristics of the Hilbert space formalism. It turns out that the necessity

of normalisation of quantum states requires any physical state to be associated with an equivalence

class of Hilbert space vectors rather than a single vector. Additionally, we will discuss how observable

quantities and measurements on a physical system translate into this mathematical framework.

The Hilbert space formalism enables only the description of general states of isolated quantum

systems, i.e. pure states. The generalisation of the theory to admit a proper description of open

quantum systems necessitates the introduction of mixed state. They illustrate the remarkable differ-

ence between incoherent and coherent superpositions in quantum systems which represents one of the

most striking differences between classical and quantum mechanics. While pure states are described

by state vectors in Hilbert space, mixed states are associated with density matrices in Liouville space,

an extension of Hilbert space in which the set of pure states forms a lower-dimensional subset. Just

like in Hilbert space, density matrices need to obey a normalisation condition that does, however,

not coincide with the norm induced by the canonical scalar product.

After having established the framework for the description of physical systems by states in Hilbert

space (for isolated quantum systems) or Liouville space (for open quantum systems) we can turn to

the question of how to properly describe a change of the state via a physical process, i.e. operations

on the physical system. One expects that the mathematical properties of the state are preserved,

i.e. normalisation and, in Liouville space, positive definiteness. It turns out that correlations with

the environment can lead to unexpected behaviour, for example the loss of positivity of the trans-

formation [10, 11]. We will briefly discuss what are the transformations that appropriately describe

operations on open quantum systems. If no initial correlations exists, transformations that preserve

all properties of an arbitrary input density matrix can be identified as so-called dynamical maps. We

will discuss a general mathematical description of these dynamical maps via Choi’s theorem [12] and

review their equivalent description by a density matrix in a higher-dimensional Liouville space via

the Choi-Jamio lkowski isomorphism [12–14].

In the special case of isolated quantum systems a dynamical map reduces to a unitary transfor-

mation on Hilbert space. We will conclude this section by demonstrating the equivalence between

unitary dynamical maps and elements of the projective unitary group. This will set the stage for the

derivation of the main theorems about characterisation of unitary transformations in open quantum

systems in Sec. 3.
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2.1 Breakdown of Local Realism and the Copenhagen Interpretation

From classical mechanics we expect any physical system to be characterisable by a certain set of

real-valued quantities. Furthermore, any measurement of some property of one or multiple particles

will be predetermined and those measurements will not (at least instantaneously) influence the state

in phase space, i.e. other particles. This is usually summarised by stating that classical physics is a

realistic and local theory [15]. A physical theory is said to be realistic if the result of a measurement

of a property of the physical system is determined a priori, even if no prior knowledge about the

state of the system exists. It is said to be local if the process of measurement of the state of a

subsystem of the total physical system does not influence the state of other parts of the subsystem.

Usually, the combined assumption of realism and locality is termed “local realism” [6, 16]. Local

realism implies certain relations about correlation of experimental observables in spatially separated

physical systems. These can be mathematically formalised into so-called Bell inequalities [3].

Evidently, as shown by many experiments [4, 5, 17], physical systems do not obey local realism.

The fact that classical mechanics predicts local realism shows the need for a theory that foregoes

this notion - the theory of quantum mechanics. This immediately leads to the question whether the

assumption of locality or realism has to be discarded, or even both. One of the earliest, and also

most widely accepted, answers to this question is given by the so-called Copenhagen interpretation

of quantum mechanics which took their origin in the 1920s and was pioneered by Heisenberg and

Bohr [18].

Despite its long history and broad acceptance, John Cramer states in his 1986 review article

about the Copenhagen interpretation the following: “Despite an extensive literature which refers to,

discusses, and criticizes the Copenhagen interpretation of quantum mechanics, nowhere does there

seem to be any concise statement which defines the full Copenhagen interpretation.” [19]. He identified

five key axioms that can be summarised as follows.

Axiom (Copenhagen Interpretation of Quantum Mechanics).

1. The uncertainty principle: It is impossible to know all properties of a physical system at the

same time.

2. State vectors: The state of a physical system at a certain time t is completely described by a wave

function ψ (t). The wave function is a continuous function of time except when a measurement

is performed.

3. Statistical interpretation: The square modulus of the wave function |ψ|2 can be interpreted as a

probability distribution. Observable quantities can be described as linear operators on the wave

function. Their measurement results in a discontinuous change, or “collapse”, of the wave

function to one of the eigenspaces of the observable.

4. Complementary principle: The uncertainty principle is a fundamental limit to the accuracy

of a simultaneous measurement of certain variables. It is intrinsic to nature and cannot be

circumvented, no matter the fidelity of the experimental apparatus. An interpretation of experi-

mental results must take into account this complementary character of certain observables as it

is specifically pronounced in the wave-particle duality of matter.

5. Positivism: The question of whether there is a hidden universe concealed behind what we can

observe, that still obeys the law of determinism and local realism, is meaningless. A physical
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theory must only be concerned with the prediction of outcomes of actually observable features of

nature.

The Copenhagen Interpretation clearly contradicts realism, since by the uncertainty principle it

is impossible to attain perfect knowledge of all observables of a physical system at a certain time.

It should be emphasised that while complete knowledge of the state of the system is represented in

the form of a wave function, the statistical nature of quantum mechanics prevents this knowledge to

extend to the level of arbitrary sets of observable quantities. Moreover, the Copenhagen interpretation

also opposes locality due to the way measurements impact the wave function. It is this locality-

violating axiom of the Copenhagen interpretation that lead Einstein to his famous remark of “spooky

action at a distance” [1] and to the famous paper by Einstein, Podolsky and Rosen from 1935 [2].

We will review the mathematical framework of quantum mechanics in light of the central axioms of

the Copenhagen interpretation.

We want to briefly note that there exist proposals of a quantum mechanical theory that deviate

from the Copenhagen interpretation and name two examples. A comparatively well-known alternative

formulation of quantum mechanics that preserves realism but still opposes locality is the so-called

pilot wave theory, first pioneered by de Broglie in 1927 [20] and rediscovered and reformulated by

Bohm in 1952 [21, 22]. More recently, in 1989, Weinberg analysed the effect of nonlinear corrections

to a linear quantum mechanical theory and their implications [23]. However, it has been pointed

out that such a nonlinear formulation potentially encounter the problem of allowing arbitrarily fast

communication, often called supraluminal communication, which would be in contradiction to special

relativity beyond the violation of non-locality via the Bell inequalities [24,25].

2.2 Hilbert Space

The first question regarding the mathematical framework following from the Copenhagen interpreta-

tion concerns the state space of the wave function. By the complementary principle of the Copenhagen

interpretation we understand that every physical particle can be interpreted as a wave, as such we

expect physical particles to follow the superposition principle. The fact that we have to allow for

superposition motivates the assumption that the space of state vectors needs to allow for a vector

space structure such that addition of wave functions is well-defined1.

The statistical interpretation of quantum mechanics is manifested in the notion, that the modulus

square of the state vector can be regarded as a probability distribution w = |ψ|2. From a mathemat-

ical perspective this means that w needs to be nonnegative and normalised to 1. Since the statistical

interpretation explicitly states that the probability is given by the modulus square, the norm can be

identified with the so-called L2 norm. For the continuous variable of position corresponding to the

representation of the state of a single particle via the wavefunction ψ (~x) with ~x ∈ R3, one can con-

clude that a suitable space for this specific spatial representation of a single-particle wave functions

is the space L2
(
R3
)
.

The next question concerns the underlying field of the vector space of quantum states. From

a mathematical standpoint complex numbers are favourable to real numbers since they form an

algebraically closed field, i.e. any non-constant polynomial with coefficients in the field has a root

1For an even stronger argument, we refer to the work by Abrams and Lloyd [26], who showed that nonlinearity of quantum
mechanics would imply polynomial-time solvability of NP-complete and #P problems and interpret this result as evidence for the
exact linearity of quantum mechanics.
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in the field. This is equivalent to the statement that, ∀n ∈ N, any matrix representing a map from

Cn admits a set of n generalised eigenvectors, a notion of great importance for the Copenhagen

interpretation that demands a collapse of the wavefunction to eigenspaces of operator on the state

space. An even stronger, and more physical, perspective was pointed out in Ref. [27] where it has

been shown that the so-called quantum de-Finetti theorem is only consistent with a complex (and

neither real nor quaternionic) formulation of quantum mechanics.

Since the L2 norm is at the core of the statistical interpretation of quantum mechanics we briefly

present a more general perspective. For any index set I, one defines the space l2C (I) as the set of all

sequences (zk)k∈I with zk ∈ C such that ∑
k∈I

|zk|2 <∞ .

Following the Copenhagen interpretation, the proper mathematical tool to describe the state of a

quantum mechanical system is to interpret it as an element of some l2C (I) space. In fact, these spaces

are even Hilbert spaces, i.e. Banach spaces with an inner product 〈·, ·〉 such that the norm is given

by ‖ · ‖ =
√
〈·, ·〉. There is an intimate relation between l2 spaces and general Hilbert spaces, which

states that for any complex Hilbert space H there exists an index set I such that H is isomorphic

to the space l2C (I) [28]. Moreover, in physics one almost always deals with separable Hilbert spaces,

i.e. those with a countable orthonormal basis. This allows for an even more precise statement: For

any separable Hilbert space H there are only two possibilities. If dim (H) = d < ∞, then H is

isomorphic to Cd with the Euclidean norm. If dim (H) = ∞, then H is isomorphic to L2 (Rn) for

arbitrary n ∈ N with the canonical L2 norm.

In this thesis we will only discuss separable, in fact mostly finite-dimensional, Hilbert spaces. The

fact that all Hilbert spaces of equal dimensionality are isomorphic to each other is the mathematical

motivation why one sometimes speaks of “the” Hilbert space. The only mathematically relevant

difference between Hilbert spaces lies in their dimensionality. In particular, the description of the

state of any physical system in a Hilbert space of dimension d is equivalent to a description in the

space Cd with the Euclidean norm.

There is one subtle detail regarding the Hilbert space picture. Strictly speaking, the normalisation

condition on wave functions is not compatible with a vector space structure. This can be immediately

seen by observing that if |ψ〉 is a properly normalised state vector2 then the only λ ∈ C that allows

λ |ψ〉 to still be properly normalised are those with |λ| = 1. Additionally, it turns out that no

measurement can measure the absolute phase of a state vector |ψ〉. Only the relative phase between

two state vectors leads to a physically observable difference in behaviour. The positivism axiom of

the Copenhagen interpretation encourages to not include this phase in the mathematical description

of the physical state space. This “physically unimportant global phase” is sometimes formalised by

the statement that for each Hilbert space H the group U (1) is a gauge group of first kind. Hence

for a given Hilbert space H, any state λ |ψ〉 ∈ H for arbitrary λ ∈ C\ {0} is equivalent. More

precisely, states of quantum systems are bijectively identified not with elements of Hilbert spaces but

rather with elements of so-called projective Hilbert spaces [29]. The projective Hilbert space P (H)

corresponding to H, if dimH = d often called CP d−1, is given by the equivalence class of vectors

2In physics it has been historically established that vectors in Hilbert space are denoted by so-called kets |ψ〉, the corresponding
dual space element by the Fréchet-Riesz representation theorem is denoted by a so-called bra 〈ψ|.
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|ψ〉 ∈ H with the equivalence relation ∼ given by

|ψ1〉 ∼ |ψ2〉 if ∃λ ∈ C, λ 6= 0 : λ |ψ1〉 = |ψ2〉 . (2.1)

The elements of a projective Hilbert space are called rays. The Copenhagen interpretation hence

motivates the notion, that quantum mechanical states are represented by rays in separable complex

Hilbert spaces.

This description is strictly true only for so-called pure states. We will amend this in Sec. 2.4 and

focus on pure states in this and the following subsection. Furthermore we will henceforth simply talk

about “states in Hilbert space” where the identification with the corresponding equivalence class in

the projective Hilbert space is implied.

To describe how quantum systems interact with each other it is necessary to find an adequate

description of the composite state of two physical systems whose individual states are elements of a

Hilbert space each. From a mathematical standpoint two solutions seem plausible - the tensor sum

⊕ or the tensor product ⊗. The dimension of Hilbert space can be identified with the number of

different configurations in which the physical system can be theoretically prepared, cf. Sec. 2.4. If

one considers two physical systems, with d1 and d2 possible configurations respectively, the tensor

sum implies that the composite system has a number of different configurations equal to the sum of

different configurations of the individual system. Conversely, the tensor product implies that it is the

product of different configurations. If one measures the properties on the two subsystems individually,

and the two subsystems are completely independent, one expects no collapse in the other subsystem.

As a consequence, it is evident that after a measurement on the first subsystem has been performed,

the second subsystem needs to retain the possibility to be in any of its d2 configurations. Summing

now over all d1 possible measurement results on the first system one can see that d1 ·d2 is the proper

number of configurations for the total system.

As a conclusion, the composite state space of two physical systems described by Hilbert spaces H1

and H2 is given by the tensor product Hilbert space H1 ⊗H2 . It is important to keep in mind that

the projective Hilbert space of the composite system P (H1 ⊗H2) is not equal to P (H1) ⊗ P (H2).

This is just another way of illustrating that the global phase of a quantum system is irrelevant but

the relative phase between any two subsystems is not.

2.3 Observables and Measurements

We will now turn to address the nature of observables in the framework of Hilbert space. By the

Copenhagen interpretation, observables are represented by linear operators on the state space. To

allow for a simple spectral decomposition of these operators, they should ideally be continuous. In

fact, if the Hilbert space is finite-dimensional, every linear operator is continuous [28]. However, in

an infinite-dimensional Hilbert spaces not even the position operator ~x is continuous and it is math-

ematically not straightforward to define eigenvectors which are required to describe the action of a

position measurement. This problem can be treated by looking for eigenvectors not in the Hilbert

space but in an “extended Hilbert space” including for example the space of tempered distribu-

tions [28]. These generalised eigenvectors can then be properly mathematically characterised. In the

following we will restrict ourselves to finite-dimensional Hilbert spaces which is sufficient in the con-

text of this thesis. Since several results can be generalised, potentially under additional constraints,
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for the infinite-dimensional case we will nonetheless try to keep the notation general, if possible.

A measurement of an observable leads to a discontinuous collapse of the wave function onto one of

its eigenspaces. If we associate each eigenspace with a measurement result, then the statistical inter-

pretation of quantum mechanics leads to the following assumption: The likelihood of a measurement

associated with the observable O to collapse the state |ψ〉 onto an eigenspace of O with correspond-

ing projector P is equal to ‖P |ψ〉 ‖2. |ψ〉 collapses according to the so-called Lüders projection,

|ψ〉 7→ P |ψ〉
‖P |ψ〉‖2 [30]. Such a measurement is usually termed “measurement of first kind” [31,32].

There is some confusion in the literature about what precisely constitutes a Pauli measurement

of first kind. In his original formulation [31], Pauli gave two definitions, namely that the result of

a measurement of first kind will be identical upon repetition, whereas his second definition states

that the probability distribution of obtaining a particular result is the same immediately before

and after the measurement. We know nowadays that these definitions are not equivalent and in

modern quantum mechanics the second definition is usually adopted. Measurements following the

first definition are usually called repeatable and it is clear that repeatable measurements are of first

kind but not all first-kind measurements are repeatable.

A special kind of repeatable measurements are so-called quantum nondemolition measurements

(QNDs) [33, 34]. QND measurements usually do not only demand that the measurement result is

identical after an immediate re-measurement but also after an additional free evolution of the system.

It should be emphasised that a QND does not imply that the wave function does not collapse but

only that the back-action on the system via the measurement is minimised in a way that makes

repeated measurements possible.

A measurement of second kind alters the state of the system in such a way, that it changes the

measurement statistics of the state through the measurement. For example, photon counting with

destruction of photons by absorption represents a measurement of second kind. No matter whether

a photon is detected or not, there will be no photons left after the measurement has been performed.

One could now argue that a repeatable measurement also alters the measurement statistics since it

always collapses the wave function such that the state after the measurement only admits a single

result in a repetition. However, it is not the measurement that changed the statistics but rather the

selection according to the recorded measurement result. This is in contrast to the photon counting

by absorption in which the very measurement will destroy the photon no matter which measurement

result actually has been recorded.

To emphasise this two-step approach to a measurement in terms of a preparation and a selection

component, one often employs the weak von Neumann projection, |ψ〉 7→∑
i
Pi|ψ〉〈ψ|Pi
‖Pi|ψ〉‖2 to describe the

preparation of the state by the measurement, with {Pi} being the set of projectors on the eigenspaces

of the corresponding observable [32]. The resulting state is a statistical mixture that yields the same

probability distribution as the original state but has no definite value of the observable yet. It is

rather in an incoherent superposition, i.e. a mixed state, of the possible values. We will discuss the

corresponding extension of state space in the next section. Such a measurement without an actual

recording of the measurement result, or, equivalenty, an immediate discarding of the information

about the result, is sometimes called non-selective measurement. This is in contrast to selective

measurements which select from the ensemble obtained via von Neumann projection a subensemble

corresponding to a unique value of the measured property. For the case of a one-dimensional projector

corresponding to this measurement result this leads to a pure state and coincides with a Lüders
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projection. Although it appears that the Lüders projection and the von-Neumann projection with

selection of the measurement result yield different post-measurement states if the projector has

dimension reater than one, it can be shown that both descriptions are equivalent [35]. For an

extensive mathematical analysis on different kinds of measurement see e.g. Ref. [36]. An overview

and comparison of the various projection postulates corresponding to different measurements was

recently given in Ref. [35]. In the following we will usually refer to selective measurements when we

speak of measurements being performed on a quantum system.

A measurement result is usually attributed to the eigenvalue of the measured observable cor-

responding to the eigenspace onto which the wave function collapsed. By that interpretation, the

operator O should at least be normal since normal operators obey the relation that different eigen-

values correspond to orthogonal eigenspaces3. It is this property that allows us to talk about a

proper projection onto an eigenspace corresponding to the measurement result. However, in prac-

tice, measurement results need to be classical in order to be observable by the classical sensors of

an experimenter, e.g. their ears or eyes. For this reason, the measurement results and corresponding

properties of the quantum systems are usually thought of as real. Consequently, observables need to

be represented by diagonalisable, linear operators with real spectrum4. The corresponding operators

are called self-adjoint or Hermitian5.

In summary, physical observables are represented by Hermitian operators on Hilbert space. Mea-

surements correspond to a projection of the state vector of the physical system onto an eigenspace

of the operator with likelihood equal to the squared modulus overlap of the state vector with the

eigenspace. The eigenvalue of the operator on this eigenspace corresponds to the measurement result.

In terms of operators it makes no difference whether we consider them on the projective Hilbert

space or the ordinary Hilbert space, since any linear operator A fulfils ∀λ ∈ C : A (λ |ψ〉) = λ (A |ψ〉).
The action of a linear operator on a single vector in Hilbert space already defines its action on the

whole ray completely. The term observable will refer, depending on context, either to the operator

describing this system property in the mathematical framework of Hilbert spaces or to the set of

classical measurement results of a certain system property. In mathematical terms the first case refers

to a Hermitian operator on Hilbert space while the second case refers to the operator’s spectrum.

Under certain restrictions, the space of operators on Hilbert space forms a Hilbert space itself. A

compact operator A on a separable Hilbert space H is called a Hilbert-Schmidt operator if
∑
i s

2
i <∞

where {si} is the set of singular values of A. The set of Hilbert Schmidt operators is called HS (H).

The sesquilinearform

∀A,B ∈ HS (H) : 〈A |B〉 = Tr
[
A†B

]
(2.2)

defines a scalar product on HS (H) which induces the so-called Hilbert-Schmidt norm,

‖A‖HS =

√∑
i

s2
i , (2.3)

3This is strictly true only as long as the corresponding eigenvalues lie in the field of the vector space. In quantum mechanics
one employs Hilbert spaces over the algebraically closed field of complex numbers which is why this is not an issue in this context.

4As pointed out, the fact that the spectrum of observables is assumed to be real is rather a matter of convention than a
mathematical necessity since any normal operator allows for a complete and orthonormal eigenbasis. We will return to this point
in Sec. 4.9.

5There is a subtle mathematical difference between these two concepts for infinite-dimensional Hilbert spaces [28]. However,
since this thesis will mainly concern the finite-dimensional case we can use these two terms interchangably.
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where {si} is the set of singular values of the Hilbert-Schmidt operator A. Hence, HS (H) is a Hilbert

space [28].

For finite-dimensional Hilbert spaces all operators are Hilbert-Schmidt operators. This allows us

to obtain a natural Hilbert space structure for the space of operators including the notion of ortho-

gonality and orthonormal bases. In the following, the space of operators will always be interpreted

as the Hilbert space of Hilbert-Schmidt operators on H.

2.4 Liouville Space

Maximal information about the state of a quantum system is represented by a set of measurement

results obtained via measurement a maximal set of commuting observables [37]. Such a set of ob-

servables A = {Ai} on H is called a CSCO (complete set of commuting observables). More formally,

the set A is a CSCO if there exists exactly one orthonormal basis of H, up to phase factors on the

individual elements, which contains common eigenstates of all elements of A [37].

Conversely, any element of a Hilbert spaceH is completely determined by the measurement results

of a sequence of measurements involving all elements of a CSCO. States obtained this way are called

pure states, the process of obtaining a pure state this way is called preparation. Any state |ψ〉 ∈ H
can be prepared by measuring a CSCO where |ψ〉 is a common eigenstate to all observables in this

set.

There is a statistical nature to quantum mechanics by virtue of the statistical outcomes of some

measurements performed on quantum states. This is true even for pure states if the pure state is

not an eigenstate to the observable corresponding to the measurement. Nevertheless, to any pure

state in a Hilbert space H there exists a CSCO for which the measurement results are not statistical,

i.e. no matter how often an experiment on these observables is performed the result will always be

the same. However, it is conceivable that we want to describe states for which we do not know the

result of any measurement with certainty yet, for example by having measured a non-complete set

of commuting observables on a completely unknown states. Such states are called weakly prepared.

Specifically, consider a CSCO A from which a proper subset A0 ⊂ A has been measured. This

means that the state of the system is in a common eigenstate of the subset A0. Let {|ψ(0)
i 〉} be an

arbitrary orthonormal basis of A0 in H, then, the physical system can be interpreted to be with

some probability pi in the state |ψ(0)
i 〉. Nevertheless, this is not equivalent to saying that the physical

system is in a pure state representing an equal superposition of the |ψ(0)
i 〉 (since that would mean we

could predict the measurement results of observables in A/A0 with certainty). To differentiate these

two kinds of superposition, the quantum superposition of states in Hilbert space to form a pure state

is called coherent superposition while the statistical superposition due to incomplete information is

called incoherent superposition. Clearly, the expectation value of the measurement result of some

observable in A ∈ A/A0, for which one can attribute an eigenvalue ai to the eigenvector |ψ(0)
i 〉, should

be given by

〈A〉 =
∑
i

piai =
∑
i

pi

〈
ψ

(0)
i

∣∣∣A ∣∣∣ψ(0)
i

〉
. (2.4)
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With {|ψi〉} being an orthonormal basis of H one can write

〈A〉 =
∑
ij

pi

〈
ψ

(0)
i

∣∣∣ψj〉〈ψj ∣∣∣A ∣∣∣ψ(0)
i

〉
=
∑
j

〈
ψj

∣∣∣∣∣A∑
i

pi

∣∣∣∣∣ψ(0)
i

〉〈
ψ

(0)
i

∣∣∣∣∣ψj
〉

=
∑
j

〈
ψj

∣∣∣∣∣A
[∑

i

piP
(0)
i

] ∣∣∣∣∣ψj
〉

= Tr

[
A
∑
i

piP
(0)
i

]
=

〈
A,
∑
i

piP
(0)
i

〉
HS

, (2.5)

where P
(0)
i corresponds to the projector onto |ψ(0)

i 〉. This motivates the definition of incoherent

ensembles not as states on the Hilbert space H but as operators on them. If one defines ρ =
∑
i piP

(0)
i

then one can write the expectation value of an observable A simply as the overlap of A with ρ. ρ is

called the density operator or, if H is finite-dimensional, the density matrix. Note that if the pi are

to be interpreted as probabilities, they need to be nonnegative and they need to sum up to 1. More

formally, any density matrix on this Hilbert space can be written as

ρ =
∑
i

pi |ψi〉 〈ψi| , ∀i : pi ≥ 0,
∑
i

pi = 1 , (2.6)

where {|ψi〉} is an orthonormal basis of H. |ψi〉 〈ψi| denotes the dyadic product of the vector |ψi〉
with itself. The dyadic product |ψi〉 〈ψi| is identical to the rank 1 projector Pi on |ψi〉. If at least two

pi are nonzero, ρ is called a mixed state. Otherwise, it is called a pure state. It is easy to see that the

Hilbert-Schmidt norm of a density matrix is equal to 1 if and only if it is pure, otherwise it is strictly

smaller than one. For this reason the quantity ‖ρ‖HS is often called the purity of ρ. Note, that this

definition of pure states is consistent with the one from Sec. 2.2 since any pure density matrix can

be uniquely identified with a state in projective Hilbert space.

The space of linear operators on a finite-dimensional Hilbert space, L (H), is isomorphic toH⊗H ∼=
Cd ⊗ Cd ∼= Cd2

with d = dimH. The space H ⊗ H is called Liouville space and we will denote it

consistently with LH to indicate its intimate connection with the Hilbert space it originates from.

The consideration of projective Hilbert spaces is not necessary in this context, cf. Sec. 2.2, since

in Liouville space the invariance under a global phase is incorporated by construction6. The set of

density matrices is a proper subset of Liouville space. However, the set of density matrices does

not obey a vector space structure and, in contrast to pure states and projective Hilbert spaces, no

isomorphism to a Hilbert space can be found. It should be emphasised that while the property of

having trace 1 is usually called normalised, it neither means that the operator norm nor that the

Hilbert-Schmidt norm of a corresponding density matrix needs to be equal to 1.

2.5 Open Quantum Systems

A common approach concerning the description of open quantum systems is to start from a nat-

ural partitioning of state space into the primary system, described by a Hilbert space HS , and

its environment, described by a Hilbert space HE [38]. The state of the total system is then de-

scribed as an element of the bipartite tensor product Hilbert space H = HS ⊗ HE . Consequently,

a general mixed state on the total Hilbert space is described by an element of the Liouville space

6This can be immediately seen by the following argument: Let H be a Hilbert space and λ ∈ C, |λ| = 1. Consider an arbitrary
pure state, then ∀λ ∈ C, |λ| = 1, |ψ〉 ∈ H : ρλ|ψ〉 = |λψ〉 〈λψ| = λ∗ |ψ〉 〈ψ|λ = |λ|2 |ψ〉 〈ψ| = |ψ〉 〈ψ| = ρ|ψ〉.
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LH = L (H) = L (HS ⊗HE) ∼= L (HS)⊗ L (HE) = LHS ⊗ LHE . A state ρ ∈ LH is called a product

state if there exist density matrices ρS ∈ LHS and ρE ∈ LHE such that

ρ = ρS ⊗ ρE . (2.7)

It is called separable if it is a convex superposition of product states, i.e.

∃ci ∈ R, |ci| ≤ 1,
∑
i

ci = 1 : ρ =
∑
i

ciρi (2.8)

with all ρi being product states. A state that is not separable is called entangled. As a matter of fact

the violation of local realism in the theory quantum mechanics is closely connected to the concept of

entanglement. Entanglement itself can be seen as the property that makes a quantum state actually

“quantum”7 [6].

Given a density matrix on LH, describing the total state of a physical system and its environment,

what is the corresponding density matrix on LHS that describes only the information on the system?

In other words, how does one obtain a reduced description of the total system only including the

relevant degrees of freedom for the primary system.

We characterise the system state ρS ∈ LHS ≡ LS by measuring some set of observables MS ∈
LS . Let us consider a particular observable MS ∈ MS . First, we need to figure out what is

the measurement operator on the total system M corresponding to MS . Consider first of all the

special case that ρS is a pure state, corresponding to a |ψS〉 ∈ HS , that is an eigenstate to MS

corresponding to the measurement result mS . Then, if the state on the total Hilbert space were

the pure state |ψS〉 ⊗ |ψE〉 with |ψE〉 ∈ HE arbitrary, we expect that a measurement of M yields

the measurement result mS with probability 1 and leaves the state on HS unchanged (since it is

already in an eigenstate). Because this must be independent on |ψE〉, an obvious choice seems to be

M = MS ⊗ 1E leading to |ψS〉 ⊗ |ψE〉 being an eigenstate to M with eigenvalue ms, independently

on |ψE〉. It is also the only choice since the fact that the eigenspaces of M need to be of the form

E
(S)
i ⊗HE , with E

(S)
i being the eigenspaces of MS , automatically implies M = A ⊗ 1E . Thus, the

equivalence of M to MS on the system then leads to M as defined above.

Now consider some ρ ∈ LH. What is the proper reduced description ρS ∈ LS? Clearly, the

expectation value of a measurement of MS on ρS needs to be the same as the measurement of the

corresponding operator MS ⊗ 1E on ρ,

Tr [MSρS ] = Tr [(MS ⊗ 1E) ρ] . (2.9)

ρS will be the image of ρ under some linear operator Θ : L 7→ LS , i.e. ρS = Θ (ρ). Let {M (i)
S } be an

orthonormal basis of LS , then by Eq. (2.9),

Θ (ρ) =
∑
i

M
(i)
S Tr

[
M

(i)
S Θ (ρ)

]
=
∑
i

M
(i)
S Tr

[(
M

(i)
S ⊗ 1E

)
ρ
]
. (2.10)

7It should be noted at this point that recently a notion of “classical entanglement” started to emerge which describes Bell
inequality violating correlation particularly in the context of classical light. It should be emphasised that this classical entanglement
does not violate locality since it happens between degrees of freedom of a single system. This is in contrast to quantum entanglement
which violates locality by nonclassical correlations between spatially separated systems. For a more detailed discussion on this
subject see e.g. the work by Töppel et al. [39] and references therein.
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Since ρ was arbitrary this is a unique prescription of the operator Θ, called the partial trace TrE [6].

The partial trace maps the state of system and environment into a state of only the system by

retaining all observable quantities that one would obtain by measuring system properties on the

total system. Since the operators {|ψi〉 〈ψj |}, with {|ψi〉} being an orthonormal basis of HS , form an

orthonormal basis of LS we can define the partial trace TrE of ρ with respect to HE as

TrE (ρ) =
∑
ij

|ψi〉 〈ψj |Tr [(|ψi〉 〈ψj | ⊗ 1E) ρ] . (2.11)

For any pure state ρ ∈ H, TrS (ρ) is a pure state if and only if ρ is separable with respect to the

separation HS ⊗HE [40].

The partial trace allows us to clearly elucidate why density matrices are necessary for the descrip-

tion of open quantum systems. Let H be the Hilbert space of a physical system with its environment

and let us assume that in this total Hilbert space the system state can be described as a pure state.

Any experiment on the physical system will concern observables on the Hilbert space corresponding

to the system, HS ⊂ H. For this reason, cf. the positivism axiom of the Copenhagen interpretation, it

only makes sense to consider the state on the Hilbert space HS for all intents and purposes. However,

the reduced state of the physical system on HS given by the partial trace will only be pure if there

was no entanglement between the system (described by the Hilbert space HS) and its environment

(described by HE ≡ H/HS). In other words, as soon as the state of a physical system becomes

entangled with its environment it must be described as a mixed state in Liouville space instead of a

pure state in Hilbert space.

Finally, we want to illustrate the connection between quantum states and the information con-

tained in them. It is common to rather define the entropy, i.e. the disorder, which describes the

absence of information. In analogy to the classical Shannon entropy, one defines for quantum sys-

tems the so-called von Neumann entropy S [6],

S = −ρ log2 ρ . (2.12)

If H is finite-dimensional and {λi} is the set of eigenvalues of ρ (including repetitions due to degen-

eracy), then S can be written as

S = −
∑
i

λi log2 λi, (2.13)

with λi log2 λi = 0 for λi = 0 (in accordance with limε→0 (ε log2 ε) = 0). S is nonnegative and it is

minimal if ρ is a pure state, corresponding to maximal information contained in these kind of states.

This is the reason why the preparation of pure states is a central paradigm of quantum information

processing, a fact we will return to in Sec. 6.

2.6 Dynamical Maps

How does the state of an open quantum system evolve from one point in time to another? As

already pointed out in Sec. 2.1 the theory of quantum mechanics is linear. It furthermore seems

straightforward to demand that any such mapping map needs to map density matrices onto density

matrices, i.e. they need to preserve Hermiticity, trace and positive semidefiniteness. In the following

we will abbreviate positive semidefiniteness of a matrix by stating that the matrix is positive. For
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any Hilbert space H and A ∈ L (H), A is called positive if ∀x ∈ H 〈x,Ax〉 ≥ 0. A is called trace-

preserving if ∀x ∈ H,Tr (x) = 1 : Tr (Ax) = 1. From this condition it then follows automatically

that ∀x ∈ H : Tr (x) = Tr (Ax).

In short, a map that preserve the properties of a density matrix needs to be positive and trace-

preserving. However, there is one caveat. If the mapping is supposed to be physically sensible, one

requires a stronger form of positivity - complete positivity. A is called completely positive if it is

m-positive ∀m ∈ N. A is called m-positive if for all Hilbert spaces Hm with dim (Hm) = m the map

A ⊗ 1m ∈ L (H⊗Hm) is positive. Physically, this means that if we consider a map on a quantum

system where the system is coupled to another quantum system whose state is left invariant, the

resulting map on the total system should still be positive. If this condition were not fulfilled, then

there would not exist a natural extension of the map to a higher-dimensional Liouville spaces which

would be unphysical. Complete positivity makes sure that this problem is avoided.

Similarly to the discussion from the previous subsection, we now employ a partitioning of Liouville

space into a Liouville space of the system LS and a Liouville space of the environment LE . Consider

an initial state ρS ∈ LS , that originates from some state ρ ∈ LS ⊗ LE of the total system via

the partial trace. Then, the image of ρS can be obtained by considering the image of ρ under some

unitary8 map on LS⊗LE and computing the partial trace over the environmental degrees of freedom.

A remarkable observation is the fact that if no restrictions are imposed on the relation between the

initial density matrix in LS and the initial density matrix in LS⊗LE , the resulting image of arbitrary

initial density matrices in LS is not guaranteed to be a proper density matrix [10,41]. However, one

can prove that a proper completely positive dynamical map on LS is guaranteed if and only if ρS ∈ LS
originates from a separable state in LS ⊗ LE ,

ρ = ρS ⊗ ρE , (2.14)

with fixed ρE ∈ LE when the evolution on the total system is unitary [11].

Effectively, this means that when initial correlation between system and environment exist, i.e. the

initial state on the combined Hilbert space of system and environment cannot be written in the form

of Eq. (2.14), then the mapping on the system Liouville space LS is not necessarily completely

positive. This effect has been observed experimentally in the context of process tomography [42]. It

is even conceivable for the resulting map to be nonlinear [11]. Note that these non-linear maps are

not contradictory to central theorems of quantum information or even special relativity, cf. Sec. 2.1,

as only under very specific circumstances such a violation of linearity can appear and the evolution

of the total system is still linear [43].

In the remainder of this thesis we will mainly focus on completely positive, trace-preserving maps

(CPTP maps) on Liouville space. We will call these maps “dynamical maps”9. The general form in

which these dynamical maps can be represented is given by a theorem first formulated by Choi [12]

which reads for mappings from Cd onto itself as follows.

Theorem 2.1 (Choi). Let Φ : Cd 7→ Cd be a linear map. Φ is completely positive if and only if it

is d-positive. Furthermore, Φ is completely positive if and only if ∃ {Ek}k=1,...,d2 with Ek : Cd 7→ Cd

8We postpone the reasoning why unitary evolution on the total system is a reasonable assumption to Sec. 2.8.
9While in the literature the term “dynamical map” may sometimes refer to arbitrary linear transformations on Liouville

space [44], we reserve it for CPTP maps.
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linear such that ∀x ∈ Cd

Φ (x) =
∑
k

EkxE
†
k . (2.15)

Choi’s theorem is the finite-dimensional version of a more general result on completely positive

operators on C∗ algebras called the Stinespring factorisation theorem [45]. The operators Ek in

Eq. (2.15) are usually called Kraus operators. It can easily be seen that Φ is trace-preserving if and

only if ∑
k

E†kEk = 1d . (2.16)

More generally, a quantum operation is defined as a completely positive map fulfilling only∑
k E
†
kEk ≤ 1d which is shorthand notation for saying that

∑
k E
†
kEk is a Hermitian operator whose

eigenvalues are all less or equal 1 [6]. With respect to the nomenclature employed in this thesis, a

dynamical map is a quantum operation that fulfils a normalisation according to Eq. (2.16).

There exists no bijection between CPTP maps and a corresponding set of Kraus operators. How-

ever, it can be proven that two dynamical maps D,D′ from Cd onto itself, with Kraus operator sets

{Ek} , {E′k} such that10 |{Ek}| = |{E′k}| = m, are equal if and only if there exists a unitary matrix

U ∈ Cm×m with matrix elements ukl such that Ek =
∑
l uklE

′
l [6].

This freedom in the choice of Kraus operators can be exploited in terms of obtaining an orthogonal

set
{
Ēk
}

such that ∀ρ ∈ Cd [46]

D (ρ) =
∑
k

ĒkρĒ
†
k,

∑
k

Ē†kĒk = 1d . (2.17)

A special kind of dynamical maps are unital dynamical maps which means that D (1d) = 1d. It is

easy to see that D is unital if and only if ∑
k

EkE
†
k = 1d . (2.18)

2.7 The Choi-Jamio lkowski Isomorphism

An arbitrary linear operator L : Cd 7→ Cd can be identified with a vector in the space Cd ⊗ Cd due

to the isomorphism L
(
Cd,Cd

) ∼= Cd ⊗ Cd. This idea leads to an especially convenient isomorphism

between linear operators on a Liouville space and density matrices in another Liouville space, the

Choi-Jamio lkowski isomorphism, sometimes also called channel-state isomorphism [12,14].

Definition 2.2 (Choi-Jamio lkowski isomorphism). Let H be a finite-dimensional Hilbert space with

dimH = d and let L (LH) the Hilbert space of linear operators on the corresponding Liouville space.

Let {|ψi〉} be an orthonormal basis11 of H and define the unnormalised state |φ〉 =
∑
i |ψi〉 ⊗ |ψi〉 as

an element of the bipartite Hilbert space H⊗H ∼= LH. The map Λ : L (LH) 7→ LH ⊗ LH with

Λ (X) = (1LH ⊗X) (|φ〉 〈φ|) =
∑
ij

|ψi〉 〈ψj | ⊗X (|ψi〉 〈ψj |) (2.19)

10This equality is without loss of generality. If the sets are unequal, one can pad the set with lower cardinality with zero
operators until they match in size.

11Usually, this basis is chosen to be the canonical basis which motivates speaking of the Choi-Jamio lkowski isomorphism and
the Choi matrix.
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is called Choi-Jamio lkowski isomorphism.

Since LH ⊗ LH ∼= LH⊗H, the Choi-Jamio lkowski isomorphism maps an operator on LH to a

state in the Liouville space corresponding to the bipartite extended Hilbert space H ⊗ H. If one

calculates the matrix elements of C (X) in the orthonormal basis {|ψi〉 〈ψj |}i,j=1,...,d one obtains the

so-called Choi matrix12 [46,47]. The Choi matrix is most conveniently represented by associating the

single index α of an operator τα = |ψk〉 〈ψi| to the ordered pair (k, i). Analogously, one can define

τβ = |ψl〉 〈ψj |. Then, one obtains the following expression for the Choi matrix Λ [48],

Λαβ = 〈ψk |X (|ψi〉 〈ψj |) |ψl〉
X =

∑
αβ

Λαβταρτ
†
β . (2.20)

While the Choi-Jamio lkowski isomorphism is an isomorphism between linear operators and bipar-

tite states in the extended Liouville space, it is not an isomorphism between dynamical maps and

density matrices (as elements of LH⊗H). This is because surjectivity of this mapping is violated,

specifically note that ∀X ∈ L (LH) : TrB (Λ (X)) = 1H where TrB is the partial trace over the sec-

ond Liouville space of the bipartite Liouville space [49]. Calling the Choi-Jamio lkowski isomorphism

a channel-state isomorphism is consequently problematic. However, C is a linear injection on the

space of dynamical maps, i.e. the image is still unique. Furthermore, for any X ∈ L (LH) if X is

Hermiticity preserving then Λ (X) is hermitian. In addition, X is completely positive if and only if

Λ (X) is positive [49]. This allows to identify properties of the mapping with properties of a density

matrix which is usually much more convenient.

2.8 Unitary Dynamical Maps (UDMs)

What characterises dynamical maps that correspond to the evolution of an isolated13 system? A

canonical assumption for the evolution of an isolated system is that it is reversible which implies

that information cannot be lost during the evolution. Clearly, information also cannot be created

by evolution in an isolated system. Since entropy is a measure for information, this motivates the

notion that isolated quantum systems evolve by linear, entropy-preserving transformations. This

might seem like a strong assumption, specifically in terms of the Second Law of Thermodynamics.

However, note that the Second Law describes macroscopic systems in which entropy is conserved for

reversible processes. Classical thermodynamics still predicts increases in entropy even for isolated

systems, for example when looking at an ideal gas in a box which is initially confined to exactly

half of the box’s volume. Nevertheless, one has to be careful since different notions of entropy are

considered in this context. Notably, the classical Shannon entropy is linear (extensive) while the

quantum von Neumann entropy is strongly sublinear [6]. For a more in depth analysis of classical

12It is important to note, that the Choi matrix Λ is usually not normalised in terms of having trace 1, the relation Tr [Λ] = d
rather holds [46]. In the following, when we want to interprete the image of the Choi-Jamio lkowski isomorphism as a density
matrix, we will imply the normalised matrix Λ

d
.

13We will use in this thesis the term “isolated quantum system” to refer to what in the literature is usually called “closed
quantum system”. This is to differentiate between quantum systems which truly experience no perturbation and those quantum
systems which are steered by e.g. an outside laser field while still allowing a description in Hilbert space, hence admitting energy
to flow in and out of the system. This distinction is also quite common in the field of thermodynamics [50]. In particular, these
notions will become important in Sec. 5 when we turn to the subject of quantum dynamics and control. In this context, isolated
systems are described in Hilbert space with an evolution induced by time-independent generators, whereas closed systems allow
for time-dependent generators.
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vs. quantum entropy see for example Ref. [51].

In Ref. [52] it was shown that a linear transformation on LH is entropy-preserving if and only if

it is unitary14. As a consequence, the evolution of isolated quantum systems should be described by

unitary transformations. The fact that unitary transformations preserve information elucidates their

pivotal importance for purposes of quantum information processing.

This immediately poses the question whether the Kraus decomposition for unitary dynamical

maps (UDMs) can be written in a specific form. Indeed, it can be shown that a dynamical map D is

unitary if and only if it can be written as

D (ρ) = UρU† , (2.21)

for unitary U . For an explicit proof of this fact, see Appendix A.1.

We will consider now a finite-dimensional Hilbert space H with d ≡ dim (H). By Eq. (2.21),

we can identify any finite-dimensional unitary dynamical map on LH with a unitary operator U on

H and hence with a unitary matrix U ∈ Cd×d. To examine the structure of the set of UDMs, we

consider two unitary dynamical maps D1, with corresponding unitary Kraus operator U1, and D2,

with unitary Kraus operator U2. Their concatenation is then given by D1D2 and can be described

by a single unitary Kraus operator U1U2 since

∀ρ ∈ LH : (D1D2) (ρ) = D1 (D2 (ρ)) = U1U2ρU
†
2U
†
1 = U1U2ρ (U1U2)

†
. (2.22)

This motivates to speak of a group of unitary dynamical maps and characterise them via the mapping

given by Eq. (2.21) with the group of unitary transformations. However a proper identification of a

UDM with a unitary matrix is only possible if this mapping is an isomorphism. We will now briefly

motivate which is the proper isomorphism that has to be employed in this context.

The identification of concatenation with the group operation has been illustrated in Eq. (2.22). As

pointed out in Sec. 2.6, the mapping between UDMs and the corresponding unitary Kraus operator

is up to a complex number with modulus one (an element of U(1)) on this Kraus operator. This

equivalence is consequently described by the projective unitary group, PU(d). It is defined as the

quotient of the unitary group U(d) by U(1). Elements of PU(d) can be interpreted as equivalence

classes of elements of U(d) with respect to the scalar multiplication of a complex number with absolute

value one15. By Eq. (2.21) any unitary dynamical map can be written ∀ρ ∈ LH as D (ρ) = UρU†. As

discussed in Sec. 2.6, U is uniquely defined only up to a complex factor |z| = 1. Consequently, using

the equivalence relation U ∼ Ũ if ∃λ ∈ C, |λ| = 1 : λU = Ũ , there is a bijective mapping between a

UDM and an element of the corresponding equivalence class. By definition, this space of equivalence

classes is equal to the projective unitary group PU(d). Since PU(d) is a group under multiplication,

it can be directly associated to concatenation of the corresponding dynamical maps by Eq. (2.22).

We can therefore conclude, that the mapping of a UDM to an element of PU(d), representing its

single Kraus operator, is an isomorphism. As a consequence, unitary dynamical maps in Liouville

14More precisely, it is even enough to demand continuity of the transformation and probabilistic linearity from which linearity
of the transformation will follow. Alternatively, one can also show that any linear map that preserves entanglement of arbitrary
decompositions of H must be unitary [52].

15The group PU(d) is isomorphic to the group SU(d). These are just two equivalent ways to account for the indefiniteness
of the global phase in the transformation by either an equivalence class (in the PU(d) case) or by identifying the transformation
with a special representative corresponding to determinant equal to 1 (in the SU(d) case). With this in mind it is evident that the
projective special unitary group PSU(d), which is defined analogously to SU(d) with respect to U(d), is identical to PU(d).
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space can be equivalently described by elements of the projective unitary group.
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3 Minimal Characterisation and Identification of UDMs

The core paradigm of quantum computation is the encoding of information in the state of a quantum

system [6]. Manipulation or communication of this information, represented by unitary dynamical

maps, then allows to perform a variety of tasks more efficiently than any classical computer ever

would be able to [6]. However, the full characterisation of the information stored in a quantum

system is a task that scales exponentially with the number of basic information carriers, in the

simplest case represented by two-level systems called qubits in this context. While this exponential

scaling represents on the one hand a powerful resource for quantum computation, it poses on the

other hand a great experimental challenge. The experimental task of certifying that a quantum

device manipulates arbitrary states in a desired way proves itself to be even more complex since it

requires to show that for arbitrary input states, the corresponding output states are of the desired

form. This motivates the search for the conditions on a minimal set of input states that enables the

characterisation of unitary dynamical maps.

We will begin this section with a short introduction to the problem of exponential scaling, in

particular we will illustrate why it is a fundamental property of quantum information carriers. We

will then proceed to derive a powerful algebraic framework that allows to assess whether a set of

states can differentiate between any two arbitrary UDMs. Specifically, we will determine what is

the minimal amount of states in Liouville space that can perform this task and what are the central

requirements such a minimal set of states has to fulfil. We will expand on these results by showing

that the same set of states can also be used to answer the question whether a dynamical map is unitary

in the first place. Combining these results we will be able to obtain the minimal requirements on a

set of states to identify and characterise unitary quantum operations.

Several of the results presented in this section have been published in Ref. [53].
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3.1 Exponential Scaling

Any pure state can be uniquely characterised by a measurement of a CSCO, cf. Sec. 2.4. It can be

represented as an element of a Hilbert space H with d ≡ dimH representing the amount of different

sets of values one can obtain via measurement of the CSCO. In quantum information such a system

is called a qudit. If d = 2 the term qubit is employed, while for d = 3 one speaks of a qutrit. If d is

a prime p, the word qupit is commonly used to emphasise this fact.

In classical computation the fundamental information carrier is a bit, usually a transistor that

can be in two voltage states representing 0 (low voltage), respectively 1 (high voltage). Analogously,

the most fundamental information carrier in quantum information is the qubit. An arbitrary (pure)

quantum state of a qubit can be written as

|ψ〉 = cos (θ) |0〉+ sin (θ) eiϕ |1〉 , θ ∈ [0, π] , ϕ ∈ [0, 2π] . (3.1)

Naively one might assume, that an infinite amount of information can be encoded into such a qubit

since the possible values the two angles θ and ϕ can take are uncountably infinite. However, a readout

of this information must be performed by a classical measurement of an observable, cf. Sec. 2.3. Any

observable in the two-dimensional Hilbert space corresponding to a qubit can at most have two

non-degenerate eigenspaces, hence only two possible outputs.

Let us assume Alice sends a qubit |ψ〉 to Bob with the goal to communicate some information.

If Alice tells Bob to measure with an operator for which |ψ〉 is an eigenstate, Bob can acquire

the information that either |ψ〉 is in the eigenstate corresponding to |0〉 or |1〉. This is the only

sensible way to communicate information such that no statistical considerations come into play -

|ψ〉 must be pure and it must be an eigenstate corresponding to some fixed CSCO, i.e. it must not

be an incoherent superposition or coherent superposition of eigenstates to the CSCO. This becomes

especially apparent if Bob measures with an operator to which |ψ〉 is not an eigenstate. Each

measurement by Bob now only leads with a certain, non-unity likelihood to a result corresponding

to either of the two eigenvalues. Bob is now, with only a single measurement, unable to retrieve any

concrete information about the qubit due to the statistical nature of measurements. If he were to

repeat the measurement on identical copies of the qudit, he could start to make statistical statements

on the state. Nevertheless, it should be emphasised that he cannot make a statement about the qudit

with absolute confidence other than that it is not an eigenstate to the observable he measured once

he obtained two different measurement results.

More formally, it can be shown that an isolated system of n qubits cannot transmit more than

n bits of classical information, which follows immediately from the so-called Holevo bound [6]. The

Holevo bound shows, that even though theoretically a single qudit can hold an uncountable amount

of information, practically it can only transmit the same amount of information as a classical bit.

This immediately raises a question about the benefit in using quantum systems if they are only as

powerful as classical systems. However, the Holevo bound only concerns isolated systems. By using

ancillary qubits one can increase the capacity of a quantum channel. In the above discussion, if Alice

and Bob both possess a single qubit of a two-qubit entangled state it is actually possible for Alice to

transmit two classical bits of information by manipulating her qubit and sending it to Bob. This is

called superdense coding [54]. Generally speaking, it is the fact that composite quantum systems can

exhibit entanglement that allows them to break the computational and informational boundaries of
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classical systems. If one wants to exploit the resource of quantumness, usage of composite, entangled

quantum systems is consequently imperative.

Manufacturing a quantum device to process or communicate one or two bits of classical information

is comparatively simple. However, the regime where quantum information devices truly become

superior to classical devices is entered only when many qubits are combined. Furthermore, performing

fault-tolerant quantum computation requires usually ancillary qubits and it is necessary to assert that

the noise does not scale unfavourably with the corresponding increase in system size [55]. The process

of adding computationally “atomic” structures on top of an existing architecture is called scaling.

One of the most important differences between classical and quantum systems lies is their scaling

behaviour.

If we consider a single classical bit, it can be either in the state 0 or 1. This means we can describe

the state by a single number {a} with either a = 0 or a = 1. If we scale this to a n-bit system,

description of an arbitrary state of this system simply amounts to assigning to each of the n bits

either the number 0 or 1. As a result, the total state of the system is described by the set {ai}i=1,...,n

where ai is the state of the i-th bit. This represents a linear scaling, since each additional bit only

requires adding a single number to the set.

This linear scaling breaks down when quantum system are considered. According to Eq. (3.1)

the (pure) state of a qubit can be described by a set of two angles {θ, ϕ}. This corresponds to

the real dimensionality d = 2 of the qudit’s projective Hilbert space. If quantum systems were

to scale linearly, then a two-qubit system could be described by a set of four angles {θ1, ϕ1, θ2, ϕ2}
corresponding to a real dimension of 4. However, the projective Hilbert space of the two-qubit Hilbert

space has a real dimension of 6 due to the tensor product structure of composite quantum systems,

cf. Sec. 2.2. More generally, the number of real parameters to describe the pure state is 2 · 2n− 2 for

an n-qubit Hilbert space16, which indicates that quantum systems scale exponentially in their degrees

of freedom. In fact, the naive approach to just add up the descriptions of the individual qudits only

allows to describe separable states. Once again, the additional quantum resource of entanglement

leads to a remarkable differences in the behaviour of quantum systems compared to classical systems.

As a conclusion, the increased power of qubits comes at a price: an increased difficulty in the

characterisation of quantum systems. Due to the Choi-Jamio lkowski isomorphism this exponential

scaling in the description of states immediately translates to an exponential scaling in the description

of dynamical maps. To keep the description feasible it is consequently of great importance to find

minimal characterisations of unitary (i.e. information preserving) dynamical maps. We will discuss

various approaches to this in Sec. 3.4. In the following we will focus on the specific question on what

is the minimal input of density matrices to uniquely identify the unitary matrix corresponding to a

unitary dynamical map in terms of their action on some set of density matrices.

3.2 Unitary Characterisation in Liouville Space

Since unitary dynamical maps on Liouville space can be identified with unitary operators on Hilbert

space, cf. Sec. 2.8, it is immediately clear that a unitary dynamical map can be uniquely charac-

terised via its action on an orthonormal basis on Hilbert space. However, while Eq. (2.21) yields

an isomorphism from the space of CPTP maps to the space of (projective) unitary operators on the

16A n-qubit Hilbert space is isomorphic to C2n . Going to the corresponding projective Hilbert space reduces the real dimen-
sionality by 2 due to the irrelevance of the global phase and the normalisation condition.
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underlying Hilbert space, from a physical perspective it is rather relevant how we can characterise

such a map by its action on states. After all, we can only indirectly access information of a dynamical

map by performing measurements on states that underwent the action of the corresponding quantum

channel. As mentioned previously, if we know the image of an orthonormal basis of Hilbert space

vectors, we can uniquely characterise the corresponding unitary dynamical map. However, the image

of the corresponding rank 1 projector density matrices is not enough to uniquely characterise the

unitary dynamical map.

We will illustrate this somewhat surprising observation by an example. Let {|ψi〉}i=1,...,d be an

orthonormal basis of Hilbert space and P = {Pi}i=1,...,d the corresponding set of rank 1 projectors

on the basis states. We consider a unitary dynamical map given by the unitary

U =
∑
i

eiϕi |ψi〉 〈ψi| . (3.2)

As long as the dimension d of the Hilbert space is greater than 1 the set of unitaries that can be

written as in Eq. (3.2) cannot be identified with a single element of PU(d). The corresponding UDMs,

DU , map the set P onto itself independently on the parameters {ϕi}i=1,...,d since

DU (Pi) = UPiU
† = eiϕiPie

−iϕi = Pi ,

which implies that all UDMs derived from unitaries of the form of Eq. (3.2) are not differentiable by

just considering the action on the set P.

We want to point out that this issue somewhat illuminates why the density matrix picture can

be regarded as more appropriate from a practical perspective, even in the absence of environmental

effects. This is because the naive unitary characterisation in Hilbert space requires to probe a

quantum system with a sequence of pure states whose individual global phases are locked and well-

known in each individual experiment. This is unrealistic, since there is no way to prepare a pure

state with a well-defined phase due to no measurement being able to access this phase. This was the

motivation behind the introduction of projective Hilbert spaces, cf. Sec 2.2. Note that the density

matrix formalism automatically takes the inaccessibility of the global phase of a quantum state into

account, cf. Sec. 2.4. For this reason, it is necessary to probe in at least one experiment the behaviour

of relative phases between the states of an orthonormal basis in addition to considering the mapping

on the orthonormal basis itself17. This notion will be incorporated in the concept of “total rotation”

that we will introduce later.

To find the specific requirements for the characterisation of unitary dynamical maps in terms of

their action on elements of Liouville space, we need to introduce some definitions first. In the following

we will identify elements of Liouville space with matrices in Cd×d with d being the dimension of the

underlying Hilbert space.

Definition 3.1 (Unitary Differentiating Sets). Let {Mi} be a set of matrices in Cd×d. We call this

set unitary differentiating if it is possible to uniquely identify the matrix U ∈ PU (d) corresponding

17Alternatively one might employ an ancilla system to compare the phases of states in the primary system to. However, this
would increase the dimensionality of the problem, in particular by requiring to prepare pure states of the composite system and
performing measurements taking into account both the state of the primary system and the ancilla. Since we will show that solving
the problem of identifying the proper phases consists in probing the primary system with a single additional state (independent
on the system’s dimension), using an ancilla does not appear to be the best approach.
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to a unitary dynamical map by the image of these matrices under the dynamical map, i.e. a set

{Mi} is unitary differentiating if the unitary dynamical evolution map ∆{Mi} that maps U to the set

{M (U)
i } by M

(U)
i = UMiU

† is injective.

What characterises such a set of matrices to be unitary differentiating? To answer this question

it is useful to introduce the concept of commutant spaces.

Definition 3.2 (Commutant Space). Let M ∈ Cd×d and S be a set of elements of Cd×d. We call

the set of operators

KS (M) = {Si ∈ S | [Si,M ] = 0} (3.3)

the commutant space of M in S. The commutant space for a set M = {Mi} in S is defined as

KS (M) =
⋂
i

KS (Mi) . (3.4)

With these definitions we can formulate our first main result about characterisation of UDMs in

Liouville space.

Theorem 3.3. A set of matrices M = {Mi} with Mi ∈ Cd×d is unitary differentiating if and only

if its commutant space in PU(d), KPU(d) (M), contains only the unit matrix 1d.

Proof. By Definition 3.1 we have to prove the injectivity of the map ∆{Mi} which maps any U ∈
PU (d) to the set of matrices {M (U)

i }, i.e. ∀i : M
(U)
i = M

(V )
i ⇐⇒ U = V . We first of all prove that

this condition is equivalent to ∀i : M
(U)
i = Mi ⇐⇒ U = 1d.

Assuming ∀U, V ∈ PU (d) the validity of ∀i : M
(U)
i = M

(V )
i ⇐⇒ U = V choose V = 1d. Then

M
(V )
i = Mi and the equivalence follows immediately.

Conversely, assume ∀i : M
(U)
i = Mi ⇐⇒ U = 1d. For arbitrary V,W ∈ PU (d) we set U =

V −1W = V †W which is possible due to PU(d) being a group and V −1 = V † since V is unitary. Then

we know that

∀i : M
(V †W)
i = Mi

⇐⇒ ∀i : V †WMiW
†V = Mi

⇐⇒ ∀i : WMiW
† = VMiV

†

⇐⇒ ∀i : M
(W )
i = M

(V )
i

using the fact that V V † = V †V = 1d. By assumption ∀i : M
(V †W)
i = Mi ⇐⇒ V †W = 1d, but since

the condition ∀i : M
(V †W)
i = Mi, as shown in the calculation above, is equivalent to ∀i : M

(W )
i =

M
(V )
i and the relation V †W = 1d ⇐⇒W = V always holds if V,W ∈ PU (d) (since PU(d) is a group

the inverse is unique) this immediately leads to the desired result: ∀i : M
(U)
i = M

(V )
i ⇐⇒ U = V .

Thus, proving the theorem can be reduced to showing that KPU(d) ({Mi}) = 1d if and only if
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∀i : M
(U)
i = Mi ⇐⇒ U = 1d. This can be seen as follows,

∀i : M
(U)
i = Mi

⇐⇒ ∀i : UMiU
† = Mi

⇐⇒ ∀i : UMi = MiU

⇐⇒ ∀i : UMi −MiU = 0

⇐⇒ ∀i : [U,Mi] = 0
(∗)⇐⇒ U = 1d .

Since the equivalence relation (∗) is only true if and only if the commutant space of {Mi} in PU(d)

only contains the unit matrix, this proves the theorem.

Theorem 3.3 answers the question which sets of density matrices can differentiate arbitrary unitary

dynamical maps. If we return to the example from the beginning of this subsection we see that all

unitaries given by Eq. (3.2) actually lie in the commutant space of P and this means that the

commutant space is strictly larger than {1d}.

3.3 Minimal Characterisation of UDMs

We can employ the results of Sec. 3.2 in our search for minimal unitary differentiating sets of density

matrices. The commutant space for a set of density matrices in PU(d) contains all density matri-

ces that are not yet differentiable, which is why we will start by formulating statements about its

dimensionality. Moreover, if the commutant space in PU (d) will contain only identity, it needs to

have a dimensionality of zero. Conversely, if a commutant space in PU (d) has dimensionality zero

it will necessarily consist of only the identity matrix. That is because the identity matrix commutes

with arbitrary matrices. Note that all dimensionalities in the following are the real dimensionalities,

indicated by a subscript R, i.e. they correspond to the required number of real parameters to rep-

resent an arbitrary element of the corresponding set in an arbitrary representation (canonically, we

will usually use a matrix representation of PU(d) with respect to some fixed basis).

Proposition 3.4. The commutant space in PU(d) of an arbitrary, diagonalisable matrix M ∈ Cd×d

can be represented as

KPU(d) (M) ∼=
[⊗

i

U (gi)

]
/U (1) , (3.5)

where gi is the multiplicity of the i-th eigenvalue of the matrix M . Its dimension is given by

dimR
[
KPU(d) (M)

]
=

(∑
i

g2
i

)
− 1 . (3.6)

Any U ∈ KPU(d) (M) admits the decomposition

U =
⊗
i

ŨEi(M) , (3.7)
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where ŨEi(M) is an element of U (gi) acting on the eigenspace Ei (M).

Proof. See Appendix A.2.

From this proposition it immediately follows that one needs at least two density matrices to be

unitary differentiating. Because density matrices are Hermitian, hence diagonalisable, this allows the

application of the above proposition. The expression
(∑

i g
2
i

)
− 1 is minimal if ∀i : gi = 1 and only

for the trivial case d = 1 this minimal value will be equal to zero. Furthermore, one can conclude

that an optimal density matrix to keep the commutant space as low dimensional as possible needs

to contain no degeneracies which leads to a remaining dimensionality of the space of unitaries that

cannot be differentiated equal to d−1. It is then clear that these remaining unitaries share a common

eigenbasis with the density matrix since two diagonalisable matrices commute if and only if they are

simultaneously diagonalisable.

Proposition 3.4 allows us to conclude that two density matrices are sufficient to be unitary dif-

ferentiating. We give an explicit example of this remarkable observation, by presenting a recipe to

reconstruct the unitary matrix corresponding to a unitary dynamical map from the image of two

such matrices under a UDM DU . The procedure consists of two steps: First, one chooses a diag-

onal density matrices without degeneracies, i.e. ρB with entries (ρB)ij = λiδij with λi ≥ 0 and∑
i λi = 1 where ∀i 6= j : λi 6= λj . Next, one considers a second density matrix ρP with matrix

elements given by (ρP )ij = αiδij + 1
d2 δ1,j + 1

d2 δi,1 − 2
d2 δ11 where

∑
i αi = 1,∀i 6= j : αi 6= αj

and ∀i : 1
d − 1

d2 < α(i) < 1
d + 1

d2 . The proof that ρP is a proper density matrix can be found in

Appendix A.3. Furthermore, the set {ρB, ρP } is unitary differentiating, as we will see shortly. We

denote by {|ψk〉} the canonical basis, i.e. the basis in which ρB and ρP are given by the equations

above, and by {|ψ̃k〉} an eigenbasis of DU (ρB) such that DU (ρB) |ψ̃k〉 = λk |ψ̃k〉. In particular, this

means that the ordering of the basis {|ψ̃k〉} is such that it coincides with the ordering of {|ψk〉} in

terms of the ordered set {λk}18. The unitary matrix corresponding to the UDM DU can then be

written as

U =
∑
k

eiϕk
∣∣∣ψ̃k〉〈ψk∣∣∣ , (3.8a)

ϕk = arg
〈
ψ̃k

∣∣∣DU (ρP )
∣∣∣ ψ̃1

〉
, (3.8b)

when setting ϕ1 ≡ 0 in accordance with U corresponding to an element of PU(d) instead of U(d).

A proof of this fact and an extensive discussion of the reconstruction recipe can be found in Ap-

pendix A.3.

After having presented a specific example of a minimal unitary differentiating set, we now turn

to fully characterise the required properties of a set of density matrices to be unitary differentiating.

This is accomplished by looking at the projectors of the density matrices in a candidate set onto

their eigenspaces. We introduce the following definitions to facilitate nomenclature.

Definition 3.5 (Basis Complete and Totally Rotating Projectors). Let H be a finite-dimensional

Hilbert space. A set P ≡ {Pi} of projectors from H onto itself is called basis complete if there exists

a subset A ⊂ P which contains exactly d = dimH one-dimensional orthogonal projectors. A one-

dimensional projector PTR is called totally rotated with respect to the set A if ∀P ∈ A : PTRP 6= 0.

18This is possible since DU is unitary and leaves the spectrum of ρB invariant. Furthermore the ordering is unique due to the
nondegeneracy of the spectrum.
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A set P ≡ {Pi} of projectors is called complete and totally rotating if it is basis complete and there

exists a one-dimensional projector PTR ∈ P such that PTR is totally rotated with respect to A.

Definition 3.6 (Basis Complete and Totally Rotating Density Matrices). Let H be a finite-

dimensional Hilbert space. A set of density matrices {ρi} with ρi ∈ LH is called basis complete

if the set of projectors onto the eigenspaces of the set {ρi} is basis complete. It is called complete

and totally rotating if the set of projectors on the eigenspaces of the {ρi} is basis complete and totally

rotating.

Remark. The concept of total rotation formalises the requirement to check the relative phases between

an orthonormal basis of pure states such that unitaries like those in Eq. (3.2) can be differentiated.

These definitions allow us to formulate a useful criterion to determine whether a given set of

density matrices is unitary differentiating, leading to our second main result about characterisation

of UDMs in Liouville space.

Theorem 3.7. Let H be a finite-dimensional Hilbert space. A set of density matrices {ρi} with

ρi ∈ LH is unitary differentiating if it is complete and totally rotating.

Proof. This theorem follows from combining Proposition A.8 (see Appendix A.5) with Theorem 3.3.

It is easy to see now that the set {ρB, ρP } from above is unitary differentiating since ρB is basis

complete by definition and we prove in Appendix A.3 that ρP is totally rotated with respect to ρB.

While the restriction to density matrices in the above analysis is imperative from a practical point

of view, the properties of commutant spaces in PU(d) of arbitrary matrices can be of interest for

numerical analysis. Proposition 3.4 can be generalised for this case as follows.

Proposition 3.8. The dimension of the commutant space in PU(d) of an arbitrary matrix M ∈ Cd×d

can be estimated as

dimR
[
KPU(d) (M)

]
≤
(∑

i

g2
i

)
− 1 , (3.9)

where gi is the algebraic multiplicity of the i-th generalised eigenvalue of the matrix M .

Proof. See Appendix A.2.

Although Eq. (3.9) only gives an upper bound to the dimensionality of the commutant space

it is clear that non-diagonalisable matrices are strictly better suited for the task of differentiating

unitaries. In fact, one can show that the commutant space in PU(d) of the matrix M with matrix

entries (M)ij = δi+1,j , i.e.

M =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0
. . .

...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0


, (3.10)

contains only the unit matrix. Consequently, the matrix M given in Eq. (3.10) is unitary differen-

tiating by itself. This fact is explicitly proven in Appendix A.4. However, it is currently not known
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how to reconstruct the unitary matrix corresponding to the unitary dynamical map from the image

of M .

3.4 Efficient Identification of Unitarity for Dynamical Maps

The analysis in Sec. 3.3 considered the case of prior knowledge with respect to the unitarity of the

dynamical map under consideration. In other words, it represents the specific problem that one

knows that a quantum channel is unitary and one only wants to determine the specific unitary as

efficiently as possible. This assumption is rather restrictive, which gives rise to the question how to

most efficiently determine whether an arbitrary dynamical map is unitary from its action on a small

set of density matrices.

The following theorem presents a set of equivalent criteria to decide whether a dynamical map is

unitary and represents our third main result about characterisation of UDMs in Liouville space.

Theorem 3.9. Let H be a finite-dimensional Hilbert space with d = dim (H) and D be a dynamical

map on LH. The following statements are equivalent.

1. D is unitary.

2. D maps a set P of d one-dimensional orthogonal projectors onto a set of d one-dimensional

orthogonal projectors as well as a totally rotated projector PTR (with respect to P) onto a one-

dimensional projector.

3. D is unital and there exists a complete and totally rotating set of density matrices whose spectrum

is invariant under D.

4. D is unital and there exists a complete and totally rotating set of density matrices R such that

∀ρ ∈ R; k = 1, 2, . . . , d : Tr
(
ρk
)

= Tr
(
D (ρ)

k
)

.

Proof. See Appendix A.5.

Combining this theorem with Theorem 3.7 we see that a complete and totally rotating set (com-

bined with the totally mixed density matrix 1d to check unitality of the dynamical map) can identify

whether a dynamical map is unitary and also uniquely identify the specific unitary transformation.

Note that the density matrices ρB and ρP defined in Sec. 3.3 are complete and totally rotating,

cf. Appendix A.3. As a consequence, the set of input states {ρB, ρP ,1d} can be employed to decide

whether a dynamical map is unitary and also uniquely identify it in terms of a corresponding element

of PU(d). This represents an efficient, scalable way to determine a unitary dynamical map uniquely

in terms of their action on density matrices. It is an open question whether the number of density

matrices can be reduced to two as it was the case for characterisation of a unitary dynamical map

with prior information about its unitarity.

There is one caveat to the results presented in this section. By using a complete and totally

rotating set (enriched with the completely mixed state) one can answer the question “Is a dynamical

map unitary?” with yes or no. However, if the answer is negative, it is usually desirable to obtain

some measure of distance with respect to a certain target unitary. Ideally, one would like to obtain a

distance measure that leads to a physical interpretation on how close an experimental implementation

is to the target unitary channel. This is usually called certification. In the next section we will illus-

trate the consequences of the results about efficient unitary characterisation and identification from
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Theorems 3.3, 3.7, and 3.9 with respect to efficient and practical certification of unitary dynamical

maps.
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4 Tomography and Process Certification

Practical tomography of arbitrary quantum operations is a central requirement to assert the success-

ful implementation of a physical task. The tomography of general quantum states was first suggested

by Vogel and Risken [56] with the theory of quantum process tomography being developed by Chuang

and Nielsen [57] and Poyatos et al. [58]. Recently, several attempts to reduce the scaling in resources

for tasks of tomography and certification have been attempted, among which Monte Carlo sampling

techniques and randomised benchmarking should be mentioned in particular [59–65]. Additionally,

prior information in the form of sparsity of the Choi matrix in a given basis can be exploited to reduce

the required experimental effort, which is usually termed “compressed sensing” [61, 62, 66–68]. Effi-

cient approaches have been tested experimentally by Steffen et al. [69] and Schmiegelow et al. [62,70],

albeit so far only for two- and three-qubit operations, without taking advantage of the protocols’ sav-

ings by stochastic sampling. A common feat of most of these approaches is a scaling in the required

resources for gate certification that is independent of system size if Clifford operations with Pauli

measurements are considered. Clifford gates facilitate fault-tolerant computation [71] and yield a

universal set when augmented by the proper local phase gate [72]. They can be used to prepare en-

tangled states and perform quantum teleportation even though their computing power is not stronger

than classical, a fact that is summarised in the famous Gottesmann-Knill theorem [73].

In this section we will apply our mathematical results on characterisation and identification of

unitary dynamical maps. They allow to formulate fidelities that only require knowledge of the action

of a dynamical map on a small set of input states instead of a complete orthonormal basis to assert

the implementation of a unitary gate. We discuss how these fidelities compare to the average gate

fidelity and analyse how, dependent on the particular reduced set of input states, numerical and

analytical bounds can be formulated. We then combine these reduced fidelities with Monte Carlo

process certification [59, 60] to improve the scaling of the certification’s complexity. In addition, we

will show that this reduced scaling can be retained even for determining the average fidelity exactly,

the only caveat being the requirement of entangled input states. We will also extend the result of

efficient certification of Clifford operations for multi-qubit systems to the multi-qupit case, i.e. when

the building blocks of the quantum information device can have arbitrary prime dimensions. In

this context, we will derive the result that for qupits the generalised Pauli operators represent an

optimal set of measurement operators in the sense that it yields a scaling of O (1) in unitary process

certification for as many unitaries as possible. The set of efficiently characterisable unitaries will turn

out to be the generalised Clifford group, in analogy to the qubit case.

The combination of reduced fidelity approaches with Monte Carlo sampling has been published

in Ref. [74]. The extension of the results on efficient tomography for Clifford gates to qupit systems

has been published in Ref. [75]. The result that generalised Pauli operators as a measurement basis

represent the most convenient choice to efficiently characterise as many unitaries as possible has been

published in Ref. [76].
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4.1 Process Tomography of General Dynamical Maps

Engineering a quantum device such that it implements an algorithm by the manipulation of input

states in a well-defined way lies at the heart of quantum computing. As shown in Sec. 2.6, the

action of most such devices can be described by a dynamical map on a suitable Liouville space.

Effectively, this means that most quantum devices can be associated to such a map. The restriction

to dynamical maps hinges on the fact that the device is initially uncorrelated with its environment,

cf. Sec. 2.6. Carteret et al. analysed how initial correlations between a system and its environment

can influence the proper interpretation tomographic results [11]. They point out, that “[...] raw

tomographic data often yields nonpositive dynamical matrices, which are usually considered unphys-

ical. A maximum-likelihood estimation or other such technique is used to convert the experimental

data into a (positive) dynamical matrix. We see that this can be justified for characterizing actual

high-fidelity implementations of ’known’ gates. However, when [the initial correlations] cannot be

considered ’small’ a different template such as a difference form should be used to fit the data when

attempting linear inversion process tomography.“. Keeping this in mind, we will focus the following

analysis on the case of systems that can be prepared in arbitrary uncorrelated states with their

environment. This allows us to use the formalism of dynamical maps.

The following presentation is inspired by Refs. [6] and [46]. Let H be a Hilbert space with

d = dimH and D be a dynamical map on LH. Then D can be written according to Eq. (2.15) as

D (ρ) =
∑
k

EkρE
†
k .

Let {Ai} be an orthonormal basis of LH. We can then expand Ek =
∑
i ekiAi which allows us to

write the dynamical map as

D (ρ) =
∑
ijk

AiρA
†
jekie

∗
kj .

One can now define a so-called process matrix (sometimes also called chi matrix) χ ∈ Cd2×d2

with

respect to the basis {Ai} and entries χij ≡
∑
k ekie

∗
kj . The dynamical map can then be written as [6]

D (ρ) =
∑
ij

χijAiρA
†
j . (4.1)

By comparison with Eq. (2.20) one can observe that the process matrix is identical to the Choi

matrix up to unitary transformation, hence it inherits Hermiticity, trace and positivity of the Choi

matrix19 [48]. In particular, the Choi matrix is the process matrix corresponding to the orthonormal

basis {|ψi〉 〈ψj |}i,j=1,...,d where {|ψi〉} is the computational basis of H, cf. Sec. 2.7. Knowledge of the

Choi matrix or, equivalently, a process matrix with respect to an arbitrary orthonormal basis of LH
hence allows to find a set of Kraus operators for a dynamical map.

How does one measure the process matrix? Either of the following two approaches is usually

followed.

1. Couple the system on which tomography should be performed to another physical system, a

so-called ancilla, which can be described by a Hilbert space of equal dimensionality. Prepare the

19Just like the Choi matrix, the process matrix is usually not normalised in terms of having trace 1, cf. Footnote 12.
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bipartite system of primary system and ancilla in the pure state |φ〉 = 1√
d

∑
i |ψi〉 where {|ψi〉}

is an orthonormal basis of H⊗H. Apply the dynamical map to the primary system. Then one

can measure the state of the composite system. As a result, one obtains a density matrix on the

extended Hilbert space by the Choi-Jamio lkowski isomorphism which is a faithful description

of the dynamical map, cf. Sec. 2.7. This allows to determine the Choi matrix/process matrix.

For an example of this approach see e.g. Ref. [77].

2. Choose an orthonormal basis {|ψi〉} ofH. Define, for example, the states |ψ+
ij〉 = 1√

2
(|ψi〉+ |ψj〉)

and |ψ−ij〉 = 1√
2

(|ψi〉+ i |ψj〉). Note now that [6]

∀i, j : |ψi〉 〈ψj | =
∣∣ψ+
ij

〉 〈
ψ+
ij

∣∣+ i
∣∣ψ−ij〉 〈ψ−ij∣∣− 1 + i

2
|ψi〉 〈ψi| −

1 + i

2
|ψj〉 〈ψj | . (4.2)

This means that the orthonormal basis {|ψi〉 〈ψj |}i,j of LH can be obtained by a linear com-

bination of the pure states from the set B = B0 ∪ B+ ∪ B− with B0 = {|ψi〉 〈ψi|}i=1,...,d and

B± =
{
|ψ±ij〉 〈ψ±ij |

}
i,j=1,...,d;i>j

. Since dynamical maps are linear, D (|ψi〉 〈ψj |) can be deduced

from the results of applying D to all elements of B. As a consequence, by applying the dynam-

ical map to the d2 = |B| density matrices in B one obtains D (|ψi〉 〈ψj |) from which the Choi

matrix/process matrix of the dynamical map immediately follows if a full measurement of a

CSCO is performed. For an example of this approach see e.g. Ref. [78].

In summary, tomography on an arbitrary dynamical map can be performed by either state tomogra-

phy on a single pure density matrix on the extended Liouville space LH⊗H or by state tomography

on d2 pure density matrices in LH. As a result one obtains the Choi matrix or, equivalently, a process

matrix which then can be used to obtain the Kraus operators of the dynamical map.

4.2 State Tomography of General Density Matrices

We want to briefly review the general idea of state tomography of a general density matrix since,

as pointed out in Sec. 4.1, tomography of a quantum operation can be mapped onto the tomogra-

phy of density matrices. For a detailed discussion of state tomography for a two-qubit system see

e.g. Ref. [79].

A density matrix is a positive operator on a Hilbert space H with trace 1. If dimH = d it can

generally be parametrised by d2 − 1 parameters. This is because a general linear operator on H
has 2d2 real parameters. Hermiticity of the density matrix represents d2 constraints and Tr [ρ] = 1

represents another constraint. Note that positivity, as long as Hermiticity is fulfilled, is a constraint

given by an inequality which does not reduce the degrees of freedom of a density matrix any further.

From these observations it is clear that any density matrix can be written as

ρ =
1

d
1d +

∑
k

ωkWk , (4.3)

with {Wk}k=1,...,d2−1 being a set of orthonormal, traceless, Hermitian operators in L (H) and ∀k :

ωk ∈ R. The density matrix according to Eq. (4.3) is written in such a way, that it is Hermitian and

has unit trace by construction, hence automatically fulfilling the constraints discussed above. Note
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that the coefficients

ωk = 〈Wk, ρ〉HS = Tr [Wkρ] (4.4)

will correspond to the expectation value of a measurement of the observable Wk on the state ρ. An

example for such a set of traceless orthonormal operators is given by the set [80]20

ujk =
1√
2

(|j〉 〈k|+ |k〉 〈j|) , (4.5a)

vjk =
−i√

2
(|j〉 〈k| − |k〉 〈j|) , (4.5b)

wl =
1√

l (l + 1)

l∑
i=1

(|i〉 〈i| − |l + 1〉 〈l + 1|) , (4.5c)

for 1 ≤ j < k ≤ d and 1 ≤ l ≤ d− 1 and {|i〉}i=1,...,d being an orthonormal basis of H.

Generally, one wants to determine all coefficients ωk in Eq. 4.3 such that they do not deviate more

than ε from their actual value with probability greater than δ. To establish these statistical bounds

the well-known Chebyshev inequality is usually employed. It states that for a random variable Z

with expectation value µ and variance σ2, the following relation is fulfilled ∀k > 0,

Pr [|Z − µ| ≥ kσ] ≤ 1

k2
. (4.6)

Such statistical considerations are necessary due to the inherent statistical nature of the measurement

process in quantum mechanics, cf. Sec 2.3. Any single measurement of the observable Wk on ρ will

return a measurement result in the interval [−1, 1] due to the fact that the Wk are normalised21. Let

ωki be the measurement result of the i-th repetition of the measurement of Wk on a copy of ρ. If one

performs N repetitions of the measurement then by the central limit theorem,

lim
N→∞

N∑
i=1

ωki
N

= Tr [Wkρ] = ωk , (4.7)

and in particular

Var
(
ω

(N)
k

)
=

Var
(
ω

(1)
k

)
N

, (4.8)

where ω
(1)
k represents the random variable according to a single measurement and ω

(N)
k represents

the random variable corresponding to the average of N measurements. We will choose ω
(N)
k as the

random variable to apply the Chebyshev inequality to.

Clearly, ∀N ∈ N, the expectation value of ω
(N)
k is equal to ωk. Note that due to ω

(1)
k ∈ [−1, 1]

one can estimate Var
(
ω

(1)
k

)
≤ 1 and hence Var

(
ω

(N)
k

)
≤ 1

N . It is important to note that by the

statistical nature of the above analysis, non-systematic experimental errors are included in the above

derivation since they just add to the variance of the individual measurements. Choosing the number

20Note that in Ref. [80] there is a mistake for wl (it is not properly normalised), which has been amended here.
21By the Cauchy-Schwarz inequality, |ωk| = |Tr [Wkρ]| =

∣∣〈Wk, ρ〉HS

∣∣ ≤ 〈Wk,Wk〉HS 〈ρ, ρ〉HS ≤ 〈Wk,Wk〉HS = 1.
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of repetitions to be N = 1
ε2δ one obtains σ = ε

√
δ and choosing k = 1√

δ
in Eq. (4.6) leads to

Pr
[∣∣∣ω(N)

k − ωk
∣∣∣ ≥ δ] ≤ ε, (4.9)

as desired. The number of experiments to determine a single ωk is independent on the dimension

d. Performing full tomography on an arbitrary density matrix implies determining all ωk. The

complexity is consequently upper bounded by d2−1
ε2δ for deviation ε and confidence δ in all degrees of

freedom of the density matrix according to Eq. (4.9), i.e. the scaling is O
(
d2
)
. It immediately follows

that the experimental complexity of tomography of an arbitrary dynamical map is upper bounded

by O
(
d4
)
.

There is one caveat to the above discussion. There is no guarantee that the resulting matrix is

positive since we only could include those constraints that can be written as equalities for Eq. (4.3).

This problem extends to tomography of general dynamical maps, cf. Sec 4.1, and is usually amended

by postprocessing of the experimental data in terms of finding the density matrix that is most likely

to be consistent with the experimental results [81]. Nevertheless, one should keep in mind that not

all quantum system evolutions can be described by a dynamical map, cf. the discussion in Sec. 2.6.

The postprocessing can thus be interpreted as finding the closest dynamical map that is consistent

with the experimental observations.

As discussed in Sec. 3.1 the exponential scaling of quantum systems results in the dimensionality d

going up exponentially when adding subsystems to an existing architecture. For this reason, general

process tomography very quickly reaches its limit in terms of experimental feasibility. For example,

implementation of the Shor code, that aims to implement a fault-tolerant gate on a single qubit [6],

requires well over a billion measurements in standard tomographic schemes. This motivates the

search for techniques to reduce the scaling, in particular by adapting the tomography protocol to

the specific needs. In the following subsections we will show that certification, i.e. the question

how close a given density matrix/dynamical map is to a desired one, is generally much easier to

answer than full tomography. Furthermore, as indicated by our findings in Sec. 3, a restriction to

the certification of unitary dynamical maps instead of general dynamical maps results in a dramatic

reduction of the required set of input states to characterise the map. Another important point is

to consider the choice of measurement basis. While Eqs. (4.5) represent an orthonormal basis of

the space of traceless Hermitian matrices it is not immediately clear whether this is a good choice

with respect to efficient tomography/certification. We will discuss in the following subsection a

particularly convenient measurement basis for the most fundamental form of a scalable quantum

device, the multi-qubit system.

4.3 Qubit Systems and Pauli Matrices - Stabilisers and the Clifford Group

An orthogonal, Hermitian basis of a qubit Hilbert space is given by the Pauli matrices,

σ0 = 12 =

(
1 0

0 1

)
, σ1 = σx =

(
0 1

1 0

)
,

σ2 = σy =

(
0 −i
i 0

)
, σ3 = σz =

(
1 0

0 −1

)
. (4.10)
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Consequently, an orthogonal Hermitian basis of an n-qubit Hilbert space (with dimension d = 2n) is

given by all possible tensor products of Pauli matrices on the individual Hilbert spaces, i.e.

P̄ =


n⊗
j=1

σ
(j)
ki
| ∀j : kj ∈ {0, 1, 2, 3}

 , (4.11)

which we will call the set of Pauli observables. We will prove in Sec. 4.10, that in terms of efficient

certification of unitary dynamical maps the set of Pauli operators is an optimal measurement ba-

sis. The derivation necessitates the concepts of stabilisers and Clifford gates which we will briefly

introduce in the following.

The set of Pauli observables can be partitioned into d+ 1 subsets of d commuting operators, this

property is often called “maximally partitioning” [82]. The resulting sets WA of d orthogonal com-

muting operators form a CSCO and the eigenvectors constituting their joint eigenbasis
{
|ψAi 〉

}
i=1,...,d

are called stabiliser states [6,83]. The set of stabiliser states of WA has the property that the expec-

tation value of a measurement of some Pauli observable P vanishes on any of those stabiliser states

unless P ∈ WA. Furthermore all eigenbases to the sets WA are mutually unbiased, i.e. if A 6= A′

then [82,84]

∀i, j :
∣∣∣〈ψAi ∣∣∣ψA′j 〉∣∣∣ =

1

d
, (4.12)

a crucial concept we will often refer to in this section.

Not only does the set of Pauli matrices form an orthogonal basis of operator space but it also

admits a group structure under multiplication if one includes Pauli matrices obtained via scalar

multiplication of ±1 and ±i to the set. More formally, the set

P =

iaωb
n⊗
j=1

σ
(j)
kj
| a ∈ {0, 1} ; b ∈ {0, 1} ; ∀j : kj ∈ {0, 1, 2, 3}

 (4.13)

forms the so-called Pauli group. The set of Pauli observables P̄ is a proper subset of P. The

normaliser of P in U (d) is called the Clifford group [85], i.e. it is given by those unitaries UC ∈ U (d)

which fulfil

∀P ∈ P : UCPU
†
C ∈ P . (4.14)

Specifically, any unitary conjugation induced via an element of the Clifford group maps a Pauli

observable to another Pauli observable modulo a scalar prefactor of modulus 1. Clifford operations

can also be defined in terms of their action on stabiliser states. Notably, Clifford operations map

joint eigenstates of a set WA onto joint eigenstates of a set WA′ (with possibly A = A′) [86, 87].

The reason why Clifford gates and stabiliser gates are of great importance with respect to efficient

certification is illustrated by the following theorem from Gottesmann and Knill [73]. The term

“canonical basis” denotes the mutual eigenbasis of all Pauli observables that consist of only σ0 and

σz.

Theorem 4.1 (Gottesmann-Knill). Consider a n-qubit system. The result of a measurement of a

Pauli observable on a state obtained after the application of an arbitrary amount of Clifford operations

to a state in the computational basis can be efficiently simulated on a classical computer.



4.4 Distance Measures and Fidelities 35

In this context, the notion of “efficient simulation” refers to a classical computational complexity

that is at most polynomial in the number of qubits. As mentioned above, any stabiliser state can

be obtained by applying a suitable Clifford operation to a state in the computational basis. The

Gottesmann-Knill theorem shows a remarkable property of certain quantum operations and states in

that they can be described in a way that does not scale exponentially in the number of qubits. For

this reason these states/operations are of particular interest in quantum state/process certification

and we will show in Sec. 4.7 that one can formulate certification protocols for these states/operations

that do not scale with system size.

4.4 Distance Measures and Fidelities

In order to certify an experimental realisation of a state or process with respect to some target, it

is first of all necessary to define a distance measure, i.e. how far away is an implementation to the

ideal case, or a fidelity, i.e. how well does an implementation correspond to the ideal case. There are

three22 central properties any such distance measure d (x, y) should fulfil with respect to two objects

x and y from some set A.

1. ∀x, y ∈ A : d (x, y) ∈ R, d (x, y) ≥ 0

2. ∀x, y ∈ A : d (x, y) = d (y, x)

3. d (x, y) = 0⇐⇒ x = y

Instead of a distance measure it is common to formulate fidelities F (x, y) instead. A fidelity does

not denote how far away two object are, but it rather describes the closeness of two objects. Corre-

spondingly, the properties above should be reformulated in following way23.

1. ∀x, y ∈ A : F (x, y) ∈ R, F (x, y) ≥ 0

2. ∀x, y ∈ A : F (x, y) = F (y, x)

3. F (x, y) = supx,y∈A F (x, y)⇐⇒ x = y

In analogy to the situation in Hilbert space, one might naively employ the overlap by the Hilbert-

Schmidt scalar product for a fidelity measure. Let ρC be the density matrix that is supposed to be

certified as being equivalent to an ideal state ρ0. Then this naive fidelity would read

FX = Tr (ρCρ0) . (4.15)

It turns out that this fidelity does not fulfil condition 3. As a simple counterexample, consider

ρ0 = ρC = 1
d1d. In this case one obtains F = 1

d , which is not equal to the supremum of the fidelity

over all pairs of states corresponding to F = 1. Even worse, if ρ0 = 1
d1d one obtains the same value

of the fidelity, i.e. F = 1
d , even when ρ0 6= ρC . Most notably this happens when ρC is an arbitrary

pure state.

22From a mathematical point of view a fourth property of distance measures, the triangular inequality, is usually also demanded.
Such distance measures are then called metrics. For purposes of certification and optimal control it is however not strictly required,
if one is only interested in the behaviour of the distance measure towards 0 (or equivalently the fidelity towards its maximal value).

23By convention, one usually limits the maximal value of the fidelity to one. However, this can always be achieved by
renormalisation and does not represent a mathematical limitation.
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A proper fidelity that fulfils all three properties for arbitrary mixed states is given by [88],

Fstate = Tr2

(√√
ρCρ0

√
ρC

)
, (4.16)

and only for pure states ρ0 Eq. (4.16) actually reduces to

Fstate = Tr (ρCρ0) . (4.17)

The state fidelity in this case has a convenient physical interpretation. This can be seen by rewriting

ρ0 = |ψ0〉 〈ψ0| and ρC =
∑
k pk |ψk〉 〈ψk| for an orthonormal basis {|ψk〉} of Hilbert space to obtain

Fstate = 〈ψ0 | ρC |ψ0〉 =
∑
k

pk |〈ψk |ψ0〉|2 . (4.18)

Eq. (4.18) clearly elucidates that the state fidelity is the average likelihood that the state ρC coincides

with the pure state |ψ0〉 in terms of a Hilbert space overlap. Consequently, it represents the natural

extension of the state overlap in Hilbert space to Liouville space.

We will now turn to the question, which distance measures can be derived from Eq. (4.16). One

example is to utilise the so-called Bures angle,

A (ρC , ρ0) = arccos (Fstate (ρC , ρ0)) , (4.19)

which turns out to coincide with the Fubini-Study metric24 on projective Hilbert space if ρC and

ρ0 are pure states and interpreted as elements of the projective Hilbert space [90]. The Bures angle

represents the most straightforward way to convert the fidelity into a proper metric, i.e. it even fulfils

the triangular inequality [6].

An alternative metric that is commonly employed is the trace metric, or Kolmogorov distance,

which is defined by

D (ρC , ρ0) =
1

2
Tr [|ρC − ρ0|] . (4.20)

The trace distance has a useful physical interpretation in that one can show that [6]

D (ρC , ρ0) = max
P∈L(H),P 2=P

Tr [P (ρC − ρ0)] . (4.21)

This allows to interprete the trace distance as the maximal probability difference between the two pos-

sible results of a measurement corresponding to a projector P when comparing two states. While the

trace distance has no direct relation to the state fidelity, it is still possible to formulate a relationship

between them according to the inequality [6]

1− Fstate (ρC , ρ0) ≤ D (ρC , ρ0) ≤
√

1− Fstate (ρC , ρ0)
2
. (4.22)

24The Fubini-Study metric is the natural metric on a projective Hilbert space. It is identical to the Bures metric corresponding

to the distance measure B (ρ1, ρ2) =

√
2
(

1−
√
Fstate (ρ1, ρ2)

)
[89].
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Using the Choi-Jamio lkowski isomorphism, one can now formulate a generalisation of the state

fidelity in Eq. (4.39) to quantum processes. We denote by DC the process matrix/Choi matrix of a

quantum process and by D0 the process matrix/Choi matrix of an ideal process. Then the process

fidelity as a natural generalisation of the state fidelity, Eq. (4.16), is given by [64]

Fpro =
1

d2
Tr2

(√√
DCD0

√
DC
)
, (4.23)

where the trace is now over Liouville space instead of Hilbert space. Unitary dynamical maps

correspond to pure process matrices. This is because the eigenvalues of the Choi matrix correspond

to the weights in the representation of a dynamical map according to a set of orthogonal25 Kraus

operators [46]. Since a dynamical map is unitary if and only if it can be described by a single Kraus

operator, cf. Appendix A.1, this means that the Choi matrix for unitary dynamical maps has only

a single non-vanishing eigenvalue, analogously to the concept of pure states in Liouville space [46].

Consequently, one can once again simplify this expression to

Fpro =
1

d2
Tr (DCD0) , (4.24)

if the ideal process D0 is unitary. We will in the following denote ideal unitary processes by U0 and

the corresponding unitary by U0 .

The process fidelity is sometimes called entanglement fidelity when U0 corresponds to identity [91].

By the interpretation according to the Choi-Jamio lkowski isomorphism, the process fidelity of a

channel with respect to unity yields a measure how well the entanglement of the maximally entangled

state |φ〉 of Definition 2.2 under the action of 1d⊗D is preserved [91]. Due to this interpretation one

sometimes uses the terms process fidelity and entanglement fidelity interchangeably even when U0 is

not the identity operation.

The physical interpretation of Eq. (4.24) is not as straightforward as it was the case for the state

fidelity. This is due to the fact that the Choi matrix is more abstract than the density matrix, i.e. it

does not allow for a simple probabilistic interpretation. However, it turns out that the process fidelity

is almost identical to the so-called average fidelity Fave [91],

Fpro = Favg

(
1− 1

d

)
+

1

d
⇐⇒ Favg =

dFpro − 1

d− 1
, (4.25)

with the average fidelity given by

Favg =

ˆ
Fstate (DC (|ψ〉 〈ψ|) ,U0 (|ψ〉 〈ψ|)) dψ (4.26)

=

ˆ 〈
ψ
∣∣∣U†0DC (∣∣∣ψ〉〈ψ∣∣∣)U0

∣∣∣ψ〉 dψ .

25Note, that in the Choi matrix/process matrix is usually not normalised. This necessitates to include a factor of 1
d2 in

Eq. (4.23), such that the maximal value of Fpro is equal to 1, cf. Footnotes 12 and 19.
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where the integral is performed over the Fubini-Study measure26 dψ in projective Hilbert space [89].

The process fidelity is consequently directly related to the average state fidelity between an arbitrary

pure state sent through the to be certified channel and the same pure state being sent through the

ideal unitary channel.

There exist other notions of fidelity/distance between quantum processes, one of which we will

briefly mention. The so-called diamond norm distance is defined as [64]

d� (DC −D0) = sup
ρ
‖ (DC ⊗ 1d) ρ− (D0 ⊗ 1d) ρ‖1 , (4.27)

where ‖·‖1 is the nuclear norm (or “trace norm”) given by ‖A‖1 = Tr
(√

A†A
)

. It can be shown that

the supremum in Eq. (4.27) is always taken at a pure state ρ, i.e. the supremum can be evaluated over

the set of pure states [92]. The diamond norm has the interpretation to be the maximal likelihood

to differentiate the channels DC and D0 with a binary outcome measurement on an arbitrary initial

state allowing for arbitrary ancillas [93]. The diamond norm distance represents an example for a

“worst-case fidelity” which is more sensitive to errors than an average fidelity. Another example for

such a worst-case fidelity would be to substitute the integral in Eq. (4.26) with an infimum. While

the diamond norm has many useful qualities it is difficult to evaluate which is why in the following

we will employ the average fidelity in terms of experimental certification. For an extensive overview

of distance measures and fidelities for quantum processes, see Ref. [94].

From Eq. (4.26) one can observe that the average fidelity indeed averages information of the

behaviour of a dynamical map in terms of its action on pure states in Liouville space. Equivalently, it

is derived via Eqs. (4.23) and (4.25) from the Choi matrix/process matrix which includes information

of the action of the dynamical map on an orthonormal basis in Liouville space, i.e. information from

d2 pure state fidelities, cf. Sec. 4.1. Our findings in Sec. 3 allude to the possibility to formulate a

fidelity which requires only a significantly reduced amount of information if the ideal transformation

is unitary.

Let {ρi}i=1,2,3 be a complete and totally rotating set including 1d, then we can define

Fmin (DC ,U0) =
1

3

∑
i

Fstate (DC (ρi) ,U0 (ρi)) . (4.28)

Symmetry and positivity of Fmin directly follow from the corresponding properties of Fstate. To

see that Fmin = 1 ⇐⇒ DC = U0 we will argue that Fstate (DC (ρi) ,U0 (ρi)) = 1 if and only if

DC (ρi) = U0 (ρi). From Theorems 3.7 and 3.9 we observe, that for arbitrary dynamical maps the

equality DC (ρi) = U0 (ρi) implies that their spectra are identical which is the case if and only if DC
is unitary. As a result, Fmin = 1 can only be fulfilled if and only if DC is unitary and due to the set

{ρi}i=1,2,3 being unitary differentiating, for unitary DC the equivalence DC (ρi) = U0 (ρi)⇐⇒ DC =

U0 indeed holds. Consequently, Eq. (4.28) represents a proper fidelity for certification of unitary

dynamical maps that requires only three state fidelity to be measured.

Nevertheless, there are two caveats to this fidelity. Firstly, since the set {ρi}i=1,2,3 needs to

be basis complete with only three matrices, it must contain mixed states. Reliable preparation of

26Note that for fixed |φ〉 and arbitrary |ψ〉 there exists a unitary such that U |φ〉 = |ψ〉. This allows the integral in Eq. (4.26)
to be rewritten as an integral over all unitaries where the integral is then performed over the Haar measure dU . These two
formulations are identical.
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mixed states, albeit conceivable [95], is experimentally challenging since it usually requires a detailed

control on decoherence. Furthermore, mixed states do not allow for a simplification of the state

fidelity according to Eq. (4.17). Secondly, there is no clear physical interpretation of Fmin. To

alleviate these concerns we will derive a reduced fidelity in the next chapter that employs a set of

density matrices consisting of pure states only.

4.5 Minimal Fidelities involving Pure States for Certification of UDMs

According to Theorems 3.7 and 3.9, one requires a complete and totally rotating set of density matri-

ces to unitarily identify a unital dynamical map. Since a set of density matrices is basis complete if

there exists a complete and orthonormal set of projectors on one-dimensional eigenspaces, a restric-

tion to pure states in a basis complete set immediately requires at least d one-dimensional projectors

in this set. This is because any pure density matrix is equivalent to a one-dimensional projector.

Since the formation of a complete and totally rotated set requires at least another density matrix,

the minimal cardinality of a complete and totally rotating set of pure density matrices is d+ 1.

Let {|ψi〉}i=1,...,d be an orthonormal basis of H, |φ〉 = 1√
d

∑d
k=1 |ψk〉 and define for k = 1, . . . , d

ρi = |ψi〉 〈ψi| , ρd+1 = |φ〉 〈φ| . (4.29)

Then, the set of {ρi}i=1,...,d is a set of d one-dimensional orthogonal projectors and ρd+1 is a one-

dimensional projector that is totally rotated with respect to the set {ρi}. With this in mind we

can use the equivalence (1) ⇐⇒ (2) of Theorem 3.9 and the observation that the set of pure states

{ρi}i=1,...,d+1 can be used to identify whether a dynamical map is unitary and also to differentiate

between any two UDMs. This motivates the definition of what we will call the arithmetic fidelity,

Farith (DC ,U0) =
1

d+ 1

∑
i

Fstate (DC (ρi) ,U0 (ρi)) , (4.30)

which is simply the arithmetic mean of the d+ 1 state fidelities of the minimal set of complete and

totally rotating pure states.

After having eliminated the first caveat mentioned in Sec. 4.4 we can now turn to compare the

arithmetic fidelity to the average fidelity. From the definition of the arithmetic fidelity it becomes

immediately clear that it will be strongly dominated by the sum over the state fidelities of the basis

complete set for increasing Hilbert space dimension. Consider a basis complete set of projectors {Pi}
and the dynamical map

DC1 (ρ) =
∑
i

PiρP
†
i .

If we were to compare this dynamical map to the identity operation we see that the state fidelities

of all elements of the basis complete set are equal to one since

∀k : DC1
(Pi) =

∑
i

PkPiP
†
k = Pi = 1dPi1d .

Only the state fidelity of the totally rotated state will indicate that DC1 is actually quite far from

the dynamical map corresponding to identity. This issue can even arise when the to be certified
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Figure 4.1: Probability of obtaining a relative deviation of the gate error via the arithmetic fidelity
(1− Farith) from the gate error via the average fidelity (1− Favg), for 100.000 realisations when
using Farith, Eq. (4.30), (left column) and Fλ, Eq. (4.32), (right column). Shown are the results for
randomised dynamical maps with O =CNOT (a, b), truly random unitaries with O =CNOT (c-d)
and randomised unitaries with O = 1 (e-f). Positive and negative values of the relative deviation,
corresponding to under- and overestimation of the gate error, do not scale equivalently. The scale
for overestimation ranges from zero to infinity while that for underestimation is confined to [−1, 0).

dynamical map is unitary. Consider the ideal transformation O and a dynamical map implementing

a unitary U , i.e.

U0 (ρ) = OρO†, DC2 (ρ) = UρU† .

Now, if U and O are both diagonal in terms of the basis complete set of projectors {Pi}, i.e. U =∑
i e
iϕiPi and O =

∑
i e
iθiPi, then

U0 (Pi) = Pi, DC2 (Pi) = Pi

independent on the particular phases {ϕi} and {θi}. This means that the state fidelities of all

projectors in {Pi} is equal to one. Once again, the only indicator on the difference of U0 and DC2 can

be found in the state fidelity of the totally rotated projector whose contribution to Farith becomes

negligibly small for increasing dimension of the Hilbert space.

This effect can be directly observed in a numerical analysis. We sampled over a set of randomised

unitaries with an eigenbasis very close to that of the projectors of the employed basis complete

set. Figure 4.1(e) shows the relative deviation of the estimated gate error via the arithmetic fidelity

with respect to the average fidelity, where we set O = 1d. Figure 4.1(a) shows the probability of
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obtaining a certain relative deviation of the estimated gate error for randomised dynamical maps

and the CNOT gate as the target gate. The randomised dynamical maps were obtained by creating

a random matrix [96] for twice as many qubits as there are system qubits. The random matrices

were Hermitised, multiplied by a randomly chosen scaling factor and exponentiated. The resulting

matrix was multiplied by the tensor product of the target unitary with 1d, and the bath qubits were

traced out. For most dynamical maps, Farith yields a good estimate of the gate error. However, as

already discussed above, if the state fidelities for the set of basis complete projectors are very high,

but the fidelity for the totally rotated state is comparatively small, the arithmetic fidelity seriously

underestimates the gate error. In other words, we have to account for the cases in which almost all

the information is in the totally rotated basis leading to deceiving results for the arithmetic fidelity.

For brevity we define F (i) = Fstate (DC (ρi) ,U0 (ρi)) and F (TR) = Fstate (DC (ρd+1) ,U0 (ρd+1)).

With these abbreviations, we define the geometric fidelity,

Fgeom =
1

d+ 1
+

(
1− 1

d+ 1

)[(∏
i

F (i)

)
· F (TR)

]
. (4.31)

The addition of the constant 1
d+1 is motivated by the observation that for unitary evolution the

average fidelity lies in the interval
[

1
d+1 , 1

]
. While the arithmetic fidelity accounts for that already

implicitly, the geometric fidelity usually does not.

The geometric fidelity mostly takes small values since it is composed of a product of small numbers.

It attains large numbers if all F (i) are large and F (TR) is large. More importantly, though, the

geometric fidelity is very “strict” in a sense that it immediately takes small values if any of the

projector images has a low fidelity. While in most cases this is in fact too strict, it proves itself

numerically that especially in the cases where all projectors from the orthonormal set have good

overlap one has to be careful since this indicates that information is shifted to F (TR), cf. the discussion

above.

For this reason, we define the switching parameter λ ∈ [0, 1] and define the λ-fidelity,

Fλ = λFgeom + (1− λ)Farith , (4.32)

which has geometric character if λ is close to one and arithmetic character if λ is close to zero. It

proves itself numerically that the following definition for λ is appropriate,

λ =

∏
i F

(i) −
(∏

i F
(i)
)
· F (TR)

1−
(∏

i F
(i)
)
· F (TR)

=
1− F (TR)(∏

i F
(i)
)−1 − F (TR)

= 1− 1−∏i F
(i)

1−
(∏

i F
(i)
)
· F (TM)

. (4.33)

This choice of λ can be motivated as follows.

1. λ takes all values in the interval [0, 1], hence covering the complete switching range.

2. If ∀i : F (i) = 1, then λ = 1 since this behaviour is an indicator that the gate error is mostly

determined by the totally rotated state to which the geometric fidelity is more sensitive.

3. The smaller F (i) is the smaller λ should be, too. An instructive special case is if F (TR) = 0,

then λ =
∏
i F

(i) and if most F (i) are close to one, one should strongly weight the geometric

fidelity (see point 2) whereas if not, then the arithmetic fidelity is adequate.
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N type of sample αarith βarith αλ βλ
2 randomised dynamical map 0.83 1.31 0.44 1.26

random unitaries 0.76 2.35 0.75 1.92
randomised unitaries 1.00 4.39 0.90 1.15

3 randomised dynamical map 0.96 1.04 0.51 1.03
random unitaries 0.90 1.32 0.90 1.32
randomised unitaries 1.00 8.67 0.91 1.20

Table 4.1: Numerically obtained bounds for over- and underestimation of the average fidelity in the
form αiFi ≤ Favg ≤ βiFi for the arithmetic fidelity (i = arith) and the λ-fidelity (i = λ), using
100.000 realisations, for 2 and 3 qubits with O corresponding to CNOT (N = 2), the Toffoli gate
(N = 3), respectively identity (randomised unitaries).

4. If F (TR) = 1, then λ = 0, which corresponds to the λ-fidelity becoming identical to the arith-

metic fidelity. This is because most information should be extractable from the propagation of

the orthogonal projector set in this case.

It is still possible to manipulate the switching parameter λ by introducing another real, positive

parameter k as follows,

λk = 1− 1−∏i F
(i)

1−
(∏

i F
(i)
)k · F (TR)

. (4.34)

All λk fulfil the properties 1 − 4 discussed above. For k = 1 one retrieves the old choice of λ. For

k > 1 we decrease the value of λ, moving generally towards the arithmetic fidelity while for k < 1

we increase the value of λ moving further towards the geometric fidelity. In the following we will for

simplicity only consider k = 1.

The best estimates of the gate error in our numerical analysis are obtained using Fλ as shown in

the right part of Fig. 4.1. Figure 4.1(a,b,e,f) presents results for randomised dynamical maps and

randomised unitaries that were generated by exponentiating random Hermitian matrices. Since this

is not truly random, we have also generated random unitaries based on Gram-Schmidt orthonor-

malisation of randomly generated complex matrices [97], cf. Fig. 4.1(c,d) with O being a CNOT

gate. The λ-fidelity yields a faithful estimate of the gate error in all observed cases. On average, it

underestimates the gate error by factors 1.03 (Fig. 4.1(b)), 1.11 (d) and 1.02 (f) and overestimates

it by 1.16 (b), 1.08 (d), and 1.01 (f).

For three-qubit gates, we find the numerical bounds to be essentially contained by those for two-

qubit gates, cf. Table 4.1. This suggests the numerical bounds to be independent of system size in

the framework of this numerical analysis. A verification of this conjecture for larger system sizes is,

however, hampered by the enormous increase in numerical effort for randomisation. For our examples

of CNOT, the Toffoli gate and identity, we find the estimated gate error based on the λ-fidelity to

deviate from the standard one in the worst case by a factor smaller than 2.5 and on average by a

factor smaller than 1.2.

As a conclusion, the λ-fidelity seems to work in most cases very well. A recent analytical analysis

showed that for an n-qubit system a nontrivial statement about a lower bound on the average fidelity

can only be obtained if the arithmetic mean of the state fidelities of the basis complete set of pure

states is above 1 − 2n−1 [98]. In this work, a particular dynamical map was constructed that leads

to a very low average fidelity while still having very high values for the arithmetic fidelity composed

of a specific set of basis complete projectors and also leading to a F (TR) which is close to one. In
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this case the λ fidelity will also still be close to the arithmetic fidelity and could potentially strongly

overestimate the average fidelity. The numerical analysis from Fig. 4.1 seems to indicate, however,

that these instances are very unlikely to occur. Nonetheless, the results in Ref. [98] put further

emphasis on the fact that while in most cases a naive processing of the information of the d+ 1 state

fidelities from the minimal pure complete and totally rotating set can yield a good estimate on the

average fidelity, in special cases a more careful approach might have to be taken. In particular, there

are rare situations in which the minimal set cannot make a proper assessment on the average fidelity.

4.6 Classical Fidelities

A reduced set of pure state that allows for analytical and tight bounds to the process fidelity was

found by Hofmann [99]. To achieve this he used two so-called classical fidelities to form these bounds.

Let H be a Hilbert space and dimH = d. Let {|k(1)
i 〉}i=1,...,d be an arbitrary orthonormal basis

of H. The classical fidelity of a channel is the fidelity that is equal to the average probability of

obtaining the correct output for each of the N classically possible input states with respect to a

certain, fixed basis. Hence, the classical fidelity with respect to the basis {|k(1)
i 〉} of a dynamical map

DC with respect to a unitary dynamical map U0 (corresponding to a unitary transformation U0) is

given by

F1 =
1

d

d∑
i=1

〈k(1)
i |U†0DC(|k(1)

i 〉〈k
(1)
i |)U0|k(1)

i 〉 . (4.35)

Defining the rank 1 projectors,

P
(1)
i =

∣∣∣k(1)
i

〉〈
k

(1)
i

∣∣∣ ,
one can see that F1 corresponds to the arithmetic fidelity of the basis complete set of projectors

{P (1)
i }.
Next, Hofmann introduced a second classical fidelity with respect to a second orthonormal basis

{|k(2)
n 〉}n=1,...,d given by ∣∣∣k(2)

n

〉
=

1√
d

d∑
m=1

e−i
2π
d nm

∣∣∣k(1)
m

〉
. (4.36)

The second classical fidelity then reads as follows,

F2 =
1

d

d∑
i=1

〈k(2)
i |U†0DC(|k(2)

i 〉〈k
(2)
i |)U0|k(2)

i 〉 . (4.37)

Once again, this expression can be interpreted as the arithmetic fidelity composed of another basis

complete set of rank 1 projectors,

P
(2)
i =

∣∣∣k(2)
i

〉〈
k

(2)
i

∣∣∣ .
Hofmann then showed that given the classical fidelities F1 and F2 the following bounds with respect
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to the process fidelity holds,

F1 + F2 − 1 ≤ Fpro ≤ min (F1, F2) . (4.38)

These results can be understood in the framework of Sec. 3. It can be easily seen that any rank 1

projector from either set {P (1)
i } or {P (2)

i } is totally rotated with respect to the other. Moreover, the

two bases {|k(1)
i 〉} and {|k(1)

2 〉} are mutually unbiased, i.e. they fulfil [100]

∀i, j :
∣∣∣〈k(1)

i

∣∣∣ k(2)
j

〉∣∣∣2 =
1

d
.

Mutual unbiasedness of two bases can be interpreted as the rank 1 projectors on the elements of

either basis to be totally rotated with respect to each other. It can be shown that for an arbitrary

dimension d there exist at least three mutually unbiased basis sets [101]. Furthermore, Hofmann’s

results can be generalised to not only hold for his particular construction according to Eq. (4.36) but

for arbitrary mutually unbiased bases, cf. Appendix A.6. A set of two classical fidelities with respect

to two mutually unbiased bases consequently enables strong analytical bounds on the process fidelity

of a given dynamical map with respect to a certain unitary while requiring only the measurement of

state fidelities for a set of 2d pure input states.

4.7 Statistical Approaches to Tomography and Certification

In Sec. 4.2 we have shown how a straightforward approach to quantum state tomography leads to

a complexity of O
(
d2
)

for general states and O
(
d4
)

for general dynamical maps. In recent years,

several approaches to reduce this complexity have been attempted that are based on statistical

considerations. The underlying idea to all those approaches is that instead of performing every

measurement a fixed number of times, one rather performs a random measurement and can use tools

of statistical mathematics to obtain an estimation for the actual density matrix/dynamical map with

high confidence.

Three statistical approaches have been formulated recently: compressed sensing for tomography

using the assumption of sparse states/maps [61, 68], randomised benchmarking for unitary certifi-

cation, using the assumption of being able to implement a gate that transforms the to be certified

unitary to identity [65], and Monte Carlo (MC) sampling for certification requiring no assumptions in

the general case [59,60]. The generality of the MC approach combined with its significant complexity

reduction in special cases motivates the focus on this method in the context of this thesis. Neverthe-

less, we will briefly present the ideas underlying compressed sensing and randomised benchmarking.

The central paradigm of compressed sensing is the following: As pointed out in Sec. 4.2, a state,

respectively dynamical map, is uniquely determined by a suitably chosen set of expectation val-

ues corresponding to certain measurements. If the set of measurement results fulfils the so-called

restricted isometry property [61, 68] then it can be used, employing the solution of a convex opti-

misation problem, to determine an s-sparse27 approximation to the actual density matrix/process

matrix. Since any density matrix/process matrix is Hermitian, thus diagonalisable, there necessarily

exists a basis in which it is sparse. If one were to know this basis a priori, then one could choose

the measurement basis accordingly. Compressed sensing asserts that under certain conditions (most

27A matrix is s-sparse if it contains only s nonzero entries.
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notably the above mentioned restricted isometry property) even without knowledge of the basis in

which the matrix is sparse, one still can reduce the tomography complexity. For example, choosing

for process tomography on an n-qubit system completely random input states and completely ran-

dom measurements, the restricted isometry property is fulfilled with high (i.e. exponentially high)

probability and the scaling reduces to O (sn) where s is the actual sparsity of the process matrix,

which in the worst case is d2, and n is the number of qubits [61]. A caveat to this approach lies in

the choice of completely random input states and measurement. This represents an experimentally

very challenging task since it requires mixed states preparation. Nevertheless, at least for state to-

mography it was shown that using random Pauli measurements (cf. Sec. 4.3), the restricted isometry

property is fulfilled with high probability and the scaling reduces to O (sd) [68].

The idea of randomised benchmarking is that the process matrix element χmm in the represen-

tation according to a complete orthogonal set of operators {Ek}, cf. Eqs. (2.15) and (2.20), can be

efficiently determined by implementing the channel corresponding to the Kraus operator E†m [65].

Note that if E0 is chosen to be the to be certified unitary U , then χ00 determines the process fi-

delity of the implementation with respect to U , cf. Appendix A.6. The specific protocol for efficient

characterisation employs randomly selecting elements of a so-called state 2-design and measuring the

survival probability, i.e. the overlap of an initial state sent through the channel, of these states. The

average over sufficiently many of these survival probabilities then yields the process fidelity, where

the number of experiments to be performed is independent on system size. A related but slightly

different approach is to apply these ideas to determine the average error of a given channel in terms

of an average channel error over a set of random gates [63, 64]. This can be done efficiently if the

set of Clifford gates is considered, a fact that is closely related to the fact that they form a unitary

2-design.

A particularly powerful tool for state/process certification is the MC sampling approach [59, 60].

It is based on the fact that the state fidelity can be spanned in an orthogonal28 basis as follows,

Fstate = Tr [ρCρ0] =
1

d

∑
k

Tr
[
ρCW

†
k

]
Tr
[
Wkρ0

]
. (4.39)

Here, ρC represents the state that is supposed to be certified and ρ0 represents the ideal state ρ0.

For the process fidelity, cf. Eq. (4.24), one obtains analogously

Fpro =
1

d2
Tr [DCU0] =

1

d4

∑
i,k

Tr
[
DC (Wi)

†
Wk

]
Tr
[
W †kU0 (Wi)

]
, (4.40)

where DC represents the process that is supposed to be certified and U0 (ρ) = U0ρU
†
0 represents

the ideal unitary dynamical map. {Wk} is a complete orthogonal set of operators in Liouville space

fulfilling

Tr
[
W †iWk

]
= dδik . (4.41)

For states one can define

αk = Tr
[
ρCW

†
k

]
, βk = Tr [Wkρ0] . (4.42)

28In analogy to Refs. [59] and [60] we will not normalise the Pauli operators. This allows to use the unnormalised Pauli
operators from Eq. (4.11) for the basis operators Wk.
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For processes the definition is analogous,

αik =
1

d
Tr
[
DC (Wi)

†
Wk

]
, βik =

1

d
Tr
[
W †kU0 (Wi)

]
. (4.43)

Defining furthermore Pr (k) = 1
d |αk|

2
, respectively Pr (i, k) = 1

d2 |αik|2, one obtains

Fstate =
∑
k

Pr (k)
αk
βk

(4.44)

for states and

Fpro =
∑
ik

Pr (i, k)
αik
βik

(4.45)

for unitary gates [59,60]. The distribution Pr (k), respectively Pr (i, k), fulfils

Pr (k) ≥ 0;
∑
k

Pr (k) = 1 , (4.46a)

Pr (i, k) ≥ 0;
∑
i,k

Pr (i, k) = 1 , (4.46b)

and can be interpreted as a discrete probability distribution, in this context usually called relevance

distribution.

An estimate on the state fidelity (resp. process fidelity) according to Eq. (4.44) (resp. Eq. (4.45))

can be obtained with the following approach [59,60].

1. Calculate the relevance distribution Pr (k) (resp. Pr (i, k)) for the given target pure state ρ0

(resp. target unitary dynamical map U0).

2. Draw an index k (resp. double index (i, k)) according to the relevance distribution Pr (k) (resp.

Pr (i, k)).

3. Perform a measurement to obtain the quantity αk (resp. αik).

4. Given (δ, ε), repeat steps 2 and 3 until L (δ, ε) draws of an index have been performed. Then,

calculate Y = 1
L

∑L
k=1

αk
βk

(resp. Y = 1
L

∑L
(i,k)=1

αik
βik

) to obtain an estimate for the fidelity F

with Pr [|Y − F | ≥ δ] ≤ ε.

Complexity arises in this scheme at three points: Firstly, at step 1 one needs to classically compute

the relevance distribution of the state ρ0 (resp. the transformation D0). This tasks scales in general

exponentially, however, if the set {Wk} is chosen to be the set of Pauli operators, cf. Sec. (4.3), it is

a task that can be performed efficiently for stabiliser states (resp. Clifford gates). This is a direct

consequence of Theorem 4.1 [59,60]. Secondly, while it is clear how to perform measurements in the

case of state certification, it is not straightforward how operator inputs, i.e. DC (Wk), have to be

understood. One can circumvent this by drawing a random eigenstate of the “input operator” Wi

and apply the to be certified channel to this eigenstate [59]. Lastly, one needs to perform a sufficient

number of experiments to get a sufficiently good estimate according to step 4. This depends generally

on the state/process that should be certified. It can be shown that if the {Wk} are chosen to be the

set of Pauli operators, for stabilisers (resp. Clifford gates) the number of experiments is independent
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on system size [60]. The underlying reason for this fact is that stabiliser states (resp. Clifford gates)

lead to a relevance distribution that has many vanishing entries with all remaining entries being equal

to 1.

For a general state one obtains a scaling of L = O (d) and for a general unitary transformation one

obtains L = O
(
d2
)
. This is already a dramatic improvement on full tomography. The mathematical

derivation of the bound on the number of draws as well as a more detailed explanation of the MC

sampling procedure for the process fidelity of a unitary dynamical map can be found in Appendix A.7.

Therein, it will also be explained why the complexity for Clifford gates becomes independent on the

dimension of Hilbert space if Pauli operators are used as a measurement basis. The derivation in

Appendix A.7 is already performed for the more general case of a non-Hermitian measurement basis

which will become important when we extend our results to go beyond multi-qubit systems in Sec. 4.9.

4.8 Monte Carlo Process Certification with State Fidelities

We now turn to the question whether the complexity of Monte Carlo sampling can be lowered with

the reduced pure state fidelities for unitary dynamical maps discussed in this Sec. 4.5. To this end,

we will consider a n-qubit system, corresponding to Hilbert space dimension d = 2n, using the Pauli

operators {Wk} as an orthogonal measurement basis of Liouville space. We furthermore consider any

fidelity given by an arithmetic mean over a set of I state fidelities of pure states represented by rank

1 projectors Pi, i.e.

F =
1

I

I∑
i=1

Fstate (U0 (Pi) ,DC (Pi)) =
1

I

I∑
i=1

〈U0 (Pi) ,DC (Pi)〉HS . (4.47)

In particular, as we will show later, this encompassed the arithmetic fidelity, Eq. (4.30), and arbitrary

classical fidelities, Eq. (4.35).

The orthogonal basis of LH given by the Pauli operators{Wk} fulfils

〈Wk,Wl〉HS = Tr [WkWl] = dδkl , (4.48)

where we can omit the dagger due to the Hermiticity of the Pauli operators.

Since the space LH with the Hilbert-Schmidt scalar product is a Hilbert space, using Eq. (4.48)

the following relation holds ∀ρ, σ ∈ LH,

〈ρ, σ〉HS =
1

d

d2∑
k=1

〈ρ,Wk〉HS 〈Wk, σ〉HS . (4.49)

Hence, we can rewrite any state fidelity Fstate as

Fstate (U0 (Pi) ,DC (Pi)) =
1

d

d2∑
k=1

Tr [U0 (Pi)Wk] Tr [WkDC (Pi)] . (4.50)
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As a result, Eq. (4.47) can be rewritten as

F =
I∑
i=1

d2∑
k=1

Pr (i, k)
βik
αik

, (4.51)

with

αik = Tr [U0 (Pi)Wk] , βik = Tr [WkDC (Pi)] , (4.52)

Pr (i, k) =
1

dI
|αik|2 . (4.53)

If Pr (i, k) is supposed to represent a proper relevance distribution, it needs to be normalised,

i.e.
∑
kl Pr (i, k) = 1. This is proven in Appendix A.8. Evaluating Eq. (4.51) by Monte Carlo

estimation involves randomly selecting L times a pair (il, kl) of input states/measurement operators.

The number of input states is given by I. The classical computational resources of the sampling step

Cclass can be estimated by Cclass = Ninput × Csingle with Csingle being the classical computational cost

for sampling a single state fidelity in Hilbert space (Csingle ∼ n222n [60]).

Analogously to standard Monte Carlo certification, we determine the sample size L by Chebyshev’s

inequality, Eq. (4.6). In our case, µ = 〈Z〉 = F , Z = FL =
∑L
l=1Xl, Xl = βilkl/αilkl and k = 1√

δ
.

We show in Appendix A.9 that the variance of Xl is ≤ 1, and thus σ2 = Var (FL) ≤ 1
L

29. Then, the

choice L = 1
ε2δ guarantees that the probability for the estimate FL to differ from F by more than

ε is smaller than δ. Specifying the experimental inaccuracy and choosing the confidence level thus

determines the sample size.

In order to estimate the number of required experiments, we first determine the number of ex-

periments for an individual setting, Nl. For each l, the observable Wkl has to be measured Nl times

to account for the statistical nature of the measurement. The corresponding approximation to Xl is

given by

X̃l =
1

αilkl

1

Nl

Nl∑
j=1

wlj , (4.54)

with wlj the measurement result for the j-th repetition of experimental setting l, equal to ±1 for

Pauli operators. Since X̃l is given as the sum of independent random variables, wlj , Nl can be

determined using Hoeffding’s inequality [102]. It provides an upper bound for the probability of a

sum S =
∑n
i=1 Yi of independent variables Yi with ai ≤ Yi ≤ bi to deviate from its expected value

by more than ε, ∀ε > 0,

Pr (|S − 〈S〉| ≥ ε) ≤ 2 exp

(
− 2ε2∑n

i=1 (bi − ai)2

)
, (4.55)

In our case, S = F̃L = 1
L

∑L
l=1 X̃l and, using Eq. (4.54),

∑n
i=1 (bi − ai)2

=
∑L
l=1 4Nl [LNlαilkl ]

−2
.

Inserting this into Eq. (4.55), it is evident that the choice

Nl =
2

Lε2α2
ilkl

log

(
2

δ

)
= Nl(il, kl) (4.56)

29This follows from the fact that Var
(∑

i αXi
)

= α2Var (Xi) for independent random variables Xi.
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ensures the right-hand side of Eq. (4.55) to be ≤ δ. The setting l is chosen with probability Pr (il, kl).

The average number of times that this specific experiment (with input state index il and measurement

operator Wkl) needs to be carried out is therefore given by

〈Nl〉 =
I∑

il=1

d2∑
kl=1

Pr (il, kl)Nl(il, kl) (4.57)

=
1

dI

I∑
il=1

d2∑
kl=1

α2
ilkl

2

α2
ilkl

Lε2
log

(
2

δ

)
≤ 1 +

2d

Lε2
log

(
2

δ

)
.

The total number of experiments that need to be carried can therefore be estimated by

〈Nexp〉 =
L∑
l=1

〈Nl〉 ≤ L

[
1 +

2d

Lε2
log

(
2

δ

)]
≤ 1 +

1

ε2δ
+

2d

ε2
log

(
2

δ

)
. (4.58)

This number is sufficient to account for both the sampling error due to finite L and statistical

experimental errors in the measurement results. Notably, 〈Nexp〉 ∼ d = 2n only, i.e. the average

number of experiments to estimate F scales like that required for characterising a general pure

quantum state [60] and it is independent on the number of states that enter the arithmetic mean in

the fidelity (4.51).

Clearly, the above result can be easily applied to the arithmetic fidelity, Eq. (4.47). However,

due to the issues in finding a sensible bound of the arithmetic fidelity in terms of the actual process

fidelity, cf. Sec. 4.5, it does not seem to be an optimal choice. A better approach is obtained by

observing that the above result can also be applied to any classical fidelity. This can be seen as

follows. Let {|ψi〉} be an orthonormal basis of H and Pi = |ψi〉 〈ψi| be the corresponding rank

1 projectors/density matrices. The classical fidelity with respect to this orthonormal basis can be

written as

Fclass =
1

d

d∑
i=1

〈ψi|U†0D(|ψi〉〈ψi|)U0|ψi〉

=
1

d

d∑
i=1

Tr
[
U0PiU

†
0D(Pi)

]
=

1

d

d∑
i=1

Fstate (U0 (Pi) ,DC (Pi))

=
1

d

d∑
i=1

〈U0 (Pi) ,DC (Pi)〉HS . (4.59)

By only evaluating two classical fidelities one can obtain already strong analytical bounds on the

process fidelity, cf. Eq. (4.38). Both classical fidelities obey an average number of experiments scaling
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as O (d) and a factor of 2 is definitely worth this additional effort.

There is even a possibility to precisely estimate the average fidelity, and consequently the process

fidelity, with a fidelity of the form of Eq. (4.47). This can be done by using the concept of quantum

2-designs [103]. A 2-design is a probability distribution, with probability coefficients pi and elements

Ψi, over pure quantum states which can duplicate properties of the probability distribution over the

Fubini-Study measure for polynomials of degree 2 or less. Specifically, the average of any polynomial

function of degree 2 over the 2-design is exactly the same as the average over the Fubini-Study

measure, cf. Sec. 4.4. One can generalise this concept to quantum t-designs which then average

polynomials of degree t [104]. Roughly speaking, let P be a polynomial of at most degree t. A

t-design, i.e. a set (pi,Ψi), is given by the property that for all polynomials P the relation

∑
i

piP (Ψi) =

ˆ
P (Ψ) dΨ (4.60)

holds.

This can be applied to the average fidelity in the following way. Let X be a 2-design with uniform

probability distribution, then

Favg =

ˆ
〈Ψ|U†0D (|Ψ〉 〈Ψ|)U0|Ψ〉 dΨ

=
1

|X|
∑
Ψ∈X
〈Ψ|U†0D (|Ψ〉 〈Ψ|)U0|Ψ〉 . (4.61)

This is valid since the average fidelity can be interpreted as a polynomial of degree 2 in terms of

Eq. (4.60). Note that bras and kets are counted separately, which means that only at most two bras

and two kets appear. It can be shown [105] that a possible set of two designs with uniform probability

coefficients is given by the d (d+ 1) elements of the (d+ 1) mutually unbiased basis sets that exist in

Hilbert spaces of dimensions with a prime number as base - specifically this implies the qubit case.

Consequently,

Favg =
1

d (d+ 1)

d(d+1)∑
i=1

〈Ψi|U†0D (|Ψi〉 〈Ψi|)U0|Ψi〉 , (4.62)

where {|Ψi〉} are the states from these (d+ 1) mutually unbiased basis sets. From Eq. (4.62) it is

immediately clear that it is of the form of Eq. (4.47) and we can apply all previously obtained results

in this subsection.

We conclude that the process fidelity/average fidelity of a general unitary transformation can be

certified with complexity O (d) which represents a saving of a factor of d compared to standard MC

process certification. These savings come at the expense of (i) obtaining only bounds on the average

fidelity when using two classical fidelities or (ii) the necessity to prepare entangled input states30 when

using two-designs. The latter scales quadratically in n [107]. Even factoring this additional cost in,

Monte Carlo estimation of the average fidelity for a general unitary operation using two-designs is

significantly more efficient than that based on the channel-state isomorphism. A comparison of all

30There is no full set of (d+ 1) mutually unbiased bases that consists of only separable states, see e.g. Ref. [106] and references
therein.
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approach Cclass Ninput Nsetting 〈Nexp〉
A O(n224n) 6n O(6n22n) O(22n)

B O(n224n) 2n(2n + 1) O(24n) O(2n)

C O(n223n) 2 · 2n O(23n) O(2n)

Table 4.2: Resources required for determining the average gate error of a general unitary operation
in terms of classical computational effort Cclass required for the random selection, number Ninput of
input states that need to be prepared, the number of experimental settings Nsetting from which the
actual experiments will be randomly chosen, and the average number 〈Nexp〉 of experiments to be
performed. Nsetting = Ninput × Nmeas with the number of measurement operators Nmeas = 22n for
all cases (A: standard Monte Carlo sampling [59, 60]; B: Monte Carlo sampling for two-designs; C:
Monte Carlo sampling for classical fidelities).

approach Cclass Ninput Nsetting 〈Nexp〉
A O(1) 6n O(6n2n) O(1)

B O(1) 2n(2n + 1) O(23n) O(1)

C O(1) 2 · 2n O(22n) O(1)

Table 4.3: Resources required for determining the average gate error of a Clifford gate (Nsetting =
Ninput × 2n). Symbols as in Table 4.2.

discussed approaches can be found in Table 4.2 for general unitaries.

The scaling of 〈Nexp〉 with the number of qubits changes also in the MC process certification

approaches based on state fidelities, being strongly reduced for Clifford gates, as it was the case

for the standard approaches. This is due to the property of Clifford gates to map eigenstates of a

d-dimensional set of commuting Pauli operators into eigenstates of another such set, cf. Sec 4.3. The

mutually unbiased bases entering the two classical fidelities or state 2-designs can be chosen to be

such eigenstates [82]. Given a generic eigenstate |Ψj〉 of a commuting set W of Pauli operators, the

coefficients for a Clifford gate, UC , becomes

αilkl = Tr
[
WkUC |Ψi〉〈Ψi|U†C

]
(4.63)

= Tr [Wk|Ψj〉〈Ψj |] =

{
±1, if Wk ∈ W
0, otherwise

.

The relevance distribution for Clifford gates, Pr (il, kl) ∼ α2
ilkl

, is thus zero for many settings and

uniform otherwise. Since settings with Pr (il, kl) = 0 will never be selected, the sampling complexity

becomes independent of system size, cf. Sec. 4.7. Calculating 〈Nl〉 according to Eq. (4.57) for a

uniform relevance distribution, and accounting for the correct normalisations of Pr (il, kl), 〈Nl〉 is

found to be independent of d, 〈Nl〉 ≤ 1 + 2 log(2/δ)/(Lε2), for all three approaches. Consequently,

also 〈Nexp〉 does not scale with system size, 〈Nexp〉 ≤ 1 + 1/(ε2δ) + 2 log(2/δ)/ε2, cf. Table 4.3.

For Clifford gates, the three approaches require therefore a similar, size-independent number of

measurements. A difference is found, however, for the number of possible experimental settings.

For each input state i, there are only d (instead of d2) measurement operators Wk with non-zero

expectation value. This leads to Nsetting = Ninput × 2n for Clifford gates, cf. Table 4.3. The larger

Nsetting required for approaches A and B in Table 4.3 comes with a potentially higher accuracy of the
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estimate which is, however, limited by the experimental error of state preparation and measurement.

4.9 Qupit Systems and Generalised Pauli Operators

Qupits with dimension greater than d = 2 occur naturally as the basic information carriers in the con-

text of superconducting circuits [108,109], in orbital angular momentum modes of photons [110,111],

or in the polarisation of biphotons [112, 113]. Compared to qubits, they offer advantages in terms

of increased security and higher channel capacity in quantum communication and better efficiency

in quantum information [110–112]. Due to the Gottesmann-Knill theorem it seems natural to seek

for generalisation of the Pauli group to arbitrary multi-qudit spaces. In fact, for qudits correspond-

ing to Hilbert spaces of prime dimension p, so-called qupits, a generalisation of the Pauli group

and correspondingly a generalisation to the formalism of stabiliser states and Clifford gates can be

obtained.

Consider a Hilbert space H of prime dimension p and an orthonormal basis {|k〉}k=1,...,p of H.

Let ω = e
2πi
p and define the operators [87]

Z =

p∑
n=1

ωn |n〉 〈n| , (4.64)

X =

p∑
n=1

|n⊕ 1〉 〈n| , (4.65)

where ⊕ denotes addition modulo p. Then the generalised Pauli group is given by

P =
{
ωiZaXb|a, b, i ∈ {0, 1, . . . , p− 1}

}
, (4.66)

with an orthogonal basis of L (H) given by the subset P̄ with [71,114]

P̄ =
{
ZaXb|a, b ∈ {0, 1, . . . , p− 1}

}
. (4.67)

Note that all elements of the generalised Pauli group are unitary, hence normal.

The notion of a generalised Pauli group can be naturally extended to a Hilbert space that can be

written as a tensor product of qupit Hilbert spaces. In fact, there exists a natural isomorphism of any

finite-dimensional Hilbert space to such a Hilbert space by performing a prime factor decomposition

on its dimension. With this in mind, the Pauli group can be defined for the total Hilbert space and

notions of stabiliser states and Clifford operators can be introduced completely analogously to the

multi-qubit case.

Most importantly, there exists a generalisation of the Gottesmann-Knill theorem to these general

multi-qupit Hilbert space [87] which motivates the choice of generalised Pauli operators as an op-

erator basis in terms of tomography and certification. There is an important caveat though. It is

not possible to generalise the Pauli group for qupit systems with p > 2 in such a way that one can

retain a subset that forms an orthogonal basis which consists of only Hermitian operators. However,

actual measurements of such non-Hermitian (but still normal) operators can be carried out utilising

the concept of universal quantum circuits [87]. By the Copenhagen interpretation, any measurement

results in a collapse of the physical system to an eigenstate of the measurement operator. However,
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as already briefly mentioned in Sec. 2.3, as long as the operator is normal the operator still admits

an orthonormal basis of eigenvectors of the underlying Hilbert space. In a sense, it is just convenient

to ensure that all eigenvalues are real as this facilitates the interpretation of an eigenvalue as a mea-

surement results. Nevertheless, as long as the complex spectrum of an arbitrary normal operator

is mapped to a real measurement result by a suitable protocol, there is no obstacle to “measuring”

non-Hermitian operators. One such approach in the framework of polarisation path qupits with p = 4

has been utilised in Ref. [115]. Since the generalised Pauli operators are unitary, hence normal, it

is consequently possible to use them as a measurement basis in terms of certification, respectively

tomography. It turns out that one can straightforwardly generalise the MC sampling protocol to

utilise the generalised Pauli operators as a measurement basis. This leads to efficient scaling for

gate certification of generalised Clifford gates [75]. A Hermitised version of the measurement basis

derived from generalised Pauli operators can also be utilised. While it does preserve the dimension-

ally independent scaling when certifying generalised Clifford gates it comes at the cost of non-local

measurements in the sense that the basis operators cannot be written any more as a tensor product

on the individual qupit Hilbert spaces [75].

4.10 Optimal Choice of Measurement Basis

We will finish this section by giving a general prescription of an “optimal” measurement basis, i.e. a

measurement basis which allows for a maximal amount of unitary transformations to be efficiently

characterisable. In Appendix B we constructively prove for a general qupit Hilbert space H, with

dimH = p prime, the following results.

1. Any optimal measurement basis contains only operators with identical spectrum given by {λk =

ei
2πk
p | k = 0, . . . , p− 1} (modulo a global phase on the operators).

2. Any optimal measurement basis partitions into p + 1 Abelian groups consisting of p operators

each, with the only common element in all of these sets being 1p.

3. The common eigenbases of these Abelian groups form a set of p+ 1 mutually unbiased bases.

4. A unitary is efficiently characterisable with respect to such an optimal measurement basis if

and only if it keeps the partitioning of the p+ 1 mutually unbiased bases in H intact.

Evidently, the generalised Pauli operators from Sec. 4.9 are an example for such an optimal mea-

surement basis which motivates their prevalence for process certification even from a mathematical

perspective. The generalised Clifford group forms the corresponding set of efficiently characterisable

unitaries.

For an n-qupit system it seems natural to construct the measurement operator basis to consist

of tensor products of single-qupit operators to assure that their eigenstates are still product states.

This is guaranteed if a tensor product structure for the measurement basis is chosen. For a Hilbert

space of arbitrary dimension, one can obtain a partitioning into tensor products of smaller Hilbert

subspaces by prime factor decomposition. A natural approach to identify optimal measurement bases

on the total Hilbert space starts from maximising the number of efficiently characterisable unitaries

on each subspace. This is achieved by finding an optimal measurement basis on each subspace as

outlined above, using the fact that the dimension of each subspace is prime by construction. A

measurement basis of the total Hilbert space is then constructed in terms of tensor products of the
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operators defined on the subspaces. This yields an orthonormal basis of measurement operators on

the total Hilbert space.

If one considers a partitioning involving subspaces of non-prime dimension, it remains an open

question whether the explicit use of non-prime dimension subspaces can be used to increase the

number of efficiently characterisable unitaries beyond the one following from the prime factor decom-

position approach. Nonetheless, our conjecture that a measurement basis constructed from the prime

factor decomposition represents indeed an optimal choice is motivated by the fact that existence of

p + 1 mutually unbiased bases is not guaranteed for non-prime dimension Hilbert spaces but seems

to be a central prerequisite for obtaining efficiently characterisable unitaries [75].
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5 Dynamics and Control of Open Quantum System

From the point of view of quantum information, the dynamical evolution of a quantum systems

can be regarded as a family of point-to-point transformations that describe the continuous evolution

of the system’s state in time. For an isolated quantum system this family turns out to be a one-

parameter unitary group [38]. This group is generated by the Hamiltonian of the physical system

and gives rise to the Liouville equation as a first order differential equation for the density matrix,

respectively the Schrödinger equation as a first order differential equation for the Hilbert space state

vector. The corresponding answer for open quantum systems is significantly more complicated. If

the evolution is infinitesimally divisible, representing a lack of memory of the environment, i.e. if it

is Markovian, then it is often possible to describe the family of point-to-point transformations on an

open quantum system as a one-parameter semigroup. In this case, the semigroup is generated by a

so-called completely dissipative map. This gives rise to the Lindblad master equation as a first order

differential equation for the density matrix [116,117]. Sections. 5.1 and 5.2 will be devoted to a brief

review on the derivation of these fundamental equations of motion from the perspective of quantum

information.

Being able to describe the dynamics of quantum system allows to systematically explore the

possibilities of coherent control of these systems, i.e. the steering of a physical process via some

external control parameters. Coherent control can be performed either by using physical intuition,

e.g. in the context of bichromatic control [118] or the STIRAP method [119], or by using analytical

and/or numerical tools, see e.g. the book by Rice and Zhao [120], to find the optimal solution for the

control problem at hand. The latter approach is called optimal control. Coherent control of isolated

quantum systems is an established field of research with a wide variety of applications. This includes

for example the realisation of a quantum computer, see e.g. the work by Sørensen et al. [121], or

the steering of chemical processes, realised e.g. by Wollenhaupt et al. [122]. In contrast, studies on

control of open quantum systems emerged only very recently.

In practice, one often uses mathematical algorithms to calculate the optimal field required to

implement a desired process. This area of research is called optimal control theory and has been

introduced more than 50 years ago by the seminal works of Pontryagin et al. [123] and Bellman [124].

It is usually very hard, or even impossible, to determine analytical solutions with these methods

which is why in practice the use of numerical, iterative algorithms is prevalent. Using this approach

for quantum mechanical control has been originally proposed for problems in chemical physics or

theoretical chemistry, e.g. by Zhu et al. [125]. Algorithms to solve these control problems have been

invented in areas such as engineering, e.g. the Krotov algorithm developed by Konnov and Krotov [7],

or nuclear magnetic resonance in the context of which the GRAPE algorithm has been formulated

by Khaneja et al. [126]. In Sec. 5.3 we will briefly review the formalism of optimal control and the

iterative update equations for the optimisation of open quantum systems via the Krotov algorithm

which we will employ in this thesis.

In the second half of this section, we will present a novel approach regarding the formulation

of optimisation functionals for unitary gates in open quantum system: By employing reduced state

fidelities, cf. Sec. 4.4, it is possible to significantly reduce the numerical effort both in terms of

CPU time and required memory. It should be emphasised that this reduction via the formulation of

specific functionals for the optimisation of unitary transformations does not hinge on the particular

choice of the control algorithm. To illustrate the fact that reduced state fidelities can indeed replace
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optimisation functionals using the full basis of Liouville space, we will show numerical results for

optimisations utilising reduced optimisation functionals. In particular, we will compare the required

computational resources in this context to optimisations involving an optimisation functional that

employs the full basis.

A review of the Krotov algorithm for general isolated and open quantum systems has been pub-

lished in Ref. [9]. Its application to the control of unitary gates in open quantum systems in the

context of reduced functionals together with an extensive numerical analysis on their convergence

behaviour has been published in Ref. [127].
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5.1 Isolated Quantum System Dynamics

The main idea of quantum control is to generate an external perturbation to a quantum system

which influences its dynamics in a certain, desirable way. To understand how one can mathematically

describe this perturbation we will begin by discussing how an isolated quantum system behaves in

the absence of control.

One expects an isolated quantum system to behave probabilistically linear, continuous and

entropy-preserving [52] which means that at each point in time the dynamical map describing the

evolution from time t0 to time t can be described as

ρ (t) = Dt,t0 (ρ (t0)) = U (t, t0) ρ (t0)U† (t, t0) , (5.1)

cf. Sec. 2.8. Furthermore, one usually makes the assumption that the evolution of an isolated quantum

system in absence of any external influence is homogeneous in time, in particular this means that the

mapping Dt,t0 will only depend on the time difference t− t0. As a result, one obtain that a unitary

dynamical map describing the evolution of isolated quantum systems is dependent on only a single

parameter which we will simply denote by t. In particular, this means that ∀t′ ∈ [0, t] the relation

Dt (ρ) ≡ Dt,0 (ρ) = Dt,t′ (Dt′,0 (ρ))

holds. Using Eqs. (5.1) and (2.22) this leads to

Dt (ρ) = U (t) ρU† (t) = U (t, t′)U (t′, 0) ρU† (t′, 0)U† (t, t′)

= (U (t, t′)U (t′, 0)) ρ (U (t′, 0)U (t, t′))
†
.

In particular, this means that the set of unitaries describing the evolution of a isolated quantum

system is a one-parameter group fulfilling

∀t, s : U (t+ s) = U (t)U (s) = U (s)U (t) . (5.2)

Furthermore, we expect by the Copenhagen interpretation that the state of a quantum system is

continuously dependent on time31, i.e.

lim
t→t0
Dt (ρ) = Dt0 (ρ) . (5.3)

In particular this means for the unitary U that

∀t, t0 ∈ R, ρ ∈ LH : lim
t→t0

U (t) ρU† (t) = U (t0) ρU† (t0) ,

which is obviously equivalent to

∀t, t0 ∈ R, |ψ〉 ∈ H : lim
t→t0

U (t) |ψ〉 = U (t0) |ψ〉 . (5.4)

31Discontinuities arise when measurements are performed. However, a measurement violates the assumption that the system
is isolated.
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This property is called strong continuity [28] and a one-parameter group with this property is

called a strongly continuous one-parameter unitary group. By Stone’s theorem [128], there exists a

Hermitian operator H on the Hilbert space H such that32

∀t ∈ R : U (t) = e−iHt . (5.5)

As a consequence we can identify arbitrary homogeneous evolutions of an isolated quantum system

with a Hermitian operator H, the so-called Hamiltonian of the evolution. The reason for this nomen-

clature can be seen by taking the derivative of ρ (t) with respect to time (using the abbreviation

ρ = ρ (0)),

d

dt
ρ (t) =

d

dt
Dt (ρ) =

[
d

dt
U (t)

]
ρU† (t) + U (t) ρ

d

dt

[
U† (t)

]
= −iHU (t) ρU† (t) + iU (t) ρU† (t)H

=⇒ d

dt
ρ (t) = −i [H, ρ (t)] , (5.6)

where we used that [H,U (t)] = 0, by definition. Eq. (5.6) is called the Liouville-von Neumann

equation [38] and it stands in direct analogy to the Liouville equation in classical mechanics under

the identification of H with the Hamilton function and of the commutator with the Poisson bracket

(modulo a factor 1
i ).

If ρ is a pure state, i.e. it can be identified with a Hilbert space vector |ψ〉, then the Liouville

equation reduces to the so-called Schrödinger equation [129],

d

dt
|ψ (t)〉 = −iH |ψ (t)〉 . (5.7)

5.2 Open Quantum System Dynamics

The following presentation is inspired by Ref. [38].

Thee ideal situation of being truly isolated, i.e. the total lack of information exchange with another

system, represents a rather unrealistic assumption in many physical system. The state of a physical

system can often be at best understood as the element of a Hilbert space HS which is a subspace

of a high-dimensional Hilbert space Htot = HS ⊗ HE . Elements of Htot represent state vectors

corresponding to an encompassing isolated system which we will refer to as the “total system”.

Here, the Hilbert space HS describes the degrees of freedom of the primary system at hand and HE
describes all other environmental degrees of freedom. In this case the state of the system at time t

is given by the partial trace of a state in Htot over the environmental degrees of freedom in HE , or

ρS (t) = TrE

[
Utot (t) ρtotU

†
tot (t)

]
, (5.8)

which leads via the Liouville-von Neumann equation immediately to

d

dt
ρS (t) = −iTrE [Htot, ρtot (t)] , (5.9)

32The minus sign in the exponent is a convention. Furthermore, one usually pulls a factor of ~−1 out of the operator H but
for brevity we will set throughout the whole thesis ~ = 1.
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where Htot is the Hamiltonian of the total system and Utot (t) = e−iHtott. Unfortunately, this equation

is in general not very useful since one still requires knowledge of the state of the total system at all

times to describe ρS (t). The goal of an efficient description of the evolution of ρS (t) is to find a

mapping Dt : ρS (0) 7→ ρS (t). This mapping will still depend on the specific form of the initial

state of the total system. It can be shown that if environment and system are initially entangled

the mapping can be very complex, involving lack of positivity and even lack of linearity in special

cases [11]. This motivates the so-called product state assumption, cf. Sec. 2.6,

ρ (0) = ρS (0)⊗ ρE (0) . (5.10)

With this assumption one can define the set of mappings {Dt | t ∈ R, t ≥ 0} which map ρS (0) onto

TrE [Utot (t) (ρS (0)⊗ ρE (0))U†tot (t)] according to Eq. (5.8). It can be shown that each Dt is a

completely positive, trace-preserving map [130]. Generally it turns out, however, that no simple

differential equation for Dt can be found, the main reason being that the evolution described by the

family Dt can allow for backflow of information. This means that it is not always possible to write

the dynamical map Dt as a product of two dynamical maps, e.g. the first describing the evolution

from 0 to t
2 while the second describes the evolution from t

2 to t, i.e. Dt = D(2)
t
2 ,t
D(1)

0, t2
. Although

the initial state is a product state, it is possible that during the evolution entanglement is built up

between system and environment which does not decay sufficiently fast such that the intermediate

states can be considered as product states. Then, employing such an intermediate state as an initial

state of another dynamical map usually fails.

A simple, yet often employed assumption for the family {Dt} is given by the following formula,

∀t, s ≥ 0 : Dt+s = DtDs = DsDt . (5.11)

In analogy to Eq. (5.2), the set {Dt} describes a one-parameter dynamical semigroup33 of dynamical

maps. This assumption is equivalent to homogeneity of the evolution in time in the sense that the

evolution governed by the semigroup of dynamical map is having the same effect no matter how

long the system already underwent evolution from the fixed initial product state. This becomes

particularly clear by observing that from Eq. (5.11) it follows that

∀n ∈ N, t ∈ R : Dt =
(
D t
N

)N
. (5.12)

In particular, this means that the state of the total system at any point in time can still be regarded

as a product state, since the evolution of the system between any two points in time can be described

as a dynamical map. In other words, all entanglement between system and environment vanishes

infinitely fast (or at least fast with respect to the natural system dynamics). At no point in time there

is a shared information between the two subsystems, most notably at no point one can deduce any

information on the state of the system via the state of the environment. This is often called the “lack

of memory” of the environment. In particular, no backflow of information from the environment

to the system is possible. This is why the generators of semigroups of dynamical maps are also

sometimes called completely dissipative [116] and the resulting evolutions are called Markovian [38].

33Analogously to the strongly continuous one-parameter groups for isolated quantum systems, there are additional continuity
requirements on a dynamical semigroup, cf. Ref. [116]. For simplicity, we will not further discuss them here.
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Similarly to Stone’s theorem, Lindblad proved [116] that one can write for any such semigroup of

dynamical maps,

Dt = eLt, t ≥ 0 , (5.13)

with
dρ (t)

dt
= Lρ (t) . (5.14)

L ∈ L (LH) is a completely dissipative map if and only if it fulfils the so-called Lindblad master

equation,

Lρ = −i [H, ρ] +
d2−1∑
k,l=1

ckl

(
FkρF

†
l −

1

2
F †l Fkρ−

1

2
ρF †l Fk

)
, (5.15)

where H is traceless and Hermitian, {Fk}k=1,...,d2−1 is an orthonormal set of traceless operators

and the matrix whose elements are given by the coefficients ckl is positive [117]. The condition of

tracelessness of H and all Fk determines the generator uniquely. Due to the positive coefficient

matrix, one can diagonalise Eq. (5.15) via a unitary transformation to obtain [38]

Lρ = −i [H, ρ] +

d2−1∑
k=1

γk

(
AkρA

†
k −

1

2
A†kAkρ−

1

2
ρA†kAk

)
. (5.16)

Since the all elements of the operator set {Fk} are traceless, so are the Ak and because the coefficient

matrix was positive, all eigenvalues γk are nonnegative. Furthermore, as the transformation was

unitary, the set {Ak} remains an orthogonal, traceless set. The operators Ak are called Lindblad

operators. Note that the generator according to Eq. (5.16) is invariant under unitary transformations
√
γkAk →

√
γ̃kÃk =

∑
l ukl
√
γlAl with ukl being the coefficients to a unitary matrix [38]. The

generator is also invariant under the inhomogeneous transformation Ak → Ãk = Ak + ak1d, H →
H̃ = H + 1

2i

∑
l γl

(
a∗lAl − alA†l

)
+ b1d, however, by demanding tracelessness of the Ak and H the

generator in diagonal form is determined up to a unitary transformation on the set of Lindblad

operators [38].

One can alternatively derive the Lindblad master equation by starting with a unitary evolution

of the bipartite system/environment Hilbert space undergoing a unitary evolution starting from an

initial product states. The necessary conditions for the result to be castable into the form of Eq. (5.16)

are as follows [38]: Firstly, the influence of the system on the environment shall be small, i.e. the

state of the environment remains essentially unchanged due to its interaction with the system. This

is called the Born approximation. Moreover, one needs to perform a rotating wave approximation,

sometimes also called secular approximation, which either requires the interaction of system and

environment to be very strong or very weak on the timescale of system dynamics. If τ represents

the timescale of system-environment interaction and ES the eigenvalues of the system Hamiltonian,

the strong coupling case can be written as ∀ES ∈ spec (HS) :
´ τ

0
eiESt dt ' 1 and the weak coupling

case as ∀ES ∈ spec (HS) :
´ τ

0
eiESt dt ' 0. Finally, the reduced state of the system at a given time t

shall be completely independent on the state of the system at previous times. Effectively this means

that the Poincaré recurrence time of the environment needs to be much larger than the timescale

that will be considered for system evolution.

While the semi-group approach by definition only admits Markovian evolutions, some quantum
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master equation approaches go beyond that. One of the most prevalent techniques is the usage of

memory kernels, see e.g. Ref. [131]. Another treatment is given by the method of the Surrogate

Hamiltonian [132–134], where only the bath dynamics relevant on the time scale of the system’s

evolution are considered. Finally, we want to briefly mention the description of the evolution of an

open quantum system by a classical stochastic process in Hilbert space, termed “unravelling” or the

“method of quantum trajectories”, see e.g. Refs. [135] and [136].

5.3 Optimal Control

Quantum control deals with the behaviour of isolated or open quantum systems under the influence

of a controllable time-dependent perturbation, represented by a set of so-called controls {uk (t)}.
The most common example for a control is the classical electric field ε (t) of a laser. The controls

introduce a time dependence in the generators of the dynamical group/semigroup. Effectively, this

means that Eqs. (5.7) and (5.14) read

d

dt
|ψ (t)〉 = −iH (t) |ψ (t)〉 , (5.17)

dρ (t)

dt
= L (t) ρ (t) , (5.18)

where ∀t : H (t) = H (t)
†

and L (t) is a completely dissipative map for all t. It can be shown [137]

that Eq. (5.18) still gives rise to a canonical form of the generator L (t) according to

L (t) ρ (t) = −i [H (t) , ρ (t)]

+

d2−1∑
k=1

γk (t)

(
Ak (t) ρ (t)A†k (t)− 1

2
A†k (t)Ak (t) ρ (t)− 1

2
ρ (t)Ak (t)A†k (t)

)
. (5.19)

If ∀k, t : γk (t) ≥ 0, then the whole evolution is still completely positive since it can be regarded as

the composition of infinitesimal completely positive evolutions. The dynamical maps resulting from

the evolution are no longer one-parameter dynamical semigroups. Nevertheless, they still fulfil the

condition

Dt,t0 = Dt,t1Dt1,t0 (5.20)

for all t1 ∈ [t0, t].

If some coefficients γk (t) in Eq. (5.19) become negative, the evolution may but does not need to

lose complete positivity [138]. This can occur if one relaxes the condition of complete dissipativity

for the generator in Eq. (5.18) to linearity, Hermiticity and trace preservation. In this case, the

evolution will lose the property of being Markovian. It is even possible to define non-Markovianity

of an evolution described by a Liouvillian of the form (5.19) in terms of at least one coefficient γk (t)

becoming negative at some point during the evolution [137]. In particular, the evolution then does not

admit a decomposition according to Eq. (5.20). Note that this description of non-Markovianity is tied

to equations of motion of the form of Eq. (5.19). In general, the characterisation of a non-Markovian

evolution proves to be quite difficult. Although very recently a rather large variety of measures on

non-Markovianity have been published [80,139–143], there is nevertheless no common agreement on

how to precisely quantify the non-Markovianity of an evolution due to the non-equivalence of many
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of the proposed measures [144].

Closed quantum systems are described by introduction of a time-dependent Hamiltonian in

Eq. (5.17). The total evolution is still unitary as long as H (t) is Hermitian at all points in time since

it is the composition of infinitesimal unitary evolutions. The set of unitary transformation is not a

one-parameter group anymore due to its dependence on an initial point in time, only fulfilling the

condition

U (t, t0) = U (t, t1)U (t1, t0) (5.21)

for all t1 ∈ [t0, t].

The time dependence of the Hamiltonian or Liouvillian due to external influences can have con-

trollable, e.g. a laser directed on an atom, or non-controllable time-dependent influences, e.g. stray

electromagnetic fields in a solid state device. Usually, the time-dependence of the Hamiltonian in

quantum control is solely due to a set of external controls {uk (t)}, i.e. the Hamiltonian can be written

in the following form,

H [{uk (t)}] = H0 +
∑
k

uk (t)Hk, (5.22)

describing a so-called bilinear system [40]. In Eq. (5.22) the drift Hamiltonian H0 and all control

Hamiltonians Hk are Hermitian operators.

The central question of optimal control of closed systems is the following: Given a set of initial

states {|ψn (0)〉}, what is the optimal set of controls {uk (t)}, among some set of admissible controls,

in terms of maximising, respectively minimising, a certain figure of merit called the optimisation

functional34,

J ({|ψn〉} , {|uk〉}) = JT ({|ψn (T )〉}) +

ˆ T

0

g ({|ψn (t)〉} , {uk (t)}) dt , (5.23)

where [0, T ] represents the (usually fixed) optimisation interval in time. The first term in Eq. (5.23)

corresponds to the desired state of the evolution at some final time and the second term introduces

costs with respect to the pathway that the states and/or controls take during the evolution. It is very

rare that such an optimisation problem can be treated analytically. This is due to the fact that the

figure of merit depends on the states but one is looking for the optimal value of the controls with both

states and controls being coupled via the equations of motion. For this reason one usually utilises

iterative approaches combined with numerical solutions of the equations of motion. They consist in

starting from some initial guess, {u(0)
k (t)}, and improving the value of the optimisation functional

step by step via iterative changes in the controls. There is a vast number of algorithms to obtain new

sets of controls in such an iterative procedure, e.g. Gradient type quasi-Newton updates [126,145] or

simplex searches on reduced parametrisations of the set of controls [146].

A particularly powerful approach is to employ an idea originally proposed by Konnov and Kro-

tov [7]. It consists in constructing an auxiliary functional that allows to independently consider

changes in the value of the optimisation functional J via explicit changes in the states, respectively

changes in the controls. Then, one can derive a condition on an iterated set of controls, which is

guaranteed to lead to an improved value of J until convergence is reached. The Krotov algorithm

can be applied to any quantum system as long as one is able to formulate the derivatives of the

34While the expression for J represents the full optimisation functional, we will occasionally utilise this term to only refer to
the final-time part F if it is clear from context.
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final-time functional F with respect to the states at final time and some smoothness conditions on

the functional and the equations of motion are fulfilled [9].

One of the most common control problems requires a cost functional that prevents the control

fields from changing too much in between iterations. When no further costs on either the states or

controls are imposed this results in

g ({uk (t)}) =
∑
k

λk
Sk (t)

(
uk (t)− u(ref)

k (t)
)2

, (5.24)

where u
(ref)
k (t) is usually taken as the control field of the previous iteration, respectively the initial

guess for the first iteration. λk represents a nonnegative weight and Sk (t) represents a nonnegative

shape function which can be utilised to impose a certain temporal shape on the iterative control

updates obtained from the algorithm. For additional costs of the form of Eq. (5.24) the update

equations for the Krotov algorithm are given by [8, 9]

u
(i+1)
k (t) = u

(i)
k (t) +

Sk (t)

λk
Im
∑
n

[〈
χ(i)
n (t)

∣∣∣∣ ∂H∂uk
∣∣∣∣ψ(i+1)

n (t)

〉
+σ (t)

〈
ψ(i+1)
n (t)− ψ(i)

n (t)

∣∣∣∣ ∂H∂uk
∣∣∣∣ψ(i+1)

n (t)

〉]
. (5.25)

σ (t) is an auxiliary function to ensure monotonic convergence. The initial states at time t = 0,

{|ψn (0)〉}, represent the initial conditions for the set of states entering the final-time functional.

Evidently, they are fixed for each iteration. The evolution of the states {|ψn (t)〉} is described by the

Schrödinger equation35,

d

dt

∣∣∣ψ(i)
n (t)

〉
= −iH

[{
u

(i)
k (t)

}] ∣∣∣ψ(i)
n (t)

〉
, (5.26)

d

dt

∣∣∣ψ(i+1)
n (t)

〉
= −iH

[{
u

(i+1)
k (t)

}] ∣∣∣ψ(i+1)
n (t)

〉
, (5.27)

and the so-called costates
{
|χ(i)
n (t)〉

}
are given by

∣∣∣χ(i)
n (T )

〉
= − ∂F

∂ 〈ψn (T )|

∣∣∣∣{
ψ

(i)
n (T )

} , (5.28)

d

dt

∣∣∣χ(i)
n (t)

〉
= −iH

[{
u

(i)
k (t)

}] ∣∣∣ψ(i)
n (t)

〉
. (5.29)

The Krotov algorithm can be generalised to more complicated cost functionals, e.g. involving spectral

constraints on the control [147], non-linear Hamiltonians, e.g. for the description of Bose-Einstein

condensation via the Gross-Pitaevskii equation [148], or state-dependent constraints [9, 149,150].

For open quantum systems, the state-dependence of the functionals is represented in terms of a

35We consider here only Hamiltonians that are independent on the states, for a more general form of the update equations, see
Refs. [8] and [9].
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set of density matrices {ρn (t)} and the equations above generalise straightforwardly to36 [127,151]

u
(i+1)
k (t) = u

(i)
k (t) +

Sk (t)

λk
Re
∑
n

[〈
Ξ(i)
n (t) ,

∂L
∂uk

ρ(i+1)
n (t)

〉
HS

+σ (t)

〈
ρ(i+1)
n (t)− ρ(i)

n (t) ,
∂L
∂uk

ρ(i+1)
n (t)

〉
HS

]
, (5.30)

d

dt
ρ(i)
n (t) = L

[{
u

(i)
k (t)

}]
ρ(i)
n (t) , (5.31)

d

dt
ρ(i+1)
n (t) = L

[{
u

(i+1)
k (t)

}]
ρ(i+1)
n (t) , (5.32)

Ξ(i)
n (T ) = − ∂F

∂ρn (T )

∣∣∣∣{
ρ

(i)
n (T )

} , (5.33)

d

dt
Ξ(i)
n (t) = −L†

[{
u

(i+1)
k (t)

}]
Ξ(i+1)
n (t) . (5.34)

It should be finally noted that the above approach also works if ρn (t) is not a density matrix but

rather an arbitrary element of LH by considering ρn (t) and ρ†n (t) as independent variables and

taking the derivative with respect to ρ†n (T ) in Eq. (5.33), cf. the final-time conditions in Refs. [151]

and [152]. This procedure can be understood analogously to the treatment of kets and bras in the

Hilbert space case.

5.4 Optimisation Functionals for Open Quantum Systems

Finding suitable final-time functionals for particular optimisation tasks is a very similar problem

to finding proper fidelities/metrics for certification: Firstly, optimisation functionals need to be

real to admit an order relation, i.e. they need to be able to assess how well a desired process is

actually implemented under a given set of controls. Furthermore, an optimisation functional needs

to become extremal only if a desired evolution takes place such that maximisation/minimisation

of the functional is guaranteed to lead to the desired process - this property we will call “reliable”.

Ideally, any set of set of states that corresponds to the desired behaviour of the system will correspond

to a maximal/minimal value of the functional - we will call these functionals “encompassing”. This

strengthens the condition to become extremal “only if” a desired process is implemented to “if and

only if”. Not all reliable functionals will be encompassing since, in contrast to certification, there

is not necessarily a unique set of states at final time that corresponds to implementing a certain

physical goal. We will present a simple example to these concepts in the following.

In quantum computation one of the most important tasks is the implementation of unitary quan-

tum operations, representing loss-less processing of quantum information [6]. On a Hilbert space H
with dimH = d a unitary transformation is uniquely defined by its action on an orthonormal basis

{|n〉} of H. Two suitable optimisation functionals for this task are given by the so-called real part

functional, Jre, and the square modulus functional, Jsm [153], here shown in the formulation for a

36Note the real part in Eq. (5.30) in contrast to the imaginary part in Eq. (5.25) due to the different convention in the generators,
cf. Eqs. (5.17) and (5.18).
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minimisation problem37,

Jre = 1− 1

d

∑
n

Re 〈ψn (T ) |O |ψn (0)〉 , (5.35)

Jsm = 1− 1

d

∑
n

|〈ψn (T ) |O |ψn (0)〉|2 , (5.36)

where O is the target transformation and |ψn (0)〉 ≡ |n〉. This can be easily seen by noting that for a

closed quantum system the evolution is unitary, hence ∃U : ∀n : |ψn (T )〉 = U |ψn (0)〉. This allows

to write ∑
n

〈ψn (T ) |O |ψn (0)〉 =
∑
n

〈
ψn (0)

∣∣U†O ∣∣ψn (0)
〉

= Tr
[
U†O

]
= 〈U,O〉HS .

Note now that ‖U‖HS = ‖O‖HS = 1 due to their unitarity and hence, via the Cauchy-Schwarz

inequality |〈U,O〉HS| = 1 if and only if U = eiϕO for some ϕ ∈ [0, 2π]. Since the only physically

relevant part of a unitary transformation is captured in the projective unitary group, cf. Sec. 2.8,

both the square modulus and the real part functional become minimal only if U and O correspond to

the same element in PU (d), i.e. both are reliable. However, only Jsm is encompassing since Jre also

requires U and O to be identical as an element of U (d) instead of only PU (d). For this reason, in

general, Jsm will be a more suitable functional since it does not unnecessarily restrict the optimisation

algorithm by introducing additional constraints beyond asserting the minimal requirements for the

implementation of the target. There are technical reasons why sometimes real part functionals can

be preferable to square modulus functionals in a practical numerical application, an example will be

briefly mentioned in Sec. 6 in the context of state-to-state transformations.

If one considers now the optimisation of a unitary transformation for an open quantum system,

the most straightforward approach is to simply use an optimisation functional according to Eq. (4.24)

which reads38

Jpro = 1− 1

d2
Re

[∑
k

〈DT (Wk) ,D0 (Wk)〉HS

]
, (5.37)

where DT represents the evolution from initial time to final time T and D0 represents the dynamical

map corresponding to the ideal transformation. {Wk} is an arbitrary orthonormal basis of LH. This

choice of fidelity has already been applied in the literature [151, 152]. Note that Jpro is not reliable

if the target transformation D0 is not unitary since the transformation is then not guaranteed to

conserve the Hilbert-Schmidt norm of arbitrary states in LH. We will give a simple example to

elucidate this issue is the following.

Consider a single qubit with the ideal transformation being a perfect phase damping channel, i.e.

D0 = P0ρP0 + P1ρP1 , (5.38)

with P0 = |0〉 〈0| and P1 = |1〉 〈1| where {|0〉 , |1〉} are eigenstates to σz. Then, choosing the normalised

37For simplicity, we will keep throughout this thesis all optimal control tasks formulated in terms of minimisation.
38Analogously to the Hilbert space case, Jpro can also be formulated with a square modulus. Note however, that in Liouville

space this does not change whether the functional is encompassing when unitary transformations are considered since the projective
unitary formulation is implicit for dynamical maps. For this reason, using the real part formulation with its simpler mathematical
structure (i.e. linear dependence on propagated matrices) is usually preferred.
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Pauli basis for the set {Wk}, we observe that

D0

(
1√
2
12

)
=

1√
2
12 ,

D0

(
1√
2
σz

)
=

1√
2
σz ,

D0

(
1√
2
σx

)
= D0

(
1√
2
σy

)
= 0 .

This means that if DT = D0 then Jpro = 1
2 . However, the same value of Fpro is obtained if DT is

the identity operation. This means that the fidelity Jpro is generally not reliable. A possibility to

fix this issue by formulating the functional in terms of the backwards propagated targets has been

performed in Ref. [152].

This behaviour is not entirely unexpected since Eq. (4.40) was derived for the specific case of

unitary certification. The expression it originates from can be interpreted as the state fidelity from

the state via the Choi-Jamio lkowski isomorphism, which only allows for a formulation via a simple

Hilbert-Schmidt overlap if one of the states is pure, i.e. if the target transformation is unitary. If D0

is unitary, Jpro coincides in this case with the process fidelity which we know is a proper fidelity for

certification of unitary dynamical maps. This automatically implies that the optimisation functional

is encompassing, since Jpro = 0 if and only if the to be certified dynamical map is the ideal unitary.

To preserve reliability and the encompassing property for the non-unitary case the Hilbert-Schmidt

overlap needs to be substituted with the proper expression for the fidelity, i.e. for an orthonormal

basis of positive operators {Wk},

J̄pro = 1−
∑
k

1

d2ηk
Tr2

(√√
DT (Wk)D0 (Wk)

√
DT (Wk)

)
, (5.39)

where normalisation factors {ηk} need to be employed if the optimal value should still correspond

to J̄pro = 0. They are required to account for the fact that the individual traces might not become

equal to one for the target transformation.

While the choice of a functional for unitary optimisation according to Eq. (5.37), respectively

Eq. (5.39), is reliable and encompassing, it requires numerical propagation of the full set of d2

orthonormal operators in LH. In Sec. 3 we have shown that a unitary dynamical map can be

uniquely identified with the help of a set of only three states in LH, independent of Hilbert space

dimension. In the minimal formulation this set requires the inclusion of mixed states which is why a

reliable and encompassing functional is given by

J̄min = 1− Re

[
3∑
k=1

1

3ηk
Tr

(√√
DT (ρk)UO (ρk)

√
DT (ρk)

)]
. (5.40)

with normalisation factors {ηk} required for the same reasons we mentioned above. As pointed out

in Sec. 4.4, one generally loses reliability by using a simplified form of the state fidelity according to
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Eq. (4.17),

Jmin = 1− Re

[
3∑
k=1

1

3ηk
〈DT (ρk) ,UO (ρk)〉HS

]
. (5.41)

As we will see below the simplified minimal functional in Eq. (5.41) seems to still be reliable in

practice and it has the great advantage of simple derivatives and monotonic convergence without

requiring additional terms in the Krotov update formula [9].

Similarly to the observations in Sec. 4.5, a potential problem lies in the fact that while these

functionals are reliable, they do not emulate the process fidelity very well, which is ultimately the

quantity that is relevant in a practical implementation. In other words, if no solution with Jmin = 0

can be found by the control algorithm, it is almost impossible to assess how close one actually is to

the ideal transformation with respect to a physically motivated figure of merit. This leads to the

formulation of the “d+1 functional”, Jd+1, which is deduced from the arithmetic fidelity of a minimal

set of pure states, cf. Sec. 4.5, or the “2d functional” J2d formulated in terms of two classical fidelities

of mutually unbiased basis which allows for analytical bounds on the process fidelity, cf. Sec. 4.6, i.e.

Jd+1 = 1− Re

[
d+1∑
k=1

1

d+ 1

〈
DT
(
ρ

(d+1)
k

)
,UO

(
ρ

(d+1)
k

)〉
HS

]
, (5.42)

J2d = 1− Re

[
2d∑
k=1

1

2d

〈
DT
(
ρ

(2d)
k

)
,UO

(
ρ

(2d)
k

)〉
HS

]
, (5.43)

Here, the set {ρ(d+1)
k }k=1,...,d+1 can consist of e.g. the density matrices from Eq. (4.29) and

{ρ(2d)
k }k=1,...,2d is composed from rank 1 projectors corresponding to two mutually unbiased bases

of H. Note that no normalisation factors are required for Eqs. (5.42) and (5.43) since all density

matrices entering the functional are pure.

5.5 Unitary Transformations on Subspaces

In many implementations of unitary gates for quantum computation, the logical subspace in which

the transformation takes place will be embedded in a larger Hilbert space. Usually a qudit or a mulit-

qudit system will be embedded in a total Hilbert space Htot = H1 ⊗ H2 where H1 is the Hilbert

space of the qudit(s) and H2 is the Hilbert space of ancillary degrees of freedom or environmental

degrees of freedom that cannot be traced out easily. This happens in particular, when the coupling

of these environmental degrees of freedom to the qudit induces a strongly non-Markovian evolution.

The case of H2 representing ancillary degrees of freedom can be encountered e.g. in superconducting

transmon qubit implementation [154,155], where the qubits are embedded in a cavity. In this context,

H1 corresponds to the description of the qubits and H2 corresponds to the description of the cavity

that is used to indirectly steer the qubits. An example for H2 representing environmental degrees

of freedom is given by a superconducting phase qudit with strongly coupled dielectric defects in its

environment, a qudit implementation we will discuss in great detail in Sec. 7.

Another common occurrence is an embedding that can be represented by a tensor sum structure,

i.e. Htot = H1 ⊕ H2. This occurs most frequently when the qudits are encoded only in a subset of

eigenstates of a higher-dimensional Hamiltonian acting on Htot. In this case, H1 is given by the span

of the eigenstates forming the so-called “logical subspace” while H2 corresponds to the union of the
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remaining eigenspaces. For example, in almost all superconducting qubit implementation qubits are

encoded in the first two eigenstates of an anharmonic oscillator. Note, that the presence of a tensor

product structure and a tensor sum structure is not mutually exclusive.

The tensor sum case is significantly easier to treat from a mathematical point of view. We will in

the following reformulate Theorem 3.9 for this situation which will allows us to adjust our optimisation

functionals from Sec. 5.4 to this setting. The Liouville space corresponding to a tensor sum Hilbert

space also obeys a tensor sum structure according to LHtot = LH1 ⊕LH2 . If we consider a dynamical

map D with Kraus operators {Ek} on LHtot , we can write the reduced map D1 on LH1 as

D1 (ρ) = P1D (ρ⊕ 0)P1 =
∑
k

P1Ek (ρ⊕ 0)E†kP1 , (5.44)

where P1 is the projector on H1 and ρ⊕ 0 is the natural extension of a density matrix on LH1 to the

total Liouville space LHtot . Since ρ⊕ 0 = P1 (ρ⊕ 0)P1 we can write

D1 (ρ) =
∑
k

(P1EkP1) (ρ⊕ 0) (P1EkP1)
†
. (5.45)

The operators P1EkP1 can be written as E
(1)
k ⊕ 0 with E

(1)
k being an operator on LH1 . This means

that D1 can be written as

D1 (ρ) =
∑
k

E
(1)
k ρ

(
E

(1)
k

)†
(5.46)

which implies by Choi’s theorem that the reduced map D1 is Hermitian and completely positive on

LH1 . If we denote the identity on LH1 as 1(1) it can easily be checked whether D1 is trace-preserving

by analysing whether D1

(
1(1)

)
= 1(1). This leads to the expression

D1

(
1(1)

)
=
∑
k

E
(1)
k

(
E

(1)
k

)†
, (5.47)

which is equal to 1(1) if and only if D1 is trace-preserving, cf. Sec. 2.6. This means that with

respect to our results from Sec. 3, unitary certification on a tensor sum subspace only involves the

additional requirement to ensure that D1

(
1(1)

)
= 1(1) such that D1 is indeed a dynamical map on

LH1 . However, this is equivalent to the standard test for unitality of a dynamical map, which needs

to be performed anyway when a minimal set of states is employed.

More formally, the following corollary to Theorem 3.9 holds.

Corollary 5.1. Let H = H1 ⊕H2 be a finite-dimensional Hilbert space with d1 = dim (H1) and let

D be a dynamical map on LH. The following statements are equivalent:

1. The reduced map D1 : LH1 7→ LH1 given by D1 (ρ) = ρ̄ with P1D
(
ρ⊕ 0(2)

)
P1 = ρ̄ ⊕ 0(2) is a

unitary dynamical map on H1 with P1 ∈ LH being the projector onto H1.

2. D maps a set P1 of d1 one-dimensional orthogonal projectors on H1 onto a set of d1 one-

dimensional orthogonal projectors on H1 as well as a totally rotated projector PTR ∈ H1 (with

respect to P1) onto a one-dimensional projector on H1.

3. D
(
1(1) ⊕ 0(2)

)
= 1(1) ⊕ 0(2) and there exists a complete and totally rotating set of density
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matrices in LH1 whose spectrum is invariant under D.

4. D
(
1(1) ⊕ 0(2)

)
= 1(1) ⊕ 0(2) and there exists a complete and totally rotating set of density

matrices R in LH1 such that ∀ρ ∈ R; k = 1, 2, . . . , d : Tr
[(
ρ⊕ 0(2)

)k]
= Tr

[
D
(
ρ⊕ 0(2)

)k]
.

Proof. Following the above argument we can apply Theorem 3.9 to the reduced dynamical map on

H1 once we made sure that D
(
1(1) ⊕ 0(2)

)
= 1(1) ⊕ 0(2) which also automatically implies unitality

of the reduced map. Note that if the set P1 is mapped onto another set of d1 one-dimensional

orthogonal projectors on H1 this automatically implies D
(
1(1) ⊕ 0(2)

)
= 1(1) ⊕ 0(2) since D is linear

and 1(1)⊕0(2) is equal to the sum over all elements of an arbitrary set of one-dimensional orthogonal

projectors on H1. Finally, note that the reduced map D1 is well-defined since P1D
(
ρ⊕ 0(2)

)
P1 is

guaranteed to have the form ρ̄⊕ 0(2) due to the projector sandwich P1 (·)P1.

Corollary 5.1 allows us to use input states on the logical subspace to assess whether a given

dynamical map is unitary on the logical subspace. Then, the results of Sec. 3 can be immediately

applied on this subspace with respect to unitary identification. All fidelities from Sec. 5.4 can be

straightforwardly translated to tensor sum Hilbert spaces if one considers the reduced set of density

matrices as elements of the logical subspace undergoing a tensor sum with the zero operator on the

remaining Hilbert space. As a result, one obtains in all cases reliable and encompassing fidelities for

optimisation of unitary transformation on the logical subspace.

The situation for a tensor product partitioning of the total Hilbert space is more complicated

since arguments involving projectors only work for tensor sum decompositions. If O1 is the target

unitary transformation on H1 then any O = O1 ⊗ O2 will result in an evolution that corresponds

to the unitary O1 on H1 for an arbitrary unitary O2 ∈ L (H2) . This makes it difficult to create an

encompassing functional that accounts for all evolutions on the total space which will lead to the

target unitary on the product subspace. If the transformation on the total Liouville space is known

to be unitary, then it is possible to construct a reliable and encompassing functional with respect

to optimisation of unitary transformation on a tensor product subspace, see Ref. [156]. However,

the assumption of a unitary evolution on the composite Hilbert space is very strong which is why it

is beneficial to search for a more general formulation by relaxing the encompassing property of the

resulting functional.

If the initial state of LH2 is known, e.g. if H2 represents some degrees of freedom initially in

their ground state, and the states on the subsystems are not entangled we can make the following

assumption on the dynamical map for the target evolution D0,

∀ρ(1) ∈ LH1 : D0

(
ρ(1) ⊗ ρ(2)

0

)
= O1ρ

(1)O†1 ⊗ ρ
(2)
0 . (5.48)

Then, we can consider a tensor sum decomposition of LH as LH = Lα⊕Lβ with Lα spanned by the

set {ρ(1)
k ⊗ ρ

(2)
0 }k where {ρ(1)

k }k is a complete orthonormal set in LH1 and ρ
(2)
0 is the known initial

state on LH2 . It follows directly from Eq. (5.48) that an optimal transformation leaves the subspace

Lα invariant. Hence, we can interprete Lα as a logical subspace and the results derived above for

tensor sums can be applied straightforwardly as long as ρ
(2)
0 is pure39. The resulting functional is

reliable in terms of implementing O1 on H1 but not encompassing since we restricted the set of ideal

39If ρ
(2)
0 is not pure, the optimisation functionals need to be formulated with respect to mixed states which requires special

care, cf. Sec. 5.4.
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transformations according to Eq. (5.48). It is possible to relax the restriction via Eq. (5.48) slightly

by not requiring the states ρ
(2)
0 to be the same on both sides of the equation40. In this case one needs

to consider a reduced map that not only projects but also rotates the subspace LH2 appropriately.

Nevertheless, in most cases the assumption of Eq. (5.48) is not too restrictive. A common example

for Eq. (5.48) representing a sensible assumption is given if the Liouville space LH2 has a natural

steady state in the absence of control fields, e.g. by being coupled to a T ' 0K bath. We will discuss

a corresponding example in Sec. 7.5.

Corollary 5.1 can be also applied to formulate a functional that optimises an evolution to be as

unitary as possible on a certain (tensor sum) subspace HS ⊂ H with d = dimHS . If we consider

a complete and totally rotating set of density matrices on HS together with the completely mixed

state 1
d1HS , {ρk}, then, by the equivalence (1)⇐⇒ (4) of Corollary 5.1, the functional

JU =
∑
k

d∑
l=1

Tr2
[
DT (ρk)

l − ρlk
]

(5.49)

is a reliable and encompassing functional for optimising towards a unitary evolution on HS . We used

abbreviate notation by skipping the explicit tensor sum with 0 on H/HS . This functional can be

employed for example in the search of decoherence-free subspaces [157] under a non-unitary open

system evolution.

5.6 Numerical Analysis of Reduced Optimisation Functionals

Functionals that are based on reduced fidelities are reliable and encompassing but they usually do

not exhibit a straightforward relationship to the process fidelity/average fidelity, cf. Sec. 3. This

can have disadvantageous effects on the convergence behaviour of a numerical control algorithm with

respect to the average fidelity. Conversely, the fact that only a significantly smaller set of input states

needs to be propagated to construct a reliable and encompassing optimisation functional leads to a

decrease in the computational effort. We will briefly illustrate the interplay between these effects

with two numerical examples, for more details see Ref. [127].

For the first example, we consider a bilinear control Hamiltonian as in Eq. (5.22) with a single

control u1 (t) where H0 and H1 are diagonal in the same basis. All unitaries this control Hamiltonian

can generate are as a result also diagonal in that basis. The control will only influence the eigenvalues

of the unitary, i.e. the phases. We furthermore consider the case when the projectors for basis com-

pleteness in the employed minimal complete and totally rotating set are diagonal in the eigenbases of

H0 and H1. In this event the state fidelities corresponding to these density matrices in the functional

will be completely insensitive to the phases. As a consequence, the whole burden of optimisation is

put onto the totally rotating part. Generally speaking, the choice of optimisation functional is of

great importance for the shape of the optimisation landscape, allowing the optimisation algorithm

to see hills and valleys through which it tries to find extremal points. If only a small part of the

functional is actually sensitive to the most relevant property in the optimisation (the phases in the

above example), then the hills and valleys will be less pronounced which inhibits the ability of the

algorithm to see the correct path in the landscape towards an optimal solution. If one is aware

40However, the resulting state on LH2 on the right-hand side of Eq. 5.48 needs to be independent on ρ(1), otherwise one cannot
perform the required tensor sum decomposition.
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Figure 5.1: Convergence behaviour when optimising a controlled phase gate for two qubits, each
represented by eigenstates of a trapped neutral atom. The control mechanism is given by excitation
to a Rydberg state. The convergence is shown as the gate error, 1−Favg, over OCT iterations, using
the full basis of 16 states (solid black lines), as well as a reduced set of three states (red dashed lines)
and a reduced set of two states (green dotted and orange solid line). The calculations employ equal
weights for all states, except for those shown in orange where λ2/λ3 = 10, cf. Eq. (5.50). The top
and middle panels show optimisations without any dissipation; the middle panel shows a calculation
with the same parameters as the top panel except for the guess pulse, which is badly chosen. More
details on this optimisation can be found in Ref. [127].

of this problem and the Hamiltonian admits such a special structure it can be advisable to rescale

individual contributions to the functional to account for what is actually important in the specific

problem at hand. Note that these observations are the analogue of the analysis in Sec. 4.5 from an

OCT perspective.

Figure 5.1 shows the results of a numerical optimisation for such an optimisation problem in which

only diagonal unitaries can be generated. The minimal set of states employed here is given by the

three states

(ρ1)ij =
2 (d− i+ 1)

d (d+ 1)
δij , (ρ2)ij =

1

d
, (ρ3)ij =

1

d
δij .
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The employed functional for this minimal set is given by41

J
(min)
T = −

3∑
k=1

λk
〈ρk, ρk〉HS

〈DT (ρk) ,UO (ρk)〉HS , (5.50)

where we normalised the contributions to the fidelity according to the initial purity and allowed in

addition for weighting factors λk for the individual states. This is motivated by the rescaling of

individual contributions discussed above. In the absence of any dissipative effects the influence of

proper weighting can be easily seen, compare the green and orange curve in Fig. 5.1. The green curve

shows an optimisation using the minimal set of states while omitting the state ρ1 in the optimisation

functional, since it contains no information about the optimisation progress. It performs, as expected,

better than the red curve which contains all three states of the minimal set. If additional weighting is

employed by increasing the emphasis on acquiring the proper phases, then the performance matches

the one of the full basis. Note that despite the similar convergence speed in terms of OCT iterations,

the numerical effort is much lower for the minimal set since it requires propagation of 2/3 matrices

instead of the full basis of 16 matrices in Liouville space.

With the inclusion of dissipative effects the optimisation problem becomes harder since not only

does the correct unitary need to be implemented but it is also now necessary to obtain a unitary

dynamical map in the first place. This leads to a shift in the main task of the optimisation and

all states in the minimal set are roughly equally sensitive to it. This is reflected in the numerical

results which show similar behaviour for all employed sets of states, see Fig. 5.1. Note that due to

the specific form of the dissipators in this optimisation problem an optimisation functional with only

2 states is reliable for this problem [127].

Figure 5.2 shows the result of numerical optimisations for a different physical example in which the

reachable set of unitaries generated is not restricted to only diagonal ones. It can be clearly seen that

the minimal sets do not make up their loss in comparability with the average fidelity with a sufficient

increase in speed except in the asymptotic region of convergence. In contrast, the sets involving

more states, using 5 states according to Eq. (5.42) respectively 8 states according to Eq. (5.43),

perform better at each stage of the optimisation. Similar to the situation observed in Fig. 5.1,

introducing a weighting for the minimal set improves the convergence behaviour in this problem. In

the corresponding optimisations seen in Fig. 5.2 the mixed state ρ1 has been weighed 10 times more

than either ρ2 and ρ3. This is motivated by the fact that ρ2 only contains information about a single

direction in Hilbert space (since it is pure) and ρ3 is insensitive with respect to specific unitaries (since

all unitaries on the subspace map the totally mixed state onto itself). When accounted for this fact,

the optimisation immediately converges faster. By employing a suitable weighting in the functional

we conveyed the actual importance of the individual terms in the functional to the algorithm. While

adjusting functionals to the specific needs of the optimisation is powerful, we can see from the results

in Fig. 5.2 that the functionals which have at least some bound towards the average fidelity perform

well even in the absence of such weighting.

We conclude from the above numerical analysis that reduced fidelities can be used to speed

up convergence by reducing the amount of states that need to be propagated. Moreover, due to

41J
(min)
T is not normalised such that it becomes 0 if the target is reached. In particular, it can become negative. If desired,

this can be amended by an additive constant. However, from the point of view of the optimisation algorithm such an additive
constant does not lead to different behaviour, i.e. it is merely a matter of aesthetics. Note that in all figures not the optimisation
functional but the gate error, i.e. one minus the average fidelity, is displayed.
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Figure 5.2: Convergence behaviour when optimising towards a
√

iSWAP gate in an implementation
of two transmon qubits undergoing energy relaxation and pure dephasing. The panels from top to
bottom show the gate error over the number of iterations; the gate error over the number of state
propagations, indicative of the required CPU time; a zoom on the initial phase of the optimisation;
and a zoom on the asymptotic convergence (panels (c) and (d) both using a linear scale). The number
of propagations (x-axis in panels (b)-(d)) is a linear rescaling of the number of OCT iterations (x-
axis in panel (a)), with 2 propagations per iteration and state, i.e. the lines of panel (a) are rescaled
differently depending on the respective number of states. Since all panels only show different views
on the same data, the line colours and styles are the same in all of them. More details on this
optimisation can be found in Ref. [127].

fewer states entering the functional, the required memory to store these states during the numerical

optimisation also goes down significantly. Among the reduced fidelities, Jd+1 and J2d perform best

and do not require additional weighting of individual contributions to surpass optimisations utilising

the full basis of Liouville space in their performance.
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6 A Quantum Control Perspective on Cooling

Markovian open system evolutions represent environmental effects on a physical system that cannot

increase the distinguishability of an arbitrary set of input states [139]. It is not difficult to see that

a Markovian dynamics can only implement a unitary transformation if it is perfectly noiseless, i.e. if

the system behaves like a closed quantum systems - we will briefly illustrate this in Sec. 6.1. From

this perspective it is evident that Markovian open system evolutions do not yield any benefit in terms

of realising unitary quantum gates. Nevertheless, it turns out that certain physical tasks are not only

enhanced by an environment inducing such Markovian evolutions, but they are enabled by it in the

first place. An important example for such a task is an evolution that aims to steer an arbitrary initial

ensemble to a single pure state. Generally speaking, from the perspective of quantum information,

the preparation of pure states as input states for quantum computation is of crucial importance as

outlined by one of the so-called DiVincenco criteria, representing one of the most widely accepted set

of requirements towards the physical realisation of a quantum computer [158]. A common approach

to achieve this goal is to cool the system to its (pure) ground state which allows to achieve arbitrary

pure states via a suitable subsequent unitary transformation. We will present an example for the

implementation of unitaries in open quantum systems via optimal control in Sec. 7 and focus on the

cooling part in this section.

We will demonstrate how optimal control can be used to find control schemes that efficiently

perform cooling tasks and discuss a specific example of great experimental interest: the vibrational

cooling of molecules [159, 160]. Cooling via optical pumping makes use of the simplest quantum

reservoir, the vacuum of electric field modes, and has led to the concept of quantum reservoir engi-

neering [161]. We will show how control schemes derived from physical intuition can be translated

into the mathematical formulation of a suitable optimisation functional. Due to the timescale sepa-

ration of optical pumping and radiative decay in the context of vibrational cooling of molecules, the

dissipative part of the evolution can be treated implicitly in the numerical simulation of the molecular

dynamics. We find that control pulses obtained via optimal control show a significant performance

boost with respect to simple experimental techniques like e.g. spectral cut-offs. We will discuss our

numerical results extensively and we will show, that optimal control can successfully find cooling

schemes that are applicable even if the molecular structure is inconvenient for vibrational cooling.

We finish this section by sketching a path towards generalised cooling via the cooling schemes

derived for vibrational cooling. We will explicitly discuss these ideas in the framework of cavity

QED, which proves to be a field of great current theoretical and experimental interest [162–164]. The

analysis of the underlying Jaynes-Cummings Hamiltonian in terms of preparation of arbitrary control

of the mode of a quantum electromagnetic field has been first performed by Law and Eberly [165]

with improvements using numerically optimised schemes reported by Mischuk and Mølmer [166] in

the context of superconducting qudits. Transformation of the state of a cavity from an unknown

initial ensemble to a certain desired pure state with the help of atoms flying through the cavity has

been experimentally realised by Deléglise et al. [167]. We will outline the ideas required to generalise

the optimisation functionals we developed for vibrational cooling, leading to a powerful tool in the

context of quantum reservoir engineering.

The optimal control approach for vibrational cooling of molecules has been published in Ref. [168].
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6.1 Cooling, Markovian Evolutions and Quantum Control

How can we use optimal control to find an evolution that maps an arbitrary initial state of a physical

system to a predefined pure state? If the pure state that shall be reached is the ground state of the

system Hamiltonian, this is nothing more than the mathematical description of an ideal cooling pro-

cess42. As a matter of fact, a unitary evolution can actually never implement such a transformation

since unitary transformations are bijective, i.e. any target state of such a transformation must have

a unique state it originates from. This implies that no two distinct states can ever be mapped to

the same state. In particular, no proper mixed state can be mapped to a pure state; unitary trans-

formations cannot lead to so-called purification since they preserve entropy. However, a Markovian,

non-unitary evolution can lead to such an effect which we want to briefly illustrate with a simple

example.

Consider a single qubit evolving according to the Lindblad master equation, Eq. (5.16), with a

Hamiltonian H = 0 and a single Lindblad operator L1 =

(
0 1

0 0

)
with γ1 = Γ

2 for some Γ > 0.

Then, an arbitrary density matrix ρ (0) =

(
ρ00 ρ01

ρ10 ρ11

)
at initial time t = 0 will evolve to the

following form at time t,

ρ (t) =

(
1− ρ11e

−Γt ρ01e
−Γ

2 t

ρ10e
−Γ

2 t ρ11e
−Γt

)
. (6.1)

In particular, independent on ρ (0), in the limit t → ∞ the state of the system will evolve to the

pure state

(
1 0

0 0

)
. Such a state is called a fixed point of the evolution, and in the above case it

is unique. In other words, the problem of ideal cooling can be translated to engineering a dissipative

evolution which has the ground state of the system as its unique fixed point.

We want to briefly illustrate that the enabling of the cooling task via a Markovian evolution

is diametrically opposed to realising unitary operations in such a quantum system. As discussed

in Sec. 5, a Markovian open system evolution admits an arbitrary decomposition into a series of

dynamical maps. Clearly, a dynamical map is unitary if and only if it maps arbitrary pairs of

orthogonal rank 1 projectors onto orthogonal rank 1 projectors43. It can be shown [6] that the

state fidelity is monotonic under any dynamical map, i.e. for any two density matrices ρ, σ and any

dynamical map D
Fstate (D (ρ) ,D (σ)) ≥ Fstate (ρ, σ) . (6.2)

Since Markovian evolutions are concatenation of dynamical maps this means that for any two density

matrices at some time t0, {ρ (t0) , σ (t0)}, that undergo a Markovian evolution, the following relation

42Such a process is of course not possible in reality due to the third law of thermodynamics but optimal control is about finding
the best solution towards a certain goal, not necessarily reaching that goal.

43For the “if” part, consider that the mapping of arbitrary pairs of orthogonal rank 1 projectors to orthogonal rank 1 projectors
implies that we can in particular consider pairs of a set of complete projectors. This shows that a complete set of orthogonal rank
1 projectors will be mapped onto another complete set of orthogonal rank 1 projectors. Now, consider a totally rotated projector
which, by assumption, will also be mapped onto a rank 1 projector. Then, by Theorem 3.9, the map must be unitary. For the
“only if” part, note that the Hilbert-Schmidt product is invariant if both arguments are subject to a unitary transformation. In
particular, this means that for any two orthogonal rank 1 projectors Pi, Pj the state fidelity Fstate (D (Pi) ,D (Pj)), cf. Eq. (4.16),
must be equal to zero for the dynamical map to be unitary, corresponding to orthogonality of the images.
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holds for all times t1 ≥ t0,

Fstate (ρ (t1) , σ (t1)) ≥ Fstate (ρ (t0) , σ (t0)) .

If at some final time T the Markovian evolution is supposed to represent a unitary transformation,

this means consequently that

∀t ∈ [0, T ] : Fstate (Dt (Pi) ,Dt (Pj)) = 0 , (6.3)

for all pairs of orthogonal rank 1 projectors {Pi, Pj}, where Dt represents the evolution from time 0

to time t. In particular, this means that the Markovian evolution needs to be unitary at all points

in time. As a conclusion, a Markovian evolution can only generate a unitary dynamical map if its

dissipator vanishes, i.e. if the Liouvillian can be substituted by a Hamiltonian. Markovian noise

will consequently always be harmful when the optimisation goal is a unitary transformation. Note

however, that non-Markovian noise does not necessarily follow this rule which we will exploit in

Sec. 7.

In contrast to the destructive properties in terms of achieving a unitary gate, we see that from

the perspective of cooling, or equivalently pure state preparation, the environment represents a fun-

damental resource. This can be seen as a special case of quantum reservoir engineering [161,169–171]

where methods of coherent control are employed to steer the interaction between system and en-

vironment for particular control tasks. In the section we will demonstrate how OCT can be used

to find controls that use the environment to purify arbitrary initial states of the system towards a

unique pure state. We start with the specific example of vibrational cooling of molecules, where the

goal is to reach the vibrational ground state of the ground electronic surface from an initial arbitrary

incoherent mixture of vibrational eigenstates on the ground electronic surface.

6.2 Laser Cooling

Laser cooling of atoms or molecules relies on the repeated excitation and spontaneous emission of

light [172]. When the atom or molecule reaches a dark state, i.e. a state that does not interact with

the laser light, it escapes from the cooling cycle. If this occurs before the particle is sufficiently cooled,

repumping is required. The presence of too many levels that act as dark states has prevented laser

cooling to work for most molecular species. However, dark states can also be used to an advantage

in laser cooling when they are populated only by the cooled particles. This is utilised for example

in subrecoil cooling based on velocity selective coherent population trapping [173]. Dark states also

play a crucial role in the laser cooling of internal degrees of freedom [174–176]. The presence of many

internal levels requires a broadband optical excitation which can be realised by femtosecond laser

pulses. Cooling occurs if the target level is populated by spontaneous emission but remains dark

to the laser pulse [175, 176]. The dark state can be realised by destructive interference or simply

by removing the frequency components corresponding to excitation of the target level. The latter

has recently been realised experimentally, resulting in successful demonstration of laser cooling of

vibrations [159,160,177–181]. An extension to cooling rotations is feasible as well [182–184].

In the experiments of Refs. [159, 160, 177–180, 183, 184], cooling the internal degrees of freedom

by broadband optical pumping was preceded by standard laser cooling of atoms to temperatures of
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Figure 6.1: Potential energy curves of the Cs2 electronic states employed for the vibrational cooling
by optimised optical excitation and spontaneous emission. The vibrational ground state (red solid
curve) is the target state of the optimisation, vibrationally excited states (shown here v = 5, 10, 15)
make up the initial incoherent ensemble.

the order of 100µK and then photoassociating the atoms into weakly bound excited state molecules.

Photoassociation [185, 186] is followed by spontaneous emission, yielding molecules in the ground

electronic state. Depending on the choice of excited state potential, a significant part of the molecules

might end up in ground state levels with comparatively small vibrational quantum numbers [159,179].

The internal degrees of freedom of these molecules can be laser cooled by broadband optical pumping

as illustrated in Fig. 6.1: An incoherent ensemble of molecules in different vibrational levels of the

electronic ground state is excited by a broadband laser pulse to an electronically excited state. The

electronically excited molecules will decay by spontaneous emission back to the ground state. The

branching ratio for the different ground state vibrational levels is determined by the Franck-Condon

factors or, more precisely, transition matrix elements, between ground and excited state levels. Some

decay will always lead to the ground vibrational level. Repeated broadband optical pumping then

accumulates the molecules in the ground vibrational level [159].

The overall cooling rate is determined by the timescale of the dissipative step, i.e. the spontaneous

emission lifetime [174–176]. It cannot be modified by the coherent interaction of the molecules with

the laser pulse. However, the pulses can be shaped such as to populate those excited state levels which

preferentially decay into the target level. We will show that this minimises the number of required

optical pumping cycles. Moreover, we will demonstrate that optimal pulse shapes allow for cooling

even in cases where the Franck-Condon map is preferential to heating rather than cooling. This is the

case when the excited state levels show similar Einstein coefficients for many ground state vibrational

levels. Rather than accumulating the molecules in a single target level, spontaneous emission then

distributes the population incoherently over many levels, effectively heating the molecules up.

The coherent interaction of the molecules with the laser pulse, on the order of 10 ps, takes place

on a very different timescale the spontaneous decay with excited state lifetimes of the order of

10 ns. It is consequently not numerically feasible to treat the full dissipative dynamics of the ex-

citation/spontaneous emission cycle. Seeking a pulse that populates only those excited state levels

with the largest Einstein coefficients with the target ground state level allows us to treat the decay
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implicitly. With this approach the actual propagation in terms of the control algorithm can take

place in Hilbert space where we use our knowledge of the nature of the radiative Markovian decay to

prepare “optimal” initial states for the dissipation in terms of the cooling goal. In the end, we aim

for the total ground state to be the steady state of the evolution given by iterated excitation/decay

cycles with the initial state being restricted to some finite-dimensional subspace of the electronic

ground state manifold.

The two optimisation functionals realise different cooling mechanisms: One is based on optical

pumping from all thermally populated ground state levels symmetrically, whereas the other one forces

the thermally populated ground state levels into an “assembly line”. Only the first level in the line

is transferred to the excited state while population from all other levels is reshuffled, one after the

other, via Raman transitions into the first level. This suppresses heating actively and allows us to

answer the question of what is the fundamental requirement of the molecular structure to allow for

cooling. By imposing a certain cooling mechanism via the functional we forego its property to be

encompassing but we stay reliable as we will show in Sec. 6.6. This presents also a way to “lead” the

algorithm towards physically motivated solutions by not only prescribing the goal one has in mind

but also a path that leads towards this goal. This reduction of complexity greatly increases numerical

tractability and reduces the search space for the optimisation algorithm with the only downside being

that one limits oneself to find only the solutions that are in accordance with the process one already

has in mind.

6.3 Model for Optical Pumping Utilising Timescale Separation

We consider Cs2 and LiCs molecules in their electronic ground state after photoassociation and

subsequent spontaneous emission. The excited state for optical pumping is chosen to be the B1Πu

state as in the experiment for Cs2 molecules of Refs. [159,160,177,178]. This state is comparatively

isolated such that population leakage to other electronic states due to e.g. spin-orbit interaction is

minimal. Neglecting polarisation effects, the Hamiltonian describing the interaction of the molecules

with shaped femtosecond laser pulses in the rotating-wave approximation reads

H =

(
T + VX1Σ+(R) 1

2ε
∗(t)µ

1
2ε(t)µ T + VB1Π(R)− ωL

)
, (6.4)

where T denotes the vibrational kinetic energy. Vg = VX1Σ+(R) and Ve = VB1Π(R) are the potential

energy curves as a function of interatomic separation, R, of the electronic ground and excited state

(note that for Cs2 the X state is of gerade symmetry and the B state of ungerade symmetry). µ

is the transition dipole moment, approximated here to be independent of R. The laser pulse is

characterised by its carrier frequency, ωL, and complex shape, ε(t) = |ε(t)|eiφ(t), with the time-

dependent phase φ(t) referenced to the phase of the carrier frequency. The potential energy curves

are found in Refs. [187] and [188] for the electronic ground state and in Refs. [189] and [190] for the

electronically excited state of Cs2 and LiCs, respectively. For the numerical simulation of the wave

packet dynamics under the Hamiltonian in Eq. (6.4) we used a representation on a Fourier grid [191]

and we employed a Chebyshev propagator [192] for the solution of the Schrödinger equation.

The decay of the excited state molecules back to the electronic ground state is described by the



80 6 A Quantum Control Perspective on Cooling

Ground Surface Vibrational Eigenstate

E
x
c
it
e

d
 S

u
rf

a
c
e

 V
ib

ra
ti
o

n
a

l 
E

ig
e

n
s
ta

te

 

 

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

0.05

0.1

0.15

0.2

0.25

0.3

Ground Surface Vibrational Eigenstate

E
x
c
it
e

d
 S

u
rf

a
c
e

 V
ib

ra
ti
o

n
a

l 
E

ig
e

n
s
ta

te

 

 

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

0.05

0.1

0.15

0.2

0.25

Figure 6.2: Franck-Condon map, 〈ϕBv′ |µ|ϕXv′′〉, as a function of ground and excited state levels, v′′ and
v′, respectively, for Cs2 (left) and LiCs (right). Optical pumping at the right edge of the compact
parabola for Cs2 ensures cooling. This is in contrast to LiCs where absence of a compact boundary
of the large transition matrix elements implies spontaneous emission towards levels with larger v′′,
i.e. heating.

spontaneous emission rates,

γdv′J′ =
∑
v′′J′′

Av′J′,v′′J′′ . (6.5)

The Einstein coefficients Av′J′,v′′J′′ are determined by the Franck-Condon factors,

Av′J′,v′′J′′ =
4α3

3e4~2
HJ′(Ev′J′ − Ev′′J′′)3

∣∣∣〈ϕBv′J′ |µ|ϕXv′′J′′〉∣∣∣2 , (6.6)

whereHJ′ is the Hönl-London factor equal to (J ′+1)/(2J ′+1) for J ′ = J ′′−1 and equal to J ′/(2J ′+1)

for J ′ = J ′′ + 1, α denotes the fine structure constant and e the electron charge. |ϕXv′′J′′〉 and |ϕBv′J′〉
are the rovibrational eigenstates of the X1Σ+ electronic ground state and the B1Π excited state,

respectively. We will neglect rotations in the following since the Einstein coefficients are essentially

determined by the Franck-Condon factors, 〈ϕBv′J′ |µ|ϕXv′′J′′〉 ≈ 〈ϕBv′0|µ|ϕXv′′0〉.
Figure 6.2 displays the Franck-Condon map that governs the spontaneous emission for Cs2 and

LiCs. A compact parabola of large transition matrix elements is observed for Cs2, cf. left-hand

side of Fig. 6.2. Excitation at the right edge of this parabola can be ensured by removing part of

the broadband spectrum [159]. Spontaneous emission then will occur to levels with v′′ ≤ vinitial, and

repeated cycles of broadband excitation and spontaneous emission results in vibrational cooling [159].

The situation changes completely for LiCs, cf. right-hand side of Fig. 6.2. There is no strict separation

between large and small transition matrix elements, and a given excited state level has many non-

zero transition matrix elements of similar magnitude. Spontaneous emission will thus spread the

population, and even worse, will do so preferentially toward levels with v′′ ≥ vinitial, leading to

heating rather than cooling. In the following two subsections we will derive optimisation functionals

towards cooling schemes that circumvent these issues.
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6.4 Symmetric Cooling

The main idea of this functional is to excite all vibrationally excited ground state levels symmetrically

into those excited state levels which preferentially decay toward the target state |ϕg0〉 while minimising

potential heating. Symmetric excitation ensures that all ground state levels in the thermal ensemble

are treated homogeneously. The initial state for each laser pulse is given by an unknown incoherent

distribution over ground state vibrational levels, |ψi(0)〉 = |ϕgi 〉, i = 1, . . . , nmax. Each of these levels

is excited by the pulse and subject to the ensuing dynamics, giving rise to wavepackets |ψi(t)〉 which

decay by spontaneous emission to ground state vibrational levels. The spontaneous decay of the

excited state component of the i-th wavepacket |ψi(t)〉 to the target level |ϕg0〉 is determined by the

temporally averaged overlap,

σi =
1

Te

ˆ T+Te

T

|〈ψi(τ) |Pe µ |ϕg0〉|
2
dτ , (6.7)

where Te denotes the excited state lifetime and Pe is the projector onto the excited electronic state.

Shifting the time axis by −T , inserting the completeness relation for vibrational levels on the excited

state and denoting the Franck-Condon factors 〈ϕen|µ|ϕgm〉 by ηnm, Eq. (6.7) becomes

σi =
1

Te

ˆ Te

0

∑
n,m

ei(E
e
n−E

e
m)tηn0η

∗
m0〈ψi(T )|ϕen〉〈ϕem|ψi(T )〉dt ,

where Een is the eigenenergy corresponding to |ϕen〉. The integral is readily evaluated, yielding

σi =
∑
n6=m

1

iTe(Een − Eem)

(
ei(E

e
n−E

e
m)t − 1

)
ηn0η

∗
m0〈ψi(T )|ϕen〉〈ϕem|ψi(T )〉+

∑
n

|ηn0|2 |〈ψi(T )|ϕen〉|2 .

Due to the timescale separation, 1/(Te(E
e
n − Eem)) is at most of the order 10−4, and the temporally

averaged overlap is well approximated by the second term alone,

σi =
∑
n

|ηn0|2 |〈ψi(T )|ϕen〉|2 . (6.8)

The timescale separation also allows for neglecting the accidental creation of coherences in the

ground state density matrix after each cooling cycle. While the initial ensemble most likely is a

completely incoherent mixture, the state obtained on the ground electronic surface after one cooling

cycle may contain coherences. Accidentally, this could lead to accumulation of molecules in an

undesired dark state, i.e. a certain coherent superposition of vibrational eigenstates. However, the

free evolution of the molecule introduces rapidly oscillating prefactors for each eigenstate. These

oscillations are much more rapid than the time necessary for decay to the ground surface. Therefore,

the system will be in a superposition of eigenstates with a fixed modulus but random phase before

the next pulse arrives. If necessary, this can be strictly enforced by introducing a small, randomised

waiting period between cycles. Since a dark state requires a fixed phase relation, accumulation in

the dark state is effectively ruled out.

Ignoring coherences, the initial ensemble for each pulse is described only in terms of the vibrational
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populations, and maximising the excitation of each vibrational level corresponds to minimising

Jyield = 1−
nmax∑
n=1

σn . (6.9)

Note that minimising Jyield also maximises the decay to the target level, since σn accounts for the

matrix elements governing spontaneous emission, cf. Eq. (6.8). Symmetric excitation of all levels is

ensured by balancing the yield with respect to an arbitrarily chosen level out of the initial ensemble,

1 ≤ n∗ ≤ nmax,

Jsym =

nmax∑
n=1(n6=n∗)

(σn − σn∗)2
. (6.10)

Jsym is required because otherwise the yield could be maximised by very efficiently exciting only

some levels in the initial ensemble. This would result in incomplete cooling. In addition to efficiently

exciting all vibrationally excited ground state levels, the target state must be kept dark. This is

achieved by enforcing the steady-state condition,

Jss = 1− |〈ϕg0|U(T, 0; ε)|ϕg0〉|
2
. (6.11)

A further complication arises from the fact that molecules could leave the considered subspace or, in

the worst case, even dissociate during the cooling process. This is a source of loss and needs to be

strictly prevented. The most efficient way of enforcing this requirement is to avoid leakage out of the

initial ensemble of ground state vibrational levels,

Jleak =
∑

m′=nmax+1

nmax∑
m=0

|〈ϕgm′ |U(T, 0; ε)|ϕgm〉|
2

+
∑

m′=nmax+1

∑
l

nmax∑
m=0

|ηlm′ |2 |〈ϕel |U(T, 0; ε)|ϕgm〉|2 .

(6.12)

The first term in Eq. (6.12) suppresses population transfer, via Raman transitions, from the initial

ground state ensemble into higher excited ground state levels, whereas the second term suppresses

population of excited state levels that have large Franck-Condon factors with ground state levels

outside of the initial ensemble. Jleak does not only counter dissociation of the molecules but also

undesired heating.

The complete final-time functional is given by the multi-objective target of keeping the target

state dark, efficiently exciting all other vibrational levels in the initial ensemble and avoiding leakage

out of the initial ensemble,

J sym
T = λssJss + λleakJleak + λyieldJyield + λsymJsym , (6.13)

where the λj > 0 allow to weight the separate contributions differently. The functional (6.13) will

yield optimised pulses that cool when used in repeated excitation/deexcitation cycles, unless the

molecule under consideration has a Franck-Condon map that strongly favours heating rather than

cooling such that simultaneously fulfilling all targets imposed by the functional becomes very difficult.

This raises the question concerning the minimum requirement on the transition matrix elements to

obtain cooling and led us to define a second optimisation functional.



6.5 Assembly-Line Cooling 83

6.5 Assembly-Line Cooling

The main idea of this functional is to optimise population transfer to the electronically excited state

only for a single ground state level n∗. The excited state levels that are reached from n∗ need to

have Franck-Condon factors that are favourable to cooling (in the extreme case, a single excited state

level with favourable Franck-Condon factor is sufficient). The population of all other vibrationally

excited ground state levels is simply reshuffled via Raman transitions, populating preferentially n∗.

For example, if the cooling target is the ground state and we choose n∗ = 1, all higher levels are

reshuffled into the next lower level, forming an “assembly line” which ends in n = n∗.

The corresponding functional contains the steady state and leakage terms just as Eq. (6.13). The

excitation term now targets only n∗, taken to be n∗ = 1,

J̃yield = 1− σ1 , (6.14)

and population reshuffling towards lower vibrational levels is enforced by the assembly-line term,

Jass = 1− 1

nmax − 1

nmax∑
n=2

∣∣〈ϕgn−1|U(T, 0; ε)|ϕgn〉
∣∣2 . (6.15)

Similarly to Eq. (6.13), the complete final-time functional for assembly line cooling is given by

summing all contributions,

Jass
T = λssJss + λleakJleak + λyieldJ̃yield + λassJass (6.16)

with weights λj > 0. In Eq. (6.13), heating is countered only via the leakage term, whereas Eq. (6.16)

avoids it actively.

Instead of the square modulus in the overlaps of Eqs. (6.8), (6.11), (6.12), and (6.15), it is also

possible to use the real part of the overlap, cf. Sec. 5.4. This sets an unnecessary global phase but

shows a better initial convergence for bad guess pulses. The latter is due to the specific form of the

“initial” costates, |χ(i)
n (T )〉, which remain constant for real part functionals while depending linearly

on the final-time forward propagated states, |ψ(i)
n (T )〉, for the square modulus functional. As a result,

costates for real part functionals cannot take values close to zero leading to very small gradients as is

the case for square modulus functionals. This is important in particular for the assembly-line term,

for which formulating a good guess pulse is difficult. Our results presented below were obtained with

the real part instead of the square modulus in Eq. (6.15).

6.6 Optimisation Results for Vibrational Cooling

We choose our guess pulses such as to avoid small gradients at the beginning of the optimisation.

In all examples, they are taken to be Gaussian transform-limited pulses of moderate intensity with

central frequency and spectral width chosen to excite a number of transitions that are relevant for

the cooling process. The latter are easily read off the Franck-Condon matrices in Fig. 6.2. The

choice of the λj is determined by the relative importance of the individual terms in the optimisation

functionals. Large values for the steady-state and leakage terms are crucial since a low value of these

functionals will prevent a high repeatability of the excitation/deexcitation steps, effectively reducing
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Figure 6.3: Optimising the vibrational cooling of Cs2 molecules using symmetrised excitation: Value
of the total functional, Eq. (6.13), and its components vs iterations of the optimisation algorithm
(nmax = 10).

the attainable yield. In contrast, a slightly lower yield for an individual step can easily be amended

by additional cycles. Consequently, as a rule of thumb, λss and λleak should be chosen larger than

λyield and λsym or λass, respectively. This is more important for the symmetrised cooling since in

the assembly line case the leakage is much easier to prevent by virtue of the mechanism. Hence it

proved in our calculation sufficient to choose all λ equal to one for the assembly line functional while

it proved useful to choose λleak = λsym = 1, λss = 2 and λyield = 0.4 for the symmetrised functional.

We first study vibrational cooling of Cs2 molecules, taking nmax = 10. Due to the favourable

Franck-Condon map, optimisation is not required in this case but helps to reduce the number of

cooling cycles. The behaviour of the individual contributions to the optimisation functional as well

as its total value are plotted in Fig. 6.3 for J sym
T and in Fig. 6.4 for Jass

T . In both cases, monotonous

convergence is observed for the total functional as expected, cf. blue dashed lines in Figs. 6.3 and 6.4.

The dark-state condition for the target state is perfectly obeyed for symmetrised excitation through-

out the optimisation (green long-dashed line in the inset of Fig. 6.3) but presents a slightly more

difficult constraint to fulfil for assembly-line cooling (green long-dashed line in the inset of Fig. 6.4,

note that the stability of the ground state is given by 1 − Jss). For optimisation using J sym
T , the

excitation yield, given by 1 − Jyield, measures excitation of all levels in the initial ensemble, and

reaches a value above 0.9, cf. purple dot-dashed line in Fig. 6.3. This together with the fact that

the final value of Jsym (black dotted line in Fig. 6.3) is 10−6 implies that a pulse that excites all

levels in the initial ensemble with similar efficiency can indeed be found. For optimisation using Jass
T ,

the excitation yield, 1 − J̃yield, takes a smaller final value (purple dot-dashed line in Fig. 6.4). This

reflects the fact that 1− J̃yield measures only excitation out of v′′ = 1 and its maximum is given by

0.335, whereas the population reshuffling of the other levels is captured by 1−Jass (black dotted line

in Fig. 6.4). The latter takes a final value close to one, suggesting that the pulse reshuffles all higher

excited ground state levels in the desired way. This indicates efficient excitation at the end of the

assembly line as desired. Thus, both optimisation functionals, Eq. (6.13) and Eq. (6.16), yield pulses
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Figure 6.4: Optimising the vibrational cooling of Cs2 molecules using assembly-line cooling: Value
of the total functional, Eq. (6.16), and its components vs iterations of the optimisation algorithm
(nmax = 10).

which effectively excite all higher vibrational levels while keeping the target state dark. A striking

difference between optimisation with J sym
T and Jass

T is found only in the ability of the optimised

pulses to suppress leakage out of the initial ensemble (red solid lines in Fig. 6.3 and 6.4). While Jleak

takes a final value of about 0.014 for symmetrised excitation, it can be made smaller than 10−4 for

assembly line cooling. In the latter case, Jleak could be further decreased by continued optimisation,

cf. the slope of the red line in Fig. 6.4. This is in contrast to Fig. 6.3 where Jleak remains essentially

unchanged after about 200 iterations, suggesting that a hard limit has been reached. Leakage from

the cooling subspace thus starts to pose a problem for symmetrised excitation when a few hundred

cooling cycles are required. The different performance of the two optimisation functionals is not

surprising since Jass
T is constructed to actively suppress leakage from the initial ensemble (and the

ensuing vibrational heating) by allowing spontaneous emission only from the most favourable instead

of all accessible levels.

The optimised pulses and their spectra for vibrational cooling of Cs2 are shown in Fig. 6.5,

comparing symmetrised excitation (left-hand side) and assembly-line cooling (right-hand side). The

spectral width of the optimised pulses covers about 500 cm−1, corresponding to transform-limited

pulses of 30 fs. This is well within the standard capabilities of current femtosecond technology. A

similar conclusion can be made with respect to the integrated pulse energies: We find 1µJ for the

pulse obtained with J sym
T in the left-hand side of Fig. 6.5 and 4µJ for that obtained with Jass

T in the

right-hand side of Fig. 6.5.

We now turn to the example of LiCs molecules for which the Franck-Condon map is not favourable

to cooling. Broadband optical pumping with unshaped pulses will thus lead to heating rather than

cooling, cf. Fig. 6.2. We demonstrate in the following that shaping the pulses does, however, yield

vibrational cooling. Note that by employing the B1Π-state, we have chosen the most favourable out

of all potential energy curves correlating to the lowest excited state asymptote (Li 2s + Cs 6p). For

example, theA1Σ+ state is expected to be even less suited for cooling. While theA1Σ+-state potential

is more deeply bound and could thus be somewhat better in terms of the Franck-Condon map, it
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Figure 6.5: Optimised pulses (top) and their spectra (bottom) for the vibrational cooling of Cs2

molecules using symmetrised excitation (left) and assembly-line cooling (right).

is strongly perturbed by the spin-orbit interaction. The resulting coupling to triplet states implies

a loss from the cooling cycle that, due to the timescale separation of excitation and spontaneous

emission, cannot be prevented by shaping the pulse.

Since the B1Π-state of LiCs is comparatively shallow [190], leakage out of the initial ensemble

and dissociation of the molecules is a more severe problem than for Cs2. We therefore first discuss

nmax = 5 and show later that assembly-line cooling allows also for larger nmax. The behaviour of

the optimisation functionals and their individual contributions is displayed in Fig. 6.6 for J sym
T and

in Fig. 6.7 for Jass
T . The overall behaviour of the functionals and their components is very similar

to that observed for Cs2 in Figs. 6.3 and 6.4. In particular, both algorithms converge monotonically

(dashed blue lines in Figs. 6.6 and 6.7), the dark-state condition can be very well fulfilled (green

long dashed lines), and the excitation is efficient (purple dot-dashed and black dotted lines). The

behaviour with respect to leakage changes, however, dramatically when going from Cs2 to LiCs (red

lines in Figs. 6.6 and 6.7): Jleak takes final values of 0.16 for symmetrised excitation and 0.009 for

assembly-line cooling. This reflects the Franck-Condon map being much more favourable to heating

rather than cooling, cf. Fig. 6.2 (right), that even with shaped pulses it is difficult to ensure cooling.

In particular, the result for symmetrised excitation is insufficient since Jleak = 0.16 implies that

losses from the cooling cycle will occur already after few excitation/deexcitation steps. For nmax = 5,

Jleak reaches a plateau for symmetrised excitation and assembly-line cooling alike. This is easily

rationalised by inspection of the Franck-Condon map in Fig. 6.2 (right). In particular, the excited

state levels which are reached from v′′ = 5, such as v′ = 2, show a large leakage toward higher ground

state vibrational levels. We have therefore also investigated nmax = 10 for assembly-line cooling.

Most of the levels into which e.g. v′ = 2 decays, and which represent leakage for nmax = 5, are then

part of the ensemble. Moreover, Jleak continues to decrease after 1000 iterations, albeit not as steeply

as in Fig. 6.4 for Cs2, allowing to push the value of Jleak below 10−3.

Figure 6.8 shows the optimised pulses (top) and their spectra (bottom) for LiCs with nmax = 5

and symmetrised excitation (left) and assembly-line cooling (right). The bottom left panel of Fig. 6.8

displays furthermore the spectrum of the optimised assembly-line pulse obtained for nmax = 10. The

spectral width obtained for nmax = 5 covers less than 3000 cm−1, corresponding to the bandwidth

of a transform-limited pulse of a few femtoseconds. The integrated pulse energy amounts to 3.4µJ.
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Figure 6.6: Optimising the vibrational cooling of LiCs molecules using symmetrised excitation: Value
of the total functional, Eq. (6.13), and its components vs iterations of the optimisation algorithm
(nmax = 5).

# cycles for 90% max. target state yield # cycles for max. yield

Cs2 (nmax = 10) J sym
T 23 0.992 125

Cs2 (nmax = 10) Jass
T 26 0.9993 100

LiCs (nmax = 5) J sym
T not achieved 0.80 97

LiCs (nmax = 5) Jass
T 26 0.96 137

LiCs (nmax = 10) Jass
T 30 0.99 84

Table 6.1: Accumulation of molecules in the target v′′ = 0 level.

For nmax = 10, significantly more transitions need to be driven, cf. Fig. 6.2. It is thus not surprising

that both the spectral width of the optimised pulse and its integrated energy are larger than for

nmax = 5. The latter amounts to 16µJ. Such a pulse is more difficult to realise experimentally than

those found for Cs2 although its spectral width could be reduced by employing spectral constraints

in the optimisation algorithm [147, 150]. Nevertheless, we were able to demonstrate that optimised

pulses lead to vibrational cooling even for molecules with unfavourable Franck-Condon map. This is

evident from Fig. 6.7 and further substantiated by simulating the cooling process using the optimised

pulses.

To this end, we assume the initial incoherent ensemble to be given by equal population in the levels

v′′ = 1, . . . , 10 of the electronic ground state for both Cs2 and LiCs. We calculate the wavepacket

dynamics under the optimised pulse, and determine the ensemble that represents the initial state

for the next pulse, identical to the previous one, by redistributing the population according to the

Einstein coefficients, Eq. (6.6). The depletion of the excited vibrational levels and accumulation of

population in v′′ = 0 is demonstrated in Fig. 6.9 and Table 6.1. A ground state population of 90% is

obtained after just a few tens of excitation/spontaneous emission cycles for both Cs2 and LiCs. This

is in contrast to spectrally cut pulses without any further shaping which require several thousand
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Figure 6.7: Optimising the vibrational cooling of LiCs molecules using assembly-line cooling: Value
of the total functional, Eq. (6.16), and its components vs iterations of the optimisation algorithm
(nmax = 5).

cycles for Cs2 and would fail altogether for LiCs. Moreover, a high degree of purity, P > 0.98,

is obtained for our optimised pulses with only of the order of 100 excitation/spontaneous emission

cycles for both molecular species.

All results discussed above are obtained for v = 0 as the target state. It is natural to ask whether

other vibrational levels could also be chosen as target and whether such a choice would be more

favourable for the cooling process. In fact, after reaching a pure state and full purification of the

initial ensemble has been achieved, transforming this pure state to different pure states on the ground

electronic surface is a comparatively easy task, e.g. by using a Raman transition. Experimentally,

vibrational cooling has been demonstrated in Cs2 for target levels v = 1, 2, 7 [160]. In order to

determine which ground state level is most suitable as cooling target, we calculate, for each excited

state level, the sum of transition matrix elements that lead to leakage from the cooling subspace.

For both Cs2 and LiCs, we find that v′ = 0 has the smallest probability to induce leakage. For LiCs

in particular, the leakage probability quickly increases with vibrational excitation. This implies that

v′ = 0 is the only excited state level of practical use for assembly-line cooling. The most suitable

target level is now simply determined as the ground state level with the largest decay probability.

This is v = 1 instead of v = 0 in the example of LiCs, while v = 0 turns out to be optimal for Cs2.

6.7 Perspectives for Quantum Reservoir Engineering

We will turn now to a more general description of a cooling/purification problem on a physical system

whose state can be described in a tensor product Hilbert spaceH = H1⊗H2. In the case of vibrational

cooling discussed above, H1 represents the Hilbert space of the ground electronic surface while H2

corresponds to the excited electronic surface. Due to its relevance in current experiments [162, 167]

and inspired by previous work [193] we will discuss in the following the case of H1 describing the

state of a cavity field and H2 describing the state of an atom that interacts with this cavity by

passing through it. To be specific and in view of this concrete physical example, we will refer to H1
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Figure 6.8: Optimised pulses (top) and their spectra (bottom) for the vibrational cooling of LiCs
molecules using symmetrised excitation (left, nmax = 5) and assembly-line cooling (right, nmax = 5
in the top panel, nmax = 5, respectively nmax = 10 in the bottom panel).

0
1
2
3
4
5
6
7
8
9
10

vib. level

0

10

20

30

40

50

cycle
number

0.

0.2

0.4

0.6

0.8

1.

p
o
p
u
la
ti
o
n

0
1
2
3
4
5
6
7
8
9
10

vib. level

0

10

20

30

40

50

cycle
number

0.

0.2

0.4

0.6

0.8

p
o
p
u
la
ti
o
n

Figure 6.9: Demonstration of assembly-line cooling for Cs2 (top) and LiCs (bottom) molecules:
Population of ground state vibrational levels vs number of excitation/spontaneous emission cycles.
The initial distribution is assumed to be an equipartition in the ground state vibrational levels
v′′ = 1, . . . , v′′ = 10.
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as the cavity Hilbert space, Hc, and to H2 as the atom Hilbert space, Ha. The total Hilbert space is

then given by H = Hc ⊗Ha. Nevertheless, it should be emphasised that the following ideas are not

restricted to a specific physical system. Rather, they can be interpreted in the general framework

of a cooling process of a physical system whose state can be represented as an element of a Hilbert

space H1 while the environmental degrees of freedom are represented by a Hilbert space H2.

We will begin by considering unitary evolution on the total Hilbert space H and an initial product

state involving a known pure state of the atom, |ψa〉. The initial state of the cavity is not known

and could even be a mixed state. For simplicity, we will stay initially in the Hilbert space framework

by considering pure states only. How can we formulate an optimisation functional that finds a

unitary transformation such that the final state of the cavity in the Hilbert space Hc will be given by

|ψss〉? Similarly to the discussion in Sec. 6.1, a single unitary transformation cannot produce such

a behaviour for an arbitrary initial state of the cavity as long as dim (Ha) < dim (Hc). This can be

seen as follows: Let dim (Ha) = da, dim (Hc) = dc, and let {|ci〉}i=1,...,Nc
be an orthonormal basis

of Hc. A hypothetical unitary transformation that leads to the desired behaviour would yield the

mapping U (|ci〉 ⊗ |ψa〉) = |ψss〉 ⊗ |φi〉 for all i = 1, . . . , Nc where the |φi〉 are arbitrary states in Ha.
Since any unitary transformation U maps an orthonormal set of vectors onto another orthonormal

set of vectors, the set {|ψss〉 ⊗ |φi〉}i must be orthonormal, i.e. the |φi〉 form an orthonormal set in

Ha. Due to dim (Ha) = da, the maximal number of orthonormal vectors in Ha is equal to da which

means that such a unitary transformation can only exist for da ≥ dc. If the initial state of the cavity

is known and pure then it is straightforward to perform optimisation towards a certain target state

of the cavity with da = 2, for an extensive discussion of this special case see Ref. [193]. For the

general case we can only try to find a purification scheme that reaches the desired final state |ψss〉
after several cycles of atoms interacting with the cavity.

For simplicity, we will consider dim (Ha) = 2. Accordingly, we consider an arbitrary orthonormal

basis ofHa, {|a1〉 , |a2〉}. In analogy to the case of vibrational cooling, we restrict the initial state to be

in certain, finite-dimensional subspace of Hc44. The following functional is reliable and encompassing

in terms of ensuring that the unitary transformation U due to a single atom interacting with cavity,

leaves the target state |ψss〉 invariant45,

J#
ss =

∑
i=1,2

|〈ψss ⊗ ai |U |ψss ⊗ ψa〉|2

=
〈
ψss

∣∣Tra
[
U (|ψss ⊗ ψa〉 〈ψss ⊗ ψa|)U†

] ∣∣ψss〉 . (6.17)

We will call it the steady state functional J#
ss , in analogy to the one defined in Sec. 6.4.

We will now go beyond the Hilbert space picture and consider the more general case of a dy-

namical map D on the total system. This dynamical map describes the evolution of the atom-cavity

system with the atom initially in the pure state |ψa〉. Atom and cavity interact for a certain time

before the atom leaves the interaction zone with the cavity. Since the initial state of atom and cavity

are uncorrelated and the information obtained by the atom about the cavity via interaction is dis-

carded, i.e. the atom stops to interact with the cavity completely before the next atom arrives, the

44Clearly this subspace needs to include |ψss〉 since |ψss〉 must be a steady state of the total evolution.
45We employ the superscript # for all functionals in this subsection to distinguish them from the similar functionals for

vibrational cooling introduced above.
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total evolution can be seen as a Markovian process and is hence suitable for a cooling/purification

task. Moreover, the formulation of the evolution of the total system as a dynamical map allows

for the inclusion of additional dissipative effects on the atom and/or the cavity. If the evolution

of the combined atom-cavity system is described by a dynamical map, the steady state functional

straightforwardly generalises to

J#
ss = 〈ψss |Tra [D (|ψss ⊗ ψa〉 〈ψss ⊗ ψa|)] |ψss〉 . (6.18)

We want to accomplish after a sufficient number46 of atomic interactions that the state of the

cavity becomes the steady state |ψss〉, independent on the initial state of the cavity, as long as it

is an element of a finite-dimensional subspace LH̄C ⊂ LHC . This can be done by using the steady

state functional, Eq. (6.18), while also having finite yield (in analogy to the discussion for vibrational

cooling) in a single interaction cycle for an arbitrary initial cavity state, ρc,0 ∈ LH̄c . We can formulate

this as follows: Find D such that

∀ρc,0 ∈ LH̄c : σ (ρc,0) ≡ 〈ψss |Tra [D (ρc,0 ⊗ |ψa〉 〈ψa|)] |ψss〉 > 0 . (6.19)

We will now proceed to show how an optimisation functional can be formalised that ensures condi-

tion (6.19). Let d̄c = dim
(
H̄c
)

and let ρc,0 be arbitrary. Choose an orthonormal basis of Hermitian

matrices {ρi} on LH̄c such that it consists of d̄c diagonal matrices
{
ρDi
}

and d̄c
(
d̄c − 1

)
off-diagonal

matrices47
{
ρODi

}
in a fixed representation. In other words, we can write

{ρi}i=1,...d̄2
c

=
{
ρDi
}
i=1,...,d̄c

∪
{
ρODi

}
i=1,...,d̄c(d̄c−1) . (6.20)

Spanning ρc,0 in this basis one obtains coefficients cDi ∈ C and cODi ∈ C such that

ρc,0 =

d̄2
c∑

i=1

ciρi =

d̄c∑
i=1

cDi ρ
D
i +

d̄c(d̄c−1)∑
i=1

cODi ρODi . (6.21)

We choose for simplicity ρDi = Pi ≡ |ψi〉 〈ψi| where |ψi〉 is an arbitrary ONB of H̄c. Due to ρc,0 being

a density matrix, we can conclude the following relations for the coefficients and the basis elements,

∀i : ci ∈ R (since ρ0is hermitian) , (6.22a)

∀i : cDi ≥ 0 (since ρ0is pos. semidefinite) , (6.22b)

∀i :
∣∣cODi ∣∣ ≤ 1 (since Tr

[
ρ2

0

]
≤1 ) . (6.22c)

46Theoretically infinite, practically large but finite, cf. Footnote 42.
47By an off-diagonal matrix we denote a matrix whose diagonal entries vanish. Note that the resulting matrix is not a density

matrix but for simplicity we will still denote it with a ρ. In the context of numerical optimisation it is generally not an issue
when matrices are employed that do not obey all criteria for being a density matrix. Furthermore, ensuring condition (6.19) for
all elements of Liouville space will in particular guarantee that it is fulfilled for all density matrices.
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Using the decomposition of ρc,0 according to Eq. (6.21) we can rewrite the yield σ (ρ0) as follows,

σ (ρ0) =
∑
i

cDi
〈
ψss

∣∣Tra
[
D
(
ρDi ⊗ |ψa〉 〈ψa|

)] ∣∣ψss〉
+
∑
i

cODi
〈
ψss

∣∣Tra
[
D
(
ρODi ⊗ |ψa〉 〈ψa|

)] ∣∣ψss〉 . (6.23)

To shorten notation it is convenient to define

ηi ≡
〈
ψss

∣∣Tra
[
D
(
ρDi ⊗ |ψa〉 〈ψa|

)] ∣∣ψss〉 , (6.24)

βi ≡
〈
ψss

∣∣Tra
[
D
(
ρODi ⊗ |ψa〉 〈ψa|

)] ∣∣ψss〉 . (6.25)

Since D is a dynamical map and ρDi is positive, D
(
ρDi ⊗ |ψa〉 〈ψa|

)
is a positive matrix. As a result,

the expectation value in Eq. (6.24) is nonnegative and it follows that ∀i : ηi ≥ 0. Then, it is clear

that condition (6.19) is equivalent to achieving ∀i : βi = 0 and ∀i : ηi > 0. Using Eq. (6.22c) we can

even employ the significantly weaker condition∑
i

|βi| < min
i
ηi . (6.26)

To obtain a symmetrised and maximally efficient steering process towards the steady state for this

problem, we propose, analogously to Eq. (6.13), the following functional,

J#
T = J#

ss + J#
eff + J#

symm + J#
leak . (6.27)

The steady state functional, J#
ss , is given by Eq. (6.18). The efficiency functional, J#

eff, is responsible

for obtaining a high total yield σ averaged over all possible initial states. Since the only guaranteed

beneficial contribution is the one corresponding to the ηi, we need to maximise the value of the ηi

and minimise the values of the βi accordingly. This motivates the following efficiency functional,

J#
eff =

∑
i

ηi −
∑
i

|βi|2 . (6.28)

The symmetrisation functional, J#
symm, is responsible for equally distributing the total yield over all

ηi. Since the initial state in LH̄c is unknown, each ηi is equally important. The canonical approach

is to make sure that all the ηi are of the same magnitude, cf. Sec 6.4. This can be achieved by a

telescope-type functional,

J#,tele
symm =

∑
i=2

|ηi − ηi−1|2 , (6.29)

or a lock-in functional in which one compares all ηi to a certain “locked-in” ηk ,

J#,lock
symm =

∑
i6=k

|ηi − ηk|2 . (6.30)

Since errors can accumulate in the telescope type functional, the lock-in functional seems to be the

better choice in general which is why it also has been chosen in Eq. (6.10) for vibrational cooling. It is
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also conceivable that efficiency and symmetrisation functional can be substituted by an assembly-line

type functional as introduced in Sec. 6.5. If the coherences represented by the βi are suppressed,

we can once again split the initial density matrix into the contributions from its eigenstates. This

allows to find a drain state towards the steady state with the remaining eigenstates being coherently

transferred step by step to this drain state.

The leakage functional, J#
leak, has the objective to prevent population transfer out of the subspace

LH̄c ⊂ LHc . Using the same ideas presented already in Sec. 6.4 we propose the functional

J#
leak = Tr

[
PH̄cTra

[
D
(
d̄−1
c 1d̄c ⊗ |ψa〉 〈ψa|

)]
PH̄c

]
. (6.31)

where d̄−1
c 1d̄c is the totally mixed state on the subspace LH̄c .

We will finish this section by briefly putting the special case of vibrational cooling in the per-

spective of the generalised scheme presented in this subsection. The radiative decay for vibrational

cooling is diagonal with respect to the vibrational energy basis [194]. As a result, it was not necessary

to consider coherences, i.e. off-diagonal contributions corresponding to non-vanishing cODi ’s. For this

reason we could assume that cODi = 0, in other words we were able to restrict ourselves to a certain

subset of initial density matrices ρ0 ∈ LH̄c . Thus, all βi vanished automatically and the efficiency

functional reduced to

J̃#
eff =

∑
i

ηi . (6.32)

Due to the additional time scale separation between coherent dynamics and the decay process, it was

possible to treat the whole purification task for vibrational cooling in Hilbert space.
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7 A Quantum Control Perspective on a Non-Markovian Evolution

Once the correlations between a system and its environment do not decay sufficiently fast, it is not

possible to describe the system evolution via a Markovian master equation [38]. Finding an adequate

equation of motion for these cases turns out to be highly non-trivial. Nevertheless, the study of these

non-Markovian evolutions is of great interest from the perspective of quantum control. The preserva-

tion of system-environment correlations for a sufficient time implies that the information exchanged

with the environment might be recoverable with suitably chosen controls. This is in stark contrast

to Markovian evolutions for which any information transfer to the environment immediately leads

to an unrecoverable loss of information on the system. Moreover, since non-Markovian evolutions do

not necessarily only decrease the distinguishability of states it is possible to use this environmental

resource even in the context of unitary quantum control. One of the first demonstrations that envi-

ronmental effects in the context of non-Markovian evolutions can in fact be harnessed for purposes

of optimal control was reported by Schmidt et al. [195]. A comparative analysis of optimal control

results, showing that in the non-Markovian case gate fidelities can improve substantially when the

details of the system-bath coupling are taken into account, was performed by Floether et al. [196].

In this section we will study the non-Markovianity in superconducting qudits and its impact on

the implementation of unitary gates. Superconducting qudits represent a physical system of great

current interest for which non-Markovian effects have been theoretically described and experimen-

tally observed [197, 198]. These implementations represent one of the most promising architectures

in terms of achieving a powerful implementation for tasks of quantum information processing, not

least because of their vast engineerability of system parameters [199]. The beginning of this section

is devoted to the description of a superconducting phase qudit, first of all in the absence of envi-

ronmental effects. It turns out that the corresponding Hamiltonian is that of a weakly anharmonic

oscillator. To take into account the environment we will employ a general model of a harmonic oscil-

lator interacting with a bath of two-level systems (TLS). In the context of superconducting qudits,

environmental TLS turn out to correspond to dielectric defects in the Josephson junction. This TLS

model finds widespread use in many fields from the theory of glasses to defects in superconducting

circuits [200]. The set of environmental TLS will predominantly lead to single-exponential decay and

dephasing effects but a small subset of these two-level system will be coupled more strongly to the

anharmonic oscillator than to the rest of the environment. This leads to non-Markovian dynamics

in a phase qudit architecture. Environmental models explaining this non-Markovianity observed in

superconducting qudit architectures have been thoroughly discussed in the review by Paladino et

al. [200]. Spectroscopic results supporting the TLS model were reported by Lisenfeld et al. [201] and

Shalibo et al. [202]. We will explicitly discuss how the non-Markovianity can be exploited to increase

the controllability of a phase qudit. In particular, we will thoroughly analyse this controllability gain

via the strongly coupled environmental degrees of freedom and illustrate the principle, limits and

scope of this novel control scheme for superconducting qudit implementations.
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7.1 Superconducting Qudits

In this section we will present a brief review on the physics of superconducting qudits, in particular

that of the Jospehson junction, following Ref. [203].

An electrical circuit composed of various elements can be classically described by a pair of con-

jugate variables analogous to position and momentum, namely the charge Q and the flux Φ, derived

from the voltage and current in the circuit. If the circuit is in the quantum regime, e.g. it is su-

perconducting, then charge and flux need to be quantised and it can be shown that they obey the

canonical commutation relation,

[Φ, Q] = i , (7.1)

With this in mind, one can associate to a simple superconducting LC circuit the Hamiltonian

HLC =
Q2

2C
+

Φ2

2L
, (7.2)

where L is the inductance of the coil and C is the capacitance of the capacitor.

A crucial circuit element for superconducting circuits is the so-called Josephson junction. It consist

of a superconductor that is interrupted by an insulator or a non-superconducting metal. The charge

that passes through the junction is quantised48,

Q̂ = −2eN̂ , (7.3)

where 2e is the charge of a Cooper pair. Essentially, this means that the charge operator Q̂ can be

replaced by a number operator N̂ with a corresponding eigenbasis |N〉. It can be shown that the

Hamiltonian describing the charge transfer along the junction is given by,

ĤJ =
EJ
2

∞∑
N=−∞

(|N〉 〈N + 1|+ |N + 1〉 〈N |) . (7.4)

Note that the integer N in the number states can be positive and negative. This corresponds to the

two directions in which charge can pass through the junction. One can now define the states,

|δ〉 =
∞∑

N=−∞
eiNδ |N〉 , (7.5)

for δ ∈ [0, 2π]. Conversely

|N〉 =
1

2π

ˆ 2π

0

dδ e−iNδ |δ〉 (7.6)

and one can define a corresponding operator δ̂ such that

δ̂ =
1

2π

ˆ 2π

0

dδ eiδ |δ〉 〈δ| . (7.7)

48Throughout this section we will indicate from this point onwards operators on Hilbert space with a hat to improve their
distinguishability from scalar quantities.
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Akin to the number and phase operator in quantum electrodynamics, N̂ and δ̂ can be interpreted

as a conjugate pair of number and phase and it is easy to see that
[
δ̂, N̂

]
= i. Correspondingly, it

follows immediately from their definitions that

N̂ =
1

i

∂

∂δ
. (7.8)

This operator allows to rewrite the Hamiltonian in Eq. (7.4) as

ĤJ = −EJ cos δ̂ , (7.9)

where the Josephson energy EJ depends on the specific material properties of the junction. From

these definitions it is straightforward to show that the flux Φ̂ is proportional to the phase via Φ̂ = Φ0

2π δ̂

where Φ0 = h
2e is the magnetic flux quantum. Furthermore, one can derive the so-called Josephson

relations for voltage and current,

Û =
Φ0

2π

∂δ̂

∂t
, (7.10a)

Î = Ic sin δ̂ , (7.10b)

where Ic = 2π
Φ0
EJ is the so-called critical current.

A Josephson junction has a natural capacitance associated to it since one can interprete the two

ends of the superconducting wire as a capacitor. If one adds an inductor with an inductance L to

the circuit one can interprete the resulting circuit as an LC circuit with a tunnelling element. The

Hamiltonian of such a circuit is consequently given by

Ĥ = ĤLC + ĤJ =
Q̂2

2C
+

Φ̂2

2L
− EJ cos δ̂

=
2

C
e2N̂2 +

(
Φ0

2π

)2
δ̂2

2L
− EJ cos δ̂

Ĥ = −2e2

C

∂

∂δ2
+

1

2L

(
Φ0

2π

)2

δ̂2 − IcΦ0

2π
cos δ̂ . (7.11)

At this point one can see that this Hamiltonian describes a harmonic oscillator with an anharmonic

contribution to the potential that is induced by the Josephson junction. The power of such a su-

perconducting circuit lies in the fact that one can control the parameters in the Hamiltonian (7.11)

rather easily. For example, one can increase the flux in the circuit by coupling the inductor to another

inductor - this is called flux bias. The phase δ̂ on the Josephson junction is then defined with respect

to the total flux, i.e. Φ0

2π δ̂ = Φ̂ + Φb where Φ̂ is the flux due to the current in the circuit and Φb

is the external flux bias. Consequently the flux due to the current in the circuit is now given by

Φ̂ = Φ0

2π δ̂ − Φb and the new Hamiltonian of the circuit reads

Ĥfb = −2e2

C

∂

∂δ2
+

1

2L

(
Φ0

2π
δ̂ − Φb

)2

− IcΦ0

2π
cos δ̂ , (7.12)

which introduces a displacement to the harmonic part of the potential.
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Alternatively, one can also introduce a current bias in the junction by connecting it to some

external source of current Ib. This source of current can be interpreted as a very large inductor with

inductance L and some very large flux Φb such that Φb, L → ∞ and φb
L → Ib. Plugging this into

Eq. (7.12) leads to

Ĥcb = −2e2

C

∂

∂δ2
− Ib

Φ0

2π
δ̂ − IcΦ0

2π
cos δ̂ . (7.13)

Such an additional linear term can also be interpreted as a displacement to the harmonic part of the

potential since

ω2
0 δ̂

2 + εδ̂ = ω2
0

(
δ̂ +

ε

2ω2
0

)2

− ε2

4ω4
0

.

Combining these two types of bias leads to the following Hamiltonian for a Josephson circuit,

Ĥ = −2e2

C

∂

∂δ2
+

1

2L

(
Φ0

2π
δ̂ − Φb

)2

− Φ0

2π

(
Ibδ̂ + Ic cos δ̂

)
. (7.14)

This Hamiltonian does not yet cover the most general scenario since it does not account for the

so-called gate charge which leads to the introduction of a charge bias. For simplicity we will only

discuss flux and current bias in the following. From the Hamiltonian in Eq. (7.14) one can identify

three energy scales [204] (i) EC = 2e2

C associated with the excess number of Cooper pairs across the

junction, representing the inverse mass of the quasiparticle in the oscillator, (ii) EJ = IcΦ0

2π associated

to the tunnel coupling across the junction, (iii) EL =
Φ2

0

2L associated to a flux quantum going through

the circuit. In the following we will consider the regime EJ � EC representing the phase qudit

regime. In this regime the circuit will behave like a weakly anharmonic oscillator and a qudit can be

encoded in its low-lying energy eigenstates [204].

It is evident from Eq. (7.14), that flux bias and current bias have very similar effects on the

Josephson circuit. For simplicity, we will treat a constant flux bias Φb and a controllable current

bias Ic (t). Then, one can diagonalise the drift Hamiltonian to obtain eigenenergies E0, E1, . . . such

that in good approximation En = nω0 +β n(n−1)
2 where β is an anharmonicity energy constant which

can be steered by the flux bias49. For small anharmonicities and as long as one considers only the

energetically lowest few eigenstates, the Hamiltonian (7.14) can be written as [204],

Ĥ = ω0n̂+
β

2
n̂ (n̂− 1) + κ1Ic (t) n̂+ κ2Ic (t)

(
â+ â†

)
, (7.15)

where κ1 and κ2 are constants. The operators n̂ = n |n〉 〈n| , â =
√
n |n− 1〉 〈n| , â† =√

n+ 1 |n〉 〈n+ 1| are defined in analogy to a harmonic oscillator with |n〉 being the n-th eigenstate

of the Hamiltonian for Ic = 0.

49Note that while one obtains without the term Ic cos δ a simple displacement in the Hamiltonian (7.14) due to the flux bias,
the presence of the Josephson energy changes this simple behaviour.
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7.2 Control Strategies for Phase Qudits

We will first of all go into a rotating frame with respect to the oscillator frequency ω0, i.e. we perform

the following transformation of the Hamiltonian in Eq. (7.15),

ˆ̃H = V̂ †ĤV̂ − iV̂ †∂V̂
∂t

, (7.16)

with V̂ = e−iω0n̂t. Then,

ˆ̃H =
β

2
n̂ (n̂− 1) + κ1Ic (t) n̂+ κ2Ic (t)

(
V̂ âV̂ † + V̂ â†V̂ †

)
, (7.17)

since [n̂, V̂ ] = 0. Now it is easy to see that âV̂ † = eiω0tV̂ †â and â†V̂ † = e−iω0tV̂ †â† and consequently

ˆ̃H =
β

2
n̂ (n̂− 1) + κ1Ic (t) n̂+ κ2Ic (t)

(
eiω0tâ+ e−iω0tâ†

)
. (7.18)

We will now consider two cases.

1. If the carrier frequency of the control Ic (t) is much smaller than ω0, then Ic (t) e±iω0t will

be a quickly rotating term in the complex plane and in the time evolution the contribution

involving this fast oscillation will average out. This is because Ic (t) varies slowly over time

intervals in which eiω0t covers the whole complex unit circle and then 1
T

´ T
0
Ic (t) e±iω0t dt '

Ic
1
T

´ T
0
e±iω0t dt ' 0 if T � 1

ω0
. Hence, the Hamiltonian for low-frequency control can be

written as
ˆ̃Hlow =

β

2
n̂ (n̂− 1) + κ1Ic (t) n̂ . (7.19)

2. If the carrier frequency of the control is centred around ω0 one can write50 Ic (t) = 1
2u (t) e−iω0t+

1
2u
∗ (t) eiω0t with a slowly varying u (t). As a result, the Hamiltonian (7.18) can be written as

ˆ̃H =
β

2
n̂ (n̂− 1) +

1

2
κ1

(
u (t) e−iω0t + u∗ (t) eiω0t

)
n̂

+
1

2
κ2

(
u (t)

(
1 + e2iω0t

)
â+ u∗ (t)

(
1 + e−2iω0t

)
â†
)
. (7.20)

With the same argument as in point 1, all oscillating terms can be neglected and we obtain the

Hamiltonian for high-frequency control,

ˆ̃Hhigh =
β

2
n̂ (n̂− 1) +

κ2

2

(
u (t) â+ u∗ (t) â†

)
. (7.21)

For the special case of amplitude control at the transition frequencies of ˆ̃Hhigh, i.e. u (t) =∑
n un (t)

√
nei

β
2 n(n−1)t, one can perform the transformation V̂ (t) = e−i

β
2 n̂(n̂−1) to obtain the

50Another parametrisation would be Ic (t) = u (t) cos (ω0t+ ϕ (t)) with u (t) , ϕ (t) real. Note that the simpler ansatz Ic (t) =
u (t) cos (ω0t) is not general since it fixes the roots of Ic (t). The factor 1

2
has been employed such that the fluence of Ic and u (t)

matches.
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following Hamiltonian,

ˆ̃H
(amp)
high =

∑
n

[
1

2
un (t) |n〉 〈n− 1|+ 1

2
u∗n (t) |n− 1〉 〈n|

]
, (7.22)

if the anharmonicity is comparatively “large”. In this context, the “large” anharmonicity needs

to be large compared to the frequency corresponding to temporal variations51 of the un (t) but

still small compared to ω0. This condition is required to neglect the counter-rotating terms

analogously to those observed in Eq. (7.20).

We will now perform a controllability analysis on the Hamiltonians ˆ̃Hlow and ˆ̃H
(amp)
high , assuming

completely unitary evolution. The reachable set of unitaries is determined by the Lie group associated

to the dynamical Lie algebra L which is given by span{u}∈U {−iH ({u})} [40]. U is the set of

admissible controls and H is the Hamiltonian of the system. For bilinear systems, cf. Eq. (5.22),

the analysis on the dynamical Lie algebra is typically performed by computing nested commutators

of drift and control Hamiltonians until the dimensionality is exhausted [40]. It is easy to see that

the dimensionality of the Lie algebra for ˆ̃Hlow is equal to 2, since drift and control Hamiltonian

commute. The dimensionality of the Lie algebra for ˆ̃H
(amp)
high is given by d(d−1)

2 if we consider a cut-

off52 on the qudit Hilbert space at dimension d. This can be seen most easily if we choose un ∈ I
purely imaginary. Note that this assumption does not contradict the assumption of amplitude control

since it represents a static phase. In Appendix C we show that a basis of this Lie algebra is given

by the matrices {|n〉 〈n− j| − |n− j〉 〈n|}n,j for n = 0, . . . d − 1 and 0 < j < n. This identifies the

Lie algebra as the special orthogonal Lie algebra (since it is spanned by all real, skew-symmetric

matrices) and correspondingly the reachable set of unitaries are those lying in the special orthogonal

group SO (d) [40]. For the special case of d = 4 it is possible to determine analytical solutions for

the required controls to obtain an arbitrary matrix in SO (d) [205,206].

From this controllability analysis it follows immediately that the combination of the control

schemes 1 and 2 cannot yield arbitrary matrices in SU (d) for d > 2, i.e. the system is not fully

controllable. This can be directly seen by considering a Cartan decomposition of SU (d), i.e. any

U ∈ SU (d) can be written as

U = k1Ak2 , (7.23)

with k1, k2 ∈ SO (d) and A being a diagonal, complex matrix with determinant 1 [40]. While the

high-frequency control scheme yields arbitrary k1 and k2 the low frequency control scheme can only

reach arbitrary diagonal A when d = 2 since the dimensionality of the dynamical Lie algebra of

Eq. (7.19) is two, independent on d.

If one were somehow able to extend the controllability of the low-frequency scheme to all diagonal

matrices instead of only those along two directions in the Lie algebra, then full controllability of the

51This approximation is best fulfilled if un (t) = un constant. However, from a physical point of view there will always be the
need to turn the control on and off which will introduce side bands in the Fourier transform that need to be compared to the
anharmonicity, respectively the oscillator frequency.

52While the Hilbert space of an anharmonic oscillator is infinite-dimensional, in practice the anharmonic modelling of the phase
qudit will break down at some point. To stay in the valid regime of the model, one usually truncates the Hilbert space and needs
to make sure that in numerical simulations no artificial reflections at the upper level boundary are encountered. Note that in the
model for our numerical simulations in Sec. 7.5 there is no possibility for such reflections since no excitation of the qudit levels,
by either the control or the environment, are possible. In this case we can simply truncate the oscillator Hilbert space at the
boundary of the qudit’s logical subspace.
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system is obtained53. If we do not want to change the schemes by for example including phase control

in the high-frequency case, then the only place left to look for a controllability increase is given by

the environment. For this reason the next subsection will be devoted to an analysis of a model

for describing the environment for Josephson junctions that is able to explain the most important

characteristics of the experimentally observed environmental effects - the TLS model.

7.3 The Two-Level System Model

No Josephson junction is perfectly manufactured, most notably there is a high likelihood for atomic

impurities in the non-superconducting part of the junction [204]. The most successful model to

describe these impurities is the TLS model54 which describes each impurity as a two-level system

with a lower-lying ground state |g〉 and an energetically excited configuration |e〉 [200–202,209]. Let

ETLS be the energy difference, then the Hamiltonian of the TLS is given by

ĤTLS = ETLS |e〉 〈e| . (7.24)

The coupling mechanism between the qudit and a defect is assumed to be that of an electric dipole

with an electric field. As a matter of fact the Josephson junction itself can be seen as a capacitor

leading to an electric field between the two plates, i.e. the ends of the superconducting wire. The

interaction of these defect fields with the circuit’s wave function, i.e. the qudit, can have on the most

basic level two effects.

1. An excitation in the circuit can be transferred to an excitation in the TLS and vice versa, the

corresponding interaction Hamiltonian reads

Ĥint = v⊥
(
â⊗ |e〉 〈g|+ â† ⊗ |g〉 〈e|

)
, (7.25)

where v⊥ is the so-called transversal interaction strength, representing a resonant interaction

between the state of the junction and the TLS. This is similar to how the electric field of a

cavity (i.e. a harmonic oscillator) would interact with an dipolar level transition between two

states of an atom (i.e. a TLS) forming the well-known Jaynes-Cummings Hamiltonian. We used

the corresponding rotating wave approximation (RWA), neglecting the double-excitation and

double-annihilation terms. This RWA is justified since the coupling strength will usually be

much smaller than the energy scales of both TLS and oscillator.

2. If we assume the TLS to be in the ground state initially, then the energies of the qudit eigenstates

will only be stable if the TLS stays in the ground state. Once the TLS enters the excited state

this will lead to a change in the total energy. Consider for example a dipole in a capacitor that

flips around. This leads to a change in the energy carried by the capacitor since the dielectric

53Note that while low-frequency and high-frequency control Hamiltonian are obtained with respect to a different frame, the
unitary transformation between them is diagonal. The different phases acquired in the different frames can consequently be
absorbed by the diagonal unitaries obtained by the low-frequency scheme.

54Due to the observed spectral density of the bath, one of the primary noise effects that leads to a non-Markovian evolution
in superconducting qudits is often called 1/f -noise. The TLS model is a particular way to reproduce its most important charac-
teristics [200]. Frequently, the name two-level fluctuators (TLFs) is also employed in this context to emphasise their natural state
fluctuations if the temperature is at the order of magnitude of their energy splitting [197,198,207,208].
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between the plates changed55. This off-resonant coupling can be described by an interaction

Hamiltonian of the form

Ĥint = v‖ (n̂⊗ |e〉 〈e|) , (7.26)

with v‖ being the so-called longitudinal interaction strength, corresponding to a change in the

oscillator frequency (proportionality to n̂) once the TLS is in the excited state.

Another strong motivation for the two interaction mechanisms indicated by Eqs. (7.25) and (7.26) is

that they exactly correspond to the damping (respectively dephasing) model of a harmonic oscillator

which we will turn to in the next subsection. The above model consequently already presents an

explanation for observed loss effects (transversal interaction with TLS) and dephasing (longitudinal

interaction with TLS). However, the interaction Hamiltonians presented above can be even used

beyond a Markovian approximation of the combined evolution of the qudit with TLS defects. In

particular, the validity of the approximation will depend on the following question: What is the

relationship between the coupling strength between qudit and TLS compared to the coupling strength

of this TLS with the rest of the environment (in particular with other TLS)? If the interaction between

TLS and qudit is strong compared to the coupling of the TLS to the rest of the environment, then the

Markovian approximation cannot be valid. This is because the information exchanged between these

two systems will not decay to the rest of the environment before it can potentially return to the qudit.

This seems intuitive for transversal interaction but it also hold for longitudinal interaction. It has

been shown that the thermal fluctuation of the TLS can lead to a deviation from single-exponential

dephasing in the long-time limit [207]. These fluctuations can be modelled by a so-called random

telegraph process and can induce a non-Markovian behaviour of the qudit’s dynamics [207].

We can characterise a TLS by its coupling strength v and its splitting ETLS. Let ω0 be the

frequency of the harmonic oscillator and let us assume that kBT � ω0 (otherwise one could not

properly operate the junction anyway). One can generally split the TLS into 4 groups where we

employ the nomenclature from Ref. [200].

1. ETLS � ω0 : Transversal interaction is suppressed since the TLS and the junction are not

resonant. However, the TLS with kBT . ω0 experience fluctuations in their state due to

interaction with the thermal bath which, in turn, can lead to fluctuations of the energy level of

the qudit by longitudinal interaction. This is called adiabatic noise and the TLS in this context

are sometimes called fluctuators, cf. Footnote 54. These fluctuators can induce a non-Markovian

evolution of the superconducting qudit [207].

2. ETLS ' ω0 and v is small compared to the coupling strength to other modes of the environment:

The TLS is in the ground state at operating temperature and can take an excitation from the

qudit. However, it cannot coherently return the excitation since the excitation dissipates quickly.

This leads to an unrecoverable loss of excitation on the qudit and is called quantum noise.

3. ETLS ' ω0 and v is large compared to the coupling strength to other modes of the environment:

The TLS is in the ground state at operating temperature and can take an excitation from the

qudit. It is able to coherently return this interaction which leads to a recoverable loss indicating

a memory effect. This noise is called strongly coupled noise.

55Note that while for flux and phase qudits a longitudinal electric-dipole-coupling mechanism is excluded since the average
voltage across the junction is zero, the defects can still change the shape of the potential for the phase in the junction leading to
a shift in the energy [201].
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4. ETLS � ω0 : The TLS is in the ground state at operating temperature and cannot transversally

interact with the junction since it is out of resonance. It is also not in a regime where thermal

excitation matters, consequently these TLS do not influence the evolution of the junction at all.

To summarise, if the TLS couple more strongly to their own environment than to the qudit they

can be treated as a classical part of the environment whose influence on the qudit can be described

as purely Markovian. It is rather common that decoherence on the qudit is determined by a few

TLS that are more strongly coupled to the qudit than others [200]. On the contrary, if the TLS

is sufficiently strongly coupled to the environment, it means that the information about its state is

continuously transferred to the environment and this prevents any quantum interference from taking

place. As such, the relevant quantity determining whether the TLS can be considered as a classical

fluctuator or needs to be treated as a quantum object is the ratio of the qudit-TLS coupling and the

dephasing rate of the TLS [209].

Taking all effects we discussed above into account, the dynamics of the qudit’s reduced density

matrix, ρ̂Q (t), is described by the following equation [200],

ρ̂Q (t) = TrSC

{
〈TrT [ρ̂ (t|E (t))]〉E(t)

}
, (7.27)

E (t) describes the stochastic process used to simulate the adiabatic noise by long-time memory, low-

frequency noise. ρ̂ is the density matrix of all quantum degrees of freedom and 〈·〉E(t) is the average

over the stochastic processes. In other words, one should describe the qudit together with its strongly

coupled TLS in a thermal bath and use a Markovian master equation for the time evolution; this

yields TrT [ρ (t|E (t))]. Repeating this for a sufficient number of realisations of the stochastic process

E (t), one can then build the stochastic average afterwards. From the remaining strongly coupled

degrees of freedom we can determine the qudit density matrix by a final partial trace eliminating

all non-qudit degrees of freedom. As a consequence, we need to formulate a Hamiltonian Ĥ for the

combined system of junction and primary environment (strongly coupled TLS), with the secondary

environment (weakly coupled fluctuators) being included according to a random telegraph process.

The tertiary environment (thermal bath and short-memory TLS) is described by dissipative operators

in a Lindblad type master equation yielding a Markovian evolution.

7.4 Noise Models for a Harmonic Oscillator

To describe the effects of the tertiary environment, we will employ the following model: Consider

a harmonic oscillator (represented by creation and annihilation operators â, â†) with frequency ω0

interacting with a thermal bath at T ' 0K. Since in superconducting qudit implementations the

device is usually operated at very low temperatures, this approximation is well-motivated. We will

then use the results from this model for the phase qudit represented by an anharmonic oscillator with

an anharmonicity that is much smaller than the oscillator frequency. In this case we expect that the

harmonic approximation is well fulfilled.

We will first describe excitation transfer between the oscillator and bath modes, i.e. we consider

a system-bath interaction Hamiltonian of the form Ĥint =
∑
i(Γ̂iâ

† + Γ̂†i â) for some set of operators
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{Γ̂i} on the bath [210]. One can show that, neglecting the Lamb shift56, it is possible to obtain the

following Lindblad master equation for the state of the oscillator ρ [210],

Lρ̂ = −iω0

[
â†â, ρ̂

]
+ γ1

(
âρ̂â† − 1

2
â†âρ̂− 1

2
ρ̂â†â

)
. (7.28)

where γ1 is a parameter that depends on specific assumptions on the bath, in particular the operators

Γ̂i. This interaction represents an exchange of excitation between system oscillator and bath leading

to amplitude damping of the oscillator, i.e. decay. A Lindblad master equation is an appropriate

description to the oscillator dynamics for weak system-bath coupling and when one considers the

system dynamics on a timescale that is much faster than the oscillator timescale [212]. This is in

accordance with the validity of a Markovian equation of motion, cf. Sec. 5.2. Both approximations

are well fulfilled for our modelling in terms of a tertiary bath as illustrated in Sec. 7.3. Indeed, the

oscillator frequency is very large compared to the timescale of the dynamics we are interested in,

cf. the RWA we performed in the beginning of Sec. 7.2. Furthermore, we only include the weakly

coupled TLS of the environment in the tertiary bath description, which indeed allows us to describe

their effects in terms of a Markovian master equation.

Another very common coupling mechanism ansatz between oscillator and bath is given by an

interaction Hamiltonian of the form Ĥint =
∑
i(Γ̂iâ

†â + Γ̂†i â
†â) [210]. This operator represents an

environmental monitoring of the number of excitations in the oscillator [38]. Neglecting once again

the Lamb shift, this leads to a master equation of the general form [210]

Lρ̂ = −iω0

[
â†â, ρ̂

]
+ γ2

(
â†âρ̂â†â− 1

2

(
â†â
)2
ρ̂− 1

2
ρ̂
(
â†â
)2)

, (7.29)

where γ2 will again be a parameter that depends on specific assumptions on the bath, in particular

the specific operators Γ̂i. The same restrictions for the validity of a description via a Markovian

master equation apply as in the damping case. The evolution governed by Eq. (7.29) will not change

the excitations in the harmonic oscillator since all Lindblad operators are diagonal in the eigenbasis

of the oscillator. The off-diagonal elements of the density matrix will, however, decay. Since the

off-diagonal elements represent the phase information of a given state between its projections on e.g.

the energy eigenbasis, this effect is usually called dephasing.

If one represents ρ̂ in the energy eigenbasis of the harmonic oscillator, the damped oscillator

according to Eq. (7.28) and the dephasing oscillator according to Eq. (7.29) lead to so-called single-

exponential decay57 of the diagonal and off-diagonal elements of ρ̂. The corresponding exponential

decay time∼ e− t
T for the diagonal elements, or “populations”, is called T1 whereas for the off-diagonal

elements, or “coherences”, it is called T2. While this nomenclature is usually applied to two-level

systems in the theory of nuclear magnetic resonance, the fundamental concept of these processes

holds in a large variety of physical systems and also in the multi-level case under truncation [213].

For the damped harmonic oscillator the equation of motion of the individual matrix elements in

56The term Lamb shift refers to the change in the system’s Hamiltonian by environmental effects [38]. For the models we
consider in this section the Lamb shift is usually only a shift in the oscillator frequency which we can simply absorb into ω0, see
e.g. Ref. [211].

57As we will see shortly, the decay of matrix elements will not be described by a simple single exponential for a harmonic
oscillators. The term “single-exponential decay” is strictly speaking only adequate if we consider initial density matrices that are
restricted to the Liouville space corresponding to the Hilbert space of the lowest two eigenstates of the oscillator, i.e. the oscillator
reduces to a two-level-system.
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the energy representation is given by

d

dt
ρnm = −iω0 (n−m) ρnm + γ1

√
(n+ 1) (m+ 1)ρn+1,m+1 − γ1

n+m

2
ρnm . (7.30)

For the diagonal elements this reduces to

d

dt
ρnn = γ1 (n+ 1) ρn+1,n+1 − γ1nρnn . (7.31)

This equation is easily understood by interpreting the first summand as a gain of excitation via

transfer from the next-highest level whereas the second summand represents a loss of excitation due

to transfer to the next-lowest level. From Eq. (7.30) one can also see that coherences are transferred.

This is in accordance with the population transfer from the next-highest level represented by the

second summand. However, in contrast to the populations, the coherences will for t → ∞ vanish

completely since the time derivative of the “lowest” coherence ρ10 still has a decaying term. The

T1 time is given by the exponential decay time of ρ11 and the T
′

2 time58 is given by the exponential

decay time of the matrix element ρ10. As a result, we see that

T1 =
1

γ1
, T

′

2 =
2

γ1
=⇒ 1

2T1
=

1

T
′
2

. (7.32)

For the harmonic oscillator under pure dephasing we obtain the matrix element equations,

d

dt
ρnm = −iω0 (n−m) ρnm −

γ2

2
(n−m)

2
ρnm, (7.33)

and we see that populations remain unchanged while coherences decay proportional to (n−m)
2
.

This results in59

T ∗1 =∞, T ∗2 =
2

γ2
.

An observed single-exponential decay of populations and coherences can be explained via the com-

bination of damping and dephasing. Due to T ∗1 =∞, the measured T1 time corresponds directly to

the damping constant γ1 whereas the measured T2 time will have two sources, i.e.

1

T2
=

1

T
′
2

+
1

T ∗2
=

1

2T1
+

1

T ∗2
, (7.34)

Since damping corresponds to both population loss, more precisely “excitation loss”60, and de-

phasing, it is actually possible to overestimate both effects by observing the following relation for the

58The prime on T2 is used to indicate that it originates from a decay process. A similar distinction for T1 is unnecessary as we
will see shortly.

59To indicate that these times originate from pure dephasing, a star superscript is employed.
60The total population of the density matrix needs to remain normalised of course. Rather, only the population of the excited

levels is decaying (and transferred to the ground state) which we will call “excitation loss”.
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combined coherence decay given by damping and dephasing,

(n+m)

2T1
+

(n−m)
2

T ∗2
≤ (n+m)

2T1
+

(n+m) |(n−m)|
2T ∗2

≤ (n+m)

2 min (T1, T ∗2 )
+

(n+m)

2 min (T1, T ∗2 )
· 2 |(n−m)|

=
(n+m)

2 min (T1, T ∗2 )
[1 + 2 |n−m|]

=
(n+m)

2 min
(

T1

1+2|n−m| ,
T∗2

1+2|n−m|

) ≡ (n+m)

2T
(eff)
1

Defining an effective T1 time,

T
(eff)
1 =

min (T1, T
∗
2 )

1 + 2max |n−m| , (7.35)

we can conclude that a damped oscillator with decay according to T
(eff)
1 undergoes at least as much

excitation loss as a harmonic oscillator with (T1, T
∗
2 ) (since T

(eff)
1 ≤ T1) and, by the calculation above,

it also undergoes at least as much dephasing. If we perform a cut-off of the oscillator Hilbert space

at dimension d, i.e. we only describe the ground state and the next d− 1 excited levels, then clearly

max |n−m| = d− 1 and we can write

T
(eff)
1 =

min (T1, T
∗
2 )

2d− 1
. (7.36)

We will use this relation in the next subsection. It proves that it is essentially possible to describe

effects of decay and dephasing with only a single effective T1 time if one accepts overestimation of

some decoherence effects. This allows for an easier numerical analysis by reducing the number of

environmental parameters.

7.5 Controllability Gain via Environmental Degrees of Freedom

As pointed out in Sec. 7.3, superconducting qudits exhibit non-Markovian behaviour and as such it

is possible that the environment can assist in generating certain unitary transformations. Inspired by

the works presented in Refs. [201] and [204], we exploit the fact that experiments are able to determine

all important parameters for the strongly coupled TLS with frequencies near the qudit frequency,

including their T1 and T2 times [204]. Furthermore, the phenomenological T1 and T2 times of the qudit

itself can be recorded [204]. We will neglect in the following the non-Markovianity of the evolution

originating from the adiabatic noise, however, the dephasing induced by these environmental degrees

of freedom is implicitly included in the experimentally measured T2 times61. Analogously, quantum

noise will be treated in the form of the experimentally measured T1 times. The strongly coupled

noise will be considered by explicitly regarding one or a few TLS near the qudit frequency and in

the spirit of Eq. (7.27) they will be explicitly included in the dynamics. Furthermore, the T1 and T2

times will be modelled by a Lindblad master equation on the strongly coupled degrees of freedom as

61We expect non-Markovian effects from the secondary bath to be strongly overshadowed by the non-Markovian effects from
the primary bath, i.e. the strongly coupled TLS. This is further encouraged by the observation that the adiabatic noise can often
be equivalently described by the interaction with a single, strongly-coupled TLS [209].
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discussed in Sec. 7.3. In addition, we will almost universally absorb the T2 time in an effective T1

time as pointed out in Eq. (7.27).

In accordance with the results shown in Refs. [201] and [204] we will consider only transversal

coupling for the strongly coupled TLS since this mechanism seems to adequately explain the observed

behaviour of TLS in proximity of a phase qudit62. To account for the TLS, we will go into the rotating

frame with the transformation V̂ (t) = e−iω0(n̂+P̂e)t where P̂e is the projector on the excited state of

the TLS. After neglecting all rapidly oscillating terms in a low-frequency control scheme, the resulting

total Hamiltonian for a single TLS in the primary environment is given by

ĤSC =
β

2
n̂ (n̂− 1) + Ic (t) n̂+ (ETLS − ω0) P̂e +

S

2

(
â⊗ |e〉 〈g|+ â† ⊗ |g〉 〈e|

)
. (7.37)

The coupling strength v is given by half the splitting, S, one observes on the qudit when it is on

resonance with the TLS. This transformation is analogous to the one performed in Sec. 7.2. It leaves

the interaction term invariant since the exponent of V (t) takes equal values for equal total occupation

number of qudit and TLS and the interaction only couples subspaces with identical total occupation

number. For simplicity, we furthermore absorbed κ1 in Ic (t) such that Ic (t) can be interpreted

directly as the frequency shift imposed on the qudit. Note that it is possible that the control also

couples to the TLS, however due to the presumably small size of the TLS this has been neglected

in accordance with the discussion in Ref. [201]. The generalisation of Eq. (7.37) to multiple TLS is

straightforward.

We propose the following control mechanism that leads to arbitrary controllability of the diagonal

phases of a unitary transformation on a phase qudit: First, move the qudit close to resonance with a

TLS, then pick up the desired phase shift using the enhanced interaction, and finally move the qudit

back off resonance. This sequence will properly align all the phases in the four-level subspace and

yields the desired phases. Since the moving into resonance is crucial, it seems natural to impose the

final control to move the qudit frequency towards a TLS in the very beginning and back to ω0 at the

end of the optimisation time interval [0, T ], corresponding to Ic (0) = Ic (T ) = 0.

The Hamiltonian HSC , describing the strongly coupled degrees of freedom, is employed together

with Lindblad operators of the form Ân =
√
n/T1 |n− 1〉 〈n| and ÂTLS =

√
1/T

(TLS)
1 |g〉 〈e| to

form a Lindblad master equation of the strongly coupled degrees of freedom, cf. Eq. (5.16). For

superconducting qudits, the tertiary (i.e. thermal) bath can in very good approximation assumed to

be at T ' 0K, cf. the analysis in Ref. [204]. A generalisation to multiple TLS is straightforward, with

all operators having identical form modulo padding with tensor products of identity on the subspaces

corresponding to the other TLS. For the numerical simulation of the density matrix dynamics we

employed a Newton propagator [214] to solve the resulting Lindblad master equations.

Due to the thermal bath being at T ' 0K and the fact that the evolution cannot increase the

combined excitation of qudit and TLS, we choose as an optimisation goal the unitary U ⊗ 1 on the

strongly coupled degrees of freedom. Here, U represents the unitary gate that is supposed to be

implemented on the qudit. Since the initial state of all strongly coupled TLS in the environment

is the ground state it will always be desirable to recover any excitation that is transferred to any

TLS. In other words, the target final state for the TLS should be their ground states. As a result,

we employ a tensor-sum type optimisation on the Hilbert space Hq ⊗ |g〉 〈g| where |g〉 represents the

62In the following, closeness of TLS and qudit always refers to proximity of transition frequencies between their eigenstates,
not spatial proximity.
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Figure 7.1: (a): Optimised amplitudes for an optimisation towards diag(1,−1, 1, 1) with the control
shown in blue following a fixed ramp of ±500 MHz over 2.5 ns at the beginning and end and the
red dashed line obtained without imposing a ramp. The anharmonicity is given by β = 40 MHz,
ω0 − ETLS = 550 MHz, S = 60 MHz, TQ1 = 5µs, and TTLS1 = 1µs. The optimised gate error (here
and in the following this refers to 1 − Favg, cf. Eq. (4.26)) under the optimised pulse is given by
1.529 ·10−2 with ramp and 1.648 ·10−2 without ramp. (b): Liouville space determinant of the system
evolution – increase of the determinant indicates non-Markovianity.

ground state of the TLS, cf. Sec. 7.3.

In the following, we will consider the lowest four levels of the qudit due to the existence of known

analytical solutions for the SO (4) part of an arbitrary unitary transformation [205]. We choose

U = diag (1,−1, 1, 1)63 as a representative for the implementation of arbitrary diagonal unitaries.

We have verified that optimisations towards diagonal unitaries with random phases yield very similar

errors64. Note, however, that the phase corresponding to the ground state is fixed independently on

the employed control. This is in accordance with the interpretation of unitaries as elements of PU (N),

cf. Sec 2.8. For the final-time optimisation functional we used Eq. (5.37), employing a full basis of

Liouville space. This is motivated by the fact that we consider a comparatively low-dimensional

problem and Eq. (5.37) can be directly related to the gate fidelity. The intermediate-time costs were

chosen to be of standard form, cf. Eq. (5.24).

Figure 7.1 shows an example optimisation for some realistic system parameters. The red curve

shows the optimised control if a squared sine shape function is employed. The result is a rather

63All target unitaries are written with an implicit rotation according to the transformation e−i
β
2
n̂(n̂−1)T where T is the

optimisation time. This was done to eliminate the drift part of the evolution which introduces a final-time dependent phase on
the individual levels that leads to final-time dependent fidelities obtained via OCT. This is because without this rotation, in the

absence of any TLS, the gate e−i
β
2
n̂(n̂−1)τ (simply by choosing Ic (t) = 0) can be implemented perfectly if T = τ but not if

T = τ ± ε. This dependence on final time is removed by the rotation since the effect of the drift is absorbed by it.
64For example, optimisation for 20 random diagonal unitaries, using the parameters of Fig. 7.1, yields errors between 1.390·10−2

and 1.804 · 10−2, differing from that for U1 by less than a factor of 1.2, cf. Fig. (7.1).
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rapidly oscillating control. This is undesirable since our approximations for the derivation of the

Hamiltonian (7.37) require a slowly varying control. To direct the control algorithm towards a

smooth implementation of this mechanism we employ a ramp-type shape function of the form

S (t) =


0, t ∈ [0, τ ]

sin2
(
π(t−τ)
T−2τ

)
, t ∈ [τ, T − τ ]

0, t ∈ [T − τ, T ]

, (7.38)

for an optimisation time interval [0, T ] and a ramp time τ . This shape function is taken to be of the

standard squared sine form in the middle of the optimisation time interval. At the very beginning

and at the very end it is set such that the optimisation cannot change the guess pulse, cf. the update

equation in Eq. (5.30).

The guess pulse has been accordingly chosen of the form

I(0)
c (t) =


I0 sin2

(
πt
2τ

)
, t ∈ [0, τ ]

I0 + αe−
1
2

(t−t0)2

2σ2 , t ∈ [τ, T − t]
I0 sin2

(
π(T−t)

2τ

)
, t ∈ [T − τ ]

, (7.39)

where I0 is the target offset the control should be centred around after the ramp and α, t0, σ are

parameters of the Gaussian guess. The guess pulse will smoothly (note that I
(0)
c (t) and its first

derivative are zero at t = 0 and t = T ) ramp the pulse up and down. The success of this approach

can be seen in the blue curve in Fig. 7.1 where an essentially identical gate fidelity could be obtained

with a much smoother control that has a much smaller amplitude range in addition. Both properties

are very desirable for experimental realisation of the numerically obtained control fields, in particular

because the switching time of the controls in current experiments is technically limited [204].

Note that while anharmonicities for the anharmonic oscillators found in superconducting qudits

are generally negative, from the perspective of this control scheme only the modulus of β has a

relevant influence. This is because only the energy difference with respect to the TLS is relevant.

Whether levels are below or above resonance only inverts the phase acquired during the interaction

with the TLS. As a consequence, the sign of the anharmonicity merely swaps around the difficulty of

particular diagonal gates. As long as we assert that we can reach any diagonal unitary our results can

be applied both to the + |β| and − |β| case. From a physical perspective, the only change that needs

to be implemented in the control scheme is with respect to the oscillator frequency ω0 in absence of

the control, in particular whether it should be set above or below the most strongly coupled TLS.

This is because the higher level transitions always should increasingly move away from resonance

with the TLS in the absence of a control field and not towards it. More precisely, one should choose

ω0 < ETLS if β < 0 and ω0 > ETLS if β > 0. As can be seen in Fig. 7.2, this adjusted control

strategy indeed shows that the + |β| and − |β| case behave virtually identical if the initial position

of the qudit frequency is chosen in accordance with the discussion above.

The dynamics under an optimised pulse utilising the ramping scheme is illustrated in Fig. 7.3.

To visualise the optimised dynamics, we parametrise the joint state of system and strongly coupled

TLS by r(t)(eiϕ(t) cos(θ(t)) |n, g〉 + eiχ(t) sin(θ(t)) |n− 1, e〉) with g, e representing the TLS ground

state, respectively excited state. This makes use of the fact that, without loss due to finite T1 or
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Figure 7.2: Optimised pulses for an optimisation towards diag(1,−1, 1, 1) for β = +40 MHz in blue
and β = −40 MHz in red. The control fields in this figure have been shifted by +550 MHz and
−550 MHz respectively to account for the different frequency of the qudit in absence of the control
(ω0−ETLS = 550 MHz for β = 40 MHz and ω0−ETLS = −550 MHz for β = −40 MHz). The control
field after the shift can be interpreted as the distance of the qudit frequency under the control with
respect to the TLS, i.e. 0 MHz corresponds to resonance with the TLS. All remaining parameters are
identical to those chosen in Fig. 7.1, however, a slightly different guess pulse has been chosen. The
optimised gate error under the optimised pulse is given by 1.504 · 10−2 for β = +40 MHz and by
1.506 · 10−2 for β = −40 MHz.

dephasing due to finite T ∗2 , any initial state |n, g〉 evolves in a subspace of Hilbert spanned by |n, g〉
and |n− 1, e〉. In practice, the radius and angles are obtained in the following way65,

α (t) = 〈n, g | ρ̂ (t) | 0, g〉 , (7.40a)

β (t) = 〈n− 1, e | ρ̂ (t) | 0, g〉 , (7.40b)

r (t) =

√
|α (t)|2 + |β (t)|2 , (7.40c)

θ (t) = arctan

( |β (t)|
|α (t)|

)
, (7.40d)

ϕ (t) = arctan

(
Im (α (t))

Re (α (t))

)
. (7.40e)

ρ̂ (t) is the propagated density matrix under the optimised pulse. It is evident that r(t) does not

only capture excitation loss by the finite T1 on qudit and TLS (representing population leaving the

parametrised subspace) but also dephasing due to α (t) and β (t) being computed via coherences

of ρ (t). The phase χ(t) is not relevant for our optimisation problem and a spherical coordinate

representation is obtained with θ = 0 corresponding to the xy-plane. It is restricted to the northern

hemisphere since θ ∈ [0, π2 ] is sufficient to parametrise any state in the subspace when ϕ, χ ∈ [0, 2π].

65α (t) and β (t) are also rotated to account for the rotation in footnote 63 but we will skip this transformation in the formulas
for simplicity. As a matter of fact, this rotation does not even influence r (t) and θ (t) since it only changes the phases of α (t)

and β(t). For ϕ (t) only α (t) is relevant, which is multiplied by ei
β
2
n(n−1)t. The different sign in the exponent compared to the

rotation of U is due to the correspondence to a state rotation, not an operator rotation.
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Figure 7.3: Time evolution of system levels n = 1, 2, 3 (left to right) in the subspace spanned by

|n, g〉 and |n− 1, e〉 for the ramped control. Parameters as in Fig. 7.1, T1 = 5µs (qudit), T
(1)
1 = 1µs

(TLS).

Figure 7.3 displays the time evolution of each initial state |n, g〉, n = 1, 2, 3, under the optimised

control (level 0 is coupled to neither control nor the rest of Hilbert space): Level 1 acquires a final

phase of π, whereas levels 2 and 3 return to their initial position as desired. During the evolution, the

radii become slightly smaller than one, indicating Markovian decoherence effects. At intermediate

times, the points leave the xy-plane which indicates excitation transfer to the TLS. The different

numbers of revolutions correspond to the different frequency shifts the individual levels acquire via

the control.

We will now directly illustrate how the optimised control utilises the strongly coupled environ-

mental degrees of freedom to implement arbitrary diagonal unitaries. In panel (b) of Fig. 7.1 we

see the determinant of the evolution at each point in time for the two control approaches, i.e. the

determinant of the matrix eLt where L is the Liouvillian corresponding to the Markovian evolution

of the qudit degrees of freedom. A departure from monotonicity of this determinant represents a

quantitative characterisation of the departure from Markovianity of the dynamical evolution [80]. As

a matter of fact one can interprete the determinant as a description of the volume of accessible states

when starting from an arbitrary density matrix in Liouville space at time t = 0. A reduction of the

volume is in accordance with a purely Markovian evolution resulting in a potential loss of unitarity

(representing rotation and consequently preservation of the Liouville space volume). More specifi-

cally, any Markovian evolution is contracting on Liouville space, i.e. it cannot increase the distance66

between two density matrices [6]. It immediately follows that it cannot increase the volume of an

arbitrary state set - dynamical maps are contractive. An increase of the Liouville space determinant

represents a violation of contractivity and is consequently a reliable indicator of a non-Markovian

evolution67. While, by construction, the evolution of the strongly coupled degrees of freedom is

Markovian, hence contractive, the evolution of the qudit degrees of freedom is non-contractive for

either optimised pulse as it can be clearly seen in Fig. 7.1. It is this non-Markovianity that yields an

increase in controllability of the qudit system by interaction with the strongly coupled environmental

degrees of freedom.

This point is further illustrated in Fig. 7.4 where the dependence of the best possible gate error

on qudit anharmonicity and coupling strength between qudit and TLS is explored. For very small

coupling to a TLS in the primary environment no solution can be found and the gate error remains

66Distance can refer to e.g. the trace distance or the negative state fidelity plus one.
67The evolution determinant is a rather weak measure for non-Markovianity, i.e. it is not very sensitive. Its relative ease of

evaluation and reliability still motivates its usage for our purposes. An overview on different measures on non-Markovianity and
how they compare with respect to each other can be found in Ref. [144].
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Figure 7.4: Error after optimisation for diag(1,−1, 1, 1) for TQ1 = 5µs, TTLS1 = 1µs (a-c) and
anharmonicities of β = 0 MHz (a,d), 40 MHz (b,e), 150 MHz (c,f). For comparison, the error is also
shown for infinite T1 of qudit and TLS (d-f). All remaining parameters are identical to those chosen
in Fig. 7.1.

of the order one. In contrast, one moderately strongly coupled TLS in the primary environment is

sufficient to yield good fidelities even for weak or zero anharmonicity. In the latter case (Fig. 7.4(a)),

the desired diagonal unitaries can be realised if the operation time is sufficiently long. This can be

successful only if the qudit has enough time to interact with the TLS in such a way that all levels

“get back” their excitations and also acquire the correct phase. This is particularly hard for zero

anharmonicity since all levels interact almost identically with the TLS due to the energy difference

between all levels being the same. Only by utilising the level-dependent coupling strengths the levels

are differentiated by the TLS-qudit interaction.

One can see in all panels of Fig. 7.4 a relatively sharp boundary, visible via an abrupt decrease

in the optimal gate fidelity at a hyperbola y ∼ 1
x in the coupling strength (x) - gate time (y) plane.

This boundary is determined by the control needing to implement the following steps: (i) ramp

up the frequency of the qudit to be near-resonant with the TLS, (ii) transfer the wave function

to the TLS, (iii) wait sufficiently long to acquire the proper phase, (iv) return the wave-function

completely to the qudit and (v) return the qudit to its original frequency. The main bottleneck for

the optimisation is most likely in steps (ii) and (iv), corresponding to the quantum speed limit (QSL)

of this particular optimisation task [215]. The process can be roughly described in the language of

atomic physics as acquiring a Rabi angle of π
2 for the first excited level of the qudit if the goal is the

unitary U = diag(1,−1, 1, 1). The Rabi angle ϕ is proportional to the interaction time τ and the

coupling strength v, i.e. ϕ ∼ τ · v. For fixed ϕ one immediately sees that τ · v = const which explains

the observed hyperbola in Fig. 7.4. In the controllable region to the top-left of this hyperbola the

gate error vanishes everywhere in the absence of decoherence, cf. the bottom panels of Fig. 7.4. In the

presence of loss and dephasing, a large gate time leads to a decrease in the unitarity of the evolution

which is why we get an additional bias towards short gate times τ , cf. the bottom panels of Fig. 7.4.
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Figure 7.5: (left) Error after optimisation for diag(1,−1, 1, 1) as a function of T1 times of qudit and
TLS for an optimisation time of T = 40 ns (anharmonicity β = 40 MHz, ωQ − ω(1) = 550 MHz,

S(1) = 60 MHz). (right) Error after optimisation for diag(1,−1, 1, 1) as a function of the T ∗2 times
with T1 fixed to 10µs for both qudit and TLS (parameters identical to left panel).

From this point of view, in the presence of multiple TLS in the environment, it is the best approach

to couple the qudit to the most strongly coupled TLS which is as weakly coupled as possible to the

remaining environment. There are some additional details to this general idea, which we will address

later, but at least as long as all TLS are sufficiently far away from each other in terms of their energy

splitting ETLS this statement holds.

From the above discussion, one would expect that the reachable gate error is monotonically

increasing for increasing coupling strength and increasing gate time. However, one can observe a few

violations in Fig. 7.4, e.g. in panel (b) and (e) the point S = 20 MHz and T = 60 ns which represents a

higher optimal gate error than the point at S = 20 MHz and T = 50 ns. These deviations are explained

with numerical instabilities at the QSL boundary since the optimisation algorithm sometimes finds

physically unreasonable solutions with very large spikes in the control field that numerically yield

a better fidelity than any physically reasonable control. To limit this effect, a hard bound on the

amplitude range of the control has been employed. Specifically, the optimisation is aborted once

the algorithm tries to increase the control amplitude beyond a certain point. Nevertheless, there

are still a few outliers remaining due to the slight arbitrariness of such an additional constraint in

the algorithm. In particular, this makes the reachable fidelity dependent on the guess field and the

details of the optimisation path in the landscape. Still, we can observe that in the vast majority of

the cases the expected behaviour is reproduced in the numerical analysis.

The control problem becomes much easier for non-zero anharmonicity, with a subtle interplay

between the requirements of resolving the qudit levels and sufficient interaction with all qudit levels.

The latter corresponds to small anharmonicity (Fig. 7.4(b)) and subsequently allows good results

even for weak coupling, whereas energy resolution is best for larger anharmonicity (Fig. 7.4(c)),

which in turn allows for very short operation times. In other words, for small anharmonicity the

level resolution is not as good and gate times need to generally be longer. On the other hand, many

transitions can interact at the same time with the TLS allowing for a smaller coupling strength. This

is illustrated best with regards to the light area in the middle of Figs. 7.4(b) and (e) compared to
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∆(2) S(2) T
(2)
1 error

50 MHz 40 MHz 2000 ns 3.076 · 10−2

50 MHz 40 MHz 200 ns 4.052 · 10−2

50 MHz 40 MHz 40 ns 7.867 · 10−2

50 MHz 10 MHz 2000 ns 3.196 · 10−2

50 MHz 10 MHz 200 ns 3.564 · 10−2

50 MHz 10 MHz 40 ns 4.241 · 10−2

∆(2) S(2) T
(2)
1 error

450 MHz 40 MHz 2000 ns 1.659 · 10−2

450 MHz 40 MHz 200 ns 1.652 · 10−2

450 MHz 40 MHz 40 ns 1.758 · 10−2

450 MHz 10 MHz 2000 ns 1.663 · 10−2

450 MHz 10 MHz 200 ns 1.674 · 10−2

450 MHz 10 MHz 40 ns 1.675 · 10−2

Table 7.1: Error after optimisation for diag(1,−1, 1, 1) with two TLS in the primary environment
(parameters for qudit and first TLS as in Fig. 7.1, second TLS positioned ∆(2) below ω(1)). For
comparison, the error obtained for a single TLS is 1.652·10−2. All remaining parameters are identical
to those chosen in Fig. 7.1.

Fig. 7.4(c) and (f). Conversely, for large anharmonicity the energy resolution is comparatively easy

and the shortest gate times can be reached in this case. On the other hand, since only individual

transitions can be tuned to resonance with the TLS at the same time due to their larger distance from

each other, the coupling strength needs to be sufficiently high. This can be observed when looking

at the QSL boundary for high coupling strengths which extends a little further towards shorter gate

times for Figs. 7.4(c) and (f) compared to Figs. 7.4(b) and (e).

The effect of loss and dephasing on the strongly coupled degrees of freedom is illustrated in Fig. 7.5.

We observe an exponential decay in the gate fidelity with decreasing T1 time in accordance with the

exponential loss of excitations due to loss effects, cf. Sec. 7.4. Note that loss effects on the qudit

have a slightly larger impact on the attainable gate fidelity since the prefactor in the exponent that

governs decay is proportional to the level number, cf. Eq. (7.33). This situation remains unchanged,

albeit slightly more pronounced, when an additional pure dephasing via a T ∗2 time is introduced, see

Fig. 7.5. In this case, higher levels are effected proportionally to the square of the level number,

cf. Eq. (7.33), which leads to even higher gate errors for lower T ∗2 times compared to lower T ∗1 times.

When several TLS are in the strongly coupled degrees of freedom of the system, this will usually

make the optimisation problem harder, at least if multiple noisy TLS are close to the “best” TLS

(i.e. strong coupling, weak decoherence). This is because during the interaction with this TLS the

qudit will also be weakly coupled to the other TLS and can potentially transfer excitations to them.

This puts a further constraint on the optimisation in that it has to recover all excitations from

multiple degrees of freedoms of the strongly coupled environment. The effect of a second TLS is

illustrated in Table 7.1. As expected, if the TLS are not too close to each other, a suitable control

can suppress the effect of the additional TLS even if it is strongly coupled and very noisy. On the

other hand, the stronger a closely lying second TLS is coupled to the qudit, the more difficult it

is to maintain good fidelities. In particular, if the two TLS are energetically very close, the gate

time needs to be sufficiently long to resolve the energy difference between the two TLS. Adding

more TLS to the primary environment does not change the general picture shown in Table 7.1: In

optimisations with as many as four strongly coupled TLS, the error is increased by less than a factor

of two compared to the error for a single TLS if none of the additional TLS is close to the favourable

one (1.5 · 10−2 → 2.1 · 10−2) and less than a factor of four if a moderately lossy TLS is in its vicinity

(1.5 · 10−2 → 5.4 · 10−2).

We want to finally emphasise, that our results are not restricted to superconducting phase qudit

implementations. Our model is, in fact, quite general in that we considered an anharmonic oscillator
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with an environment composed of two-level systems. Such a description can be applied to a variety

of superconducting circuits, cf. the discussion in Secs. 7.1 and 7.3, or even NV centres in nanodia-

monds [216]. As long as one or a few environmental modes are sufficiently isolated and sufficiently

strongly coupled to the system, we expect that the environment can act as a resource for (almost)

unitary quantum control.
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8 Summary and Outlook

In this thesis, we derived highly efficient schemes for the certification and optimisation of unitary

quantum operations in open quantum systems. In addition, we presented a quantum control perspec-

tive on two pivotal tasks of quantum information in the presence of environmental effects: preparation

of pure states and implementation of quantum gates. To this end, optimal control has been applied

for two examples of current experimental interest: the vibrational cooling of molecules and quantum

information processing via superconducting qudits.

The mathematical concepts of commutant spaces in Liouville space and complete and totally

rotating sets of density matrices have been introduced. They allowed to build a mathematical frame-

work that enabled the derivation of fundamental theorems on the minimal amount of input states

necessary to identify and reconstruct a unitary dynamical map on an open quantum system. These

notions are independent upon the actual physical realisation of a quantum information device. In

terms of experimental certification, state-fidelity based approaches to estimating the average fidelity

of a given device with respect to a target unitary operation have been combined with Monte Carlo

process certification. This allowed to significantly reduce the practical experimental effort of the cer-

tification task. Furthermore, we showed that control functionals derived from reduced set of states

can reduce the numerical effort in OCT algorithms for the optimisation of unitary operations - both

in terms of computational effort and required memory.

The preparation of pure states has been explored from the point of view of optimal control utilising

two novel cooling schemes - symmetrised cooling and assembly-line cooling. These two schemes have

been applied to the vibrational cooling of molecules for which they proved a significant improvement

with respect to state-of-the-art experimental techniques. This improvement was not only restricted

to an increase in efficiency but it also allowed for realisation of cooling almost independent on the

electronic structure of the molecular species. Finally, it was shown that the implementation of unitary

gates can be assisted by environmentally induced non-Markovian evolutions. We demonstrated that

the controllability of a superconducting phase qudit can be increased when the strongly coupled

environmental degrees of freedom are explicitly taken into account. This shows that beyond trying

to merely reduce its detrimental effects, the environment of a physical system can also be exploited to

assist in realising pivotal tasks of quantum information. All numerical programs written as a part of

this thesis have been included in the library of programs for the simulation of time-dependent quantum

molecular dynamics (Qdyn) developed in the group of Prof. Christiane Koch at the University of

Kassel.

The main theorems of this work, Theorems 3.3, 3.4, and 3.9, represent fundamental theoretical

results regarding the limits of identification and certification of unitary dynamical maps. Significant

steps towards a complete answer of the question how to best exploit a reduced set of input states

in terms of a tight estimation of the average gate fidelity have been undertaken in this thesis. Our

results already inspired further analysis on this subject in recent works [98, 217]. From a more

general point of view, this poses the question whether similar reduced sets of states exist if the

target operation is not unitary, but rather a different subset of dynamical maps. This could imply

for example evolutions towards a steady state in the context of purification of quantum states. In

addition, the work presented in this thesis regarding optimisation functionals allows for numerous

applications, e.g. regarding the search of decoherence-free subspaces or in terms of quantum reservoir

engineering. Finally, a detailed analysis of the environmental degrees of freedom in superconducting
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qudits showed that non-Markovianity can extend the power of specific control approaches beyond

their capabilities for a qudit that is isolated from its environment. While environmental effects often

prove to be an experimental and theoretical challenge, this shows that a more rigorous understanding

on when and how the environment can assist quantum control tasks is called for, in particular when

non-Markovian evolutions are considered.
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A Proofs

A.1 Kraus Operators for UDMs

Lemma A.1. Let D : Cd×d 7→ Cd×d be a dynamical map represented by a set of Kraus operators

{Ek}. The adjoint of D, D†, is given by

D† (ρ) =
∑
k

E†kρEk . (A.1)

D† is a dynamical map with Kraus operators {E†k} if and only if D is unital.

Proof. The adjoint of D is defined as the mapping D† : Cd 7→ Cd which fulfils

ρ, σ ∈ Cd : 〈σ,D (ρ)〉 =
〈
D† (σ) , ρ

〉
.

Let ρ, σ ∈ Cd be arbitrary, then using the invariance of the trace under cyclic permutation as well as

its linearity,

〈σ,D (ρ)〉 = Tr

[
σ†
∑
k

EkρE
†
k

]
=
∑
k

Tr
[
E†kσ

†Ekρ
]

=
∑
k

Tr

[(
E†kσEk

)†
ρ

]
= Tr

(∑
k

E†kσEk

)†
ρ

 =

〈∑
k

E†kσEk, ρ

〉
.

Defining

D† (ρ) =
∑
k

E†kρEk ,

we see that D† is a CP map and it is trace-preserving if∑
k

E†kEk = 1d ,

which is equivalent to D being unital. In this case D† is a dynamical map with Kraus operators

{E†k}.

Lemma A.2. Let D : Cd×d 7→ Cd×d be a unitary dynamical map. Then D is unital.

Proof. Since D is unitary it is an isometry. Let τ ≡ D
(

1
d1d

)
. Then

〈τ, τ〉HS =

〈
D
(

1

d
1d

)
,D
(

1

d
1d

)〉
HS

=

〈
1

d
1d,

1

d
1d

〉
HS

=
1

d
.

Since D is a dynamical map τ must be a density matrix. However, the only density matrix with

norm 1
d is 1

d1d. Hence τ = D
(

1
d1d

)
= 1

d1d and D is unital.

Now we can formulate the following proposition.
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Proposition A.3. Let D : Cd×d 7→ Cd×d be a dynamical map. D is unitary if and only if it can be

written as

D (ρ) = UρU† , (A.2)

with U : Cd 7→ Cd being unitary.

Proof. Clearly any dynamical map given by D (ρ) = UρU† is unitary since D
(
D† (ρ)

)
= UU†ρU†U =

ρ, i.e. DD† = 1d2 .

Conversely, let D be a unitary dynamical map. By Theorem 2.1 it can be written as

D (ρ) =
∑
k

EkρE
†
k ,

with its adjoint given by

D† (ρ) =
∑
k

E†kρEk .

As pointed out in Sec. 2.6 we can assume w.l.o.g. that the set {Ek} is an orthogonal set. Any unitary

transformation is unital by Lemma A.2, hence we know that∑
k

EkE
†
k =

∑
k

E†kEk = 1d .

Since D is unitary we know that ∀ρ ∈ Cd

ρ = D
(
D† (ρ)

)
=
∑
kl

EkE
†
l ρElE

†
k .

Now combine (k, l) into a single index α and define Fα = EkE
†
l such that F †α = ElE

†
k, then

D
(
D† (ρ)

)
=
∑
α

FαρF
†
α = 1dρ1d . (A.3)

While the Kraus decomposition according to Eq. (A.3) is not necessarily unique, we know at least

that there exists matrix elements uαβ of a unitary matrix U such that

Fα =
∑
α

uα11d ,

as discussed in Sec. 2.6. Consequently,

∀α : Fα ∼ 1d .

Since the {Ek} were chosen to be orthogonal this leads to

Tr [Fα] = Tr
[
EkE

†
l

]
= 〈El, Ek〉 ∼ δlk ,

which means that

∀k, l : EkE
†
l ∼ δlk1d .
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Specifically,

∀k∃ck ∈ R+ : EkE
†
k = ck1d ,

with
∑
ck = 1 due to

∑
k EkE

†
k = 1 since by Lemma A.2, D is unital due to being unitary. Note

that ck is positive since EkE
†
k is a positive operator. As a result, the Kraus operators can be written

as Ek ≡
√
ckUk with Uk unitary. This implies that D can be written as

D (ρ) =
∑
k

ckUkρU
†
k .

Now it only remains to show that all Uk are identical. Consider a pure state ρ = |ψ〉 〈ψ| and

define ρk ≡ Uk |ψ〉 〈ψ|U†k = |Ukψ〉 〈Uψk| ≡ |ψk〉 〈ψk|. Clearly, ρk represents another pure state.

Consequently, it is possible to write D as follows,

D (ρ) =
∑
k

ck |ψk〉 〈ψk| .

Because D is an isometry, D (ρ) also needs to be a pure state which is the case if and only if

∀k, l : |ψk〉 = |ψl〉. This is because D (ρ) is a convex combination of pure state which is only pure if

and only if all pure states are the same. Since |ψ〉 was arbitrary this means that ∀k, |ψ〉 : Uk |ψ〉 = |φ〉
for some fixed |φ〉 which immediately implies ∀k, l : Uk = Ul and we can finally conclude, using∑
k ck = 1, that indeed

D (ρ) = UρU† .

A.2 Commutant Spaces

Proposition. The commutant space in PU(d) of an arbitrary, diagonalisable matrix M ∈ Cd×d can

be represented as

KPU(d) (M) ∼=
[⊗

i

U (gi)

]
/U (1) , (A.4)

where gi is the multiplicity of the i-th eigenvalue of the matrix M. Its dimension is given by

dimR
[
KPU(d) (M)

]
=

(∑
i

g2
i

)
− 1 . (A.5)

Any U ∈ KPU(N) (M) admits the decomposition

U =
⊗
i

ŨEi(M) , (A.6)

where ŨEi(M) is an element of U (gi) acting on the eigenspace Ei (M).

Proof. Since M is diagonalisable we may write Cd as the direct sum of the eigenspaces Ei (M) of M ,

i.e. Cd =
⊕

i Ei (M). The dimension of the subspace Ei (M) is gi. We show, that a matrix U ∈ PU (d)

commutes with M as long as the operation does not allow vectors to leave these subspaces. Since U
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is an element of PU(d), it is an isometry which generates rotations in this subspace. This is of course

equivalent to U acting as a unitary operator on these subspaces.

One can see this by looking at the condition for a vanishing commutator,

[U,M ] = 0⇐⇒ [U,M ] ~x = ~0 ∀~x ∈ Cd .

Since Cd =
⊕

i Ei (M) we can write ~x =
∑
i νi~ei with ~ei ∈ Ei (M) for νi ∈ C. We will denote the

corresponding eigenvalue of M to the eigenspace Ei (M) by λ
(M)
i . Hence,

[U,M ] ~x = ~0

⇐⇒
∑
i

νiUM~ei =
∑
i

νiMU~ei

⇐⇒
∑
i

νiλ
(M)
i U~ei =

∑
i

νiMU~ei .

Since this has to be fulfilled for any set {νi} it follows that

∀i : λ
(M)
i U~ei = MU~ei ,

which means that U~ei also has to lie in the eigenspace Ei (M) (it has to be an eigenvector for M with

eigenvalue λ
(M)
i ). Due to the argument being valid for all eigenspaces this means that any U in the

commutant space allows for the following decomposition,

U =
⊗
i

ŨEi(M) ,

where ŨEi(M) is an arbitrary element of U (gi) acting on the eigenspace Ei (M).

Considering, that the final transformation should be in PU(d) we only consider the equivalence

class with respect to division/multiplication with a complex number with absolute value 1. This

leads to the desired result for the isomorphism,

KPU(d) (M) ∼=
[⊗

i

U (gi)

]
/U (1) .

The dimensionality can be calculated directly, using the fact that dimR [U (n)] = n,

dimR
[
KPU(d) (M)

]
=

(∑
i

dimR [U (gi)]

)
− dimR [U (1)] =

(∑
i

g2
i

)
− 1 .

This proves the proposition.

Proposition. The dimension of the commutant space in PU(d) of an arbitrary matrix M ∈ Cd×d

can be estimated as

dimR
[
KPU(d) (M)

]
≤
(∑

i

g2
i

)
− 1 , (A.7)
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where gi is the algebraic multiplicity of the i-th generalised eigenvalue of the matrix M .

Proof. Since M is not necessarily diagonalisable, we may only find a decomposition of Cd×d in terms

of the Jordan block invariant subspaces Ji (M), Cd×d =
⊕

i Ji (M). The Jordan block invariant

subspaces, i.e. the generalised eigenspaces, are given by ∀~ji ∈ Ji (M) ∃k ∈ N\ {0} : (M − λi1d)k~ji =
~0 where λ

(M)
i is the corresponding generalised eigenvalue of M to the Jordan block i [218]. Consider

a U ∈ KPU(d) (M), i.e.

[U,M ] = UM −MU = 0

⇐⇒M = U†MU .

Inserting this relation in the definition of the generalised eigenspaces, we obtain ∀~ji ∈ Ji (M)∃k ∈ N :

(
U†MU − λi1d

)k~ji = ~0

⇐⇒ U† (M − λi1d)k U~ji = ~0

⇐⇒ (M − λi1d)k U~ji = ~0 ,

using the fact that UU† = U†U = 1d. As a consequence, any unitary in the commutant space

KPU(d) (M) needs to map the generalised eigenspaces to generalised eigenvalue λi to a generalised

eigenspace to the same eigenvalue. In particular, this means that such unitaries cannot mix gener-

alised eigenspaces to different generalised eigenvalues. This means that the dimension of eigenspaces

of elements of KPU(d) (M) can at most correspond to the algebraic multiplicity of the generalised

eigenvalues of M . Noting that for diagonalisable matrices algebraic and geometric multiplicity of

eigenvalues coincide, we can now follow the arguments in the proof of Proposition A.2 for a diago-

nalisable matrix with the same (algebraic) eigenvalue structure as M to obtain an upper bound for

the dimensionality of the commutant space. This proves the the proposition.

A.3 Reconstruction Matrices

Lemma A.4. The matrix ρP ∈ Cd×d given by (ρP )ij = αiδij + 1
d2 δ1,j + 1

d2 δi,1 − 2
d2 δ11 with

∑
i αi =

1,∀i 6= j : αi 6= αj and ∀i : 1
d − 1

d2 < αi <
1
d + 1

d2 is a non-degenerate density matrix with full rank.

Additionally, all eigenvectors of ρP have the form |ψ̃i〉 =
∑
j cij |ψj〉 , ∀i, j : cij 6= 0 where |ψj〉 is the

canonical basis, i.e. the basis ρP is represented in.

Proof. We prove the three density matrix properties: Hermiticity, unit trace and positivity (we will

even show positive definiteness). Furthermore, we will demonstrate that ρP is non-degenerate. The

full rank condition follows from the positive definiteness, i.e. no eigenvalue is equal to zero.

1. Hermiticity is immediately seen from the construction.

2. Trace equal to one follows from Tr [ρP ] =
∑
i αi + 2

d2 − 2
d2 =

∑
i αi = 1 by assumption.

3. Positive definiteness is equivalent to ∀~x ∈ CN , ‖~x‖ = 1 : 〈~x, ρP~x〉 > 068. Note that we may

write ρP as the sum of its diagonal part
(
ρDP
)
ij

= αiδij and its off-diagonal part
(
ρODP

)
ij

=

68We will use vector notation here to emphasise the fact that we work in a matrix representation with respect to the canonical
basis.
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1
d2 δ1,j + 1

d2 δi,1 − 2
d2 δ11. It is clear that ∀~x ∈ CN , ‖~x‖ = 1 the following relation holds,

〈~x, ρP~x〉 =
〈
~x, ρDP ~x

〉
+
〈
~x, ρODP ~x

〉
.

Obviously, min‖~x‖=1

〈
~x, ρDP ~x

〉
= mini αi >

1
d − 1

d2 by assumption. Additionally we can estimate

the second term ∀~x ∈ CN , ‖~x‖ = 1 by
∣∣〈~x, ρODP ~x

〉∣∣ ≤ ‖ρODP ‖1 where ‖ · ‖1 represents the

maximum absolute columns sum of a matrix69. It follows that

∣∣〈~x, ρODP ~x
〉∣∣ ≤ N∑

i=2

1

d2
=
d− 1

d2
=

1

d
− 1

d2
,

and obviously ∀~x ∈ CN , ‖~x‖ = 1 one obtains

〈~x, ρP~x〉 ≥ min
‖~x‖=1

〈
~x, ρDP ~x

〉
− max
‖~x‖=1

∣∣〈~x, ρODP ~x
〉∣∣

≥ min
i
αi − ‖ρODP ‖1

>
1

d
− 1

d2
− 1

d
+

1

d2
= 0 ,

which shows positive definiteness.

We finally demonstrate the non-degeneracy of the eigenvalues. Since ρP is Hermitian it has d (possibly

degenerate) eigenvalues. Let λ be an eigenvalue. Then the corresponding eigenvectors ~x are given

by the condition (ρP − λ1d) ~x = ~0. We show that ~x can only lie in an one-dimensional subspace

of Cd, corresponding to multiplicity one of λ. Since λ was an arbitrary eigenvalue it follows that

all eigenspaces are one-dimensional, hence ρP was non-degenerate. We will write the condition

(ρP − λ1d) ~x = ~0 componentwise,

(α1 − λ)x1 +
1

d2

d∑
i=2

xi = 0 ,

1

d2
x1 + (α2 − λ)x2 = 0 ,

1

d2
x1 + (α3 − λ)x3 = 0 ,

. . .
1

d2
x1 + (αN − λ)xN = 0 .

Firstly, we may conclude that ∀i : λ 6= αi, which can be seen as follows. Assume the contrary,

i.e. λ = αj . From the equation 1
d2x1+(αj − λ)xj = 0 it follows then that x1 = 0 and then one can see

immediately that all the other xi are zero but the zero vector is no proper eigenvector. Secondly, it is

clear that ∀i : xi 6= 0. This can be seen as follows. We already argued why x1 = 0 is impossible, hence

assume an xj with j 6= 1 is equal to zero. From the corresponding equation 1
d2x1 + (αj − λ)xj = 0

due to λ 6= αj (see the argument above) we may once again reduce this to the case x1 = 0 which is

forbidden. Due to ∀i : xi 6= 0 the equations ∀i = 2, . . . , d : 1
d2x1 + (αi − λ)xi = 0 can be written as

69It can easily be seen that for a Hermitian matrix ρODP with maximal eigenvalue λmax one obtains ∀~x ∈ CN , ‖~x‖ = 1 the
inequality

∣∣〈~x, ρODP ~x
〉∣∣ ≤ λmax and λmax ≤ ‖ρODP ‖1 since ‖ · ‖1 is a so-called induced norm [219].
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xi = xi (x1), i.e. xi is a function of x1 and hence a single parameter (namely x1) determines the values

of all components of the vector. But this means that the corresponding eigenspace is one-dimensional

which completes the non-degeneracy proof. Moreover, showing the form of the eigenvectors stated in

the second part of the proof is now trivial since ∀i : xi 6= 0 which means that an arbitrary eigenvector

has no non-zero components with respect to the canonical basis.

Proposition A.5. The matrices ρB ∈ Cd×d with entries (ρB)ij = λiδij with λi ≥ 0 and
∑
i λi = 1

where ∀i 6= j : λi 6= λj and ρP ∈ Cd×d with entries (ρP )ij = αiδij + 1
d2 δ1,j + 1

d2 δi,1 − 2
d2 δ11 with∑

i αi = 1,∀i 6= j : αi 6= αj and ∀i : 1
d − 1

d2 < α(i) < 1
d + 1

d2 are unitary differentiating. Moreover, it

is possible to reconstruct the unitary matrix corresponding to a unitary dynamical map DU from the

images DU (ρB) and DU (ρP ).

Proof. Since ρB is non-degenerate it is obviously basis complete. Furthermore, it is clear by the

second part of Lemma A.4 that ρP is totally rotated with respect to ρB. We will now give an explicit

recipe to reconstruct the unitary matrix corresponding to a unitary dynamical map by its action on

the two matrices ρB and ρP .

Since DU (ρB) originates from a unitary transformation from ρB the spectrum of ρB and DU (ρB)

is identical. Because the spectrum is non-degenerate we can decompose DU (ρB) and ρB in the

following way,

DU (ρB) =
∑
i

λiP̃i , (A.9a)

ρB =
∑
i

λiPi , (A.9b)

where the Pi/P̃i are unique, one-dimensional projectors70. Note that the ordering of the projector set

{Pi} and {P̃i} is fixed by the ordering of the non-degenerate spectrum {λi}. Using these projectors

we can write

DU (ρB) =
∑
i

λiP̃i =
∑
i

λiUPiU
† = UρBU

† .

A unitary transformation applied to one-dimensional projectors leads to a new set of one-dimensional

projectors UPiU
† = P

(U)
i , consequently∑

i

λiP̃i =
∑
i

λiP
(U)
i .

Multiplication with P̃j from the right side leads to

λjP̃j =
∑
i

λiP
(U)
i P̃j .

Multiplication with P
(U)
k from the left side leads to

λjP
(U)
k P̃j = λkP

(U)
k P̃j

⇐⇒ (λj − λk)P
(U)
k P̃j = 0 .

70In practice these projectors are readily obtained via eigendecomposition of the corresponding matrices.
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Due to ∀j 6= k : λj 6= λk (here the non-degeneracy comes into play) it follows immediately that

∀j 6= k : P
(U)
k P̃j = 0 , (A.10)

whence follows (since the projectors were all one-dimensional)

P
(U)
j = cjP̃j ,

with cj ∈ C. Any different relation between the two projectors sets would lead to a non-vanishing

overlap according to Eq. (A.10). Note, that ∀j : |cj | !
= 1 or else P

(U)
j would not be idempotent which

any projector needs to be. Note furthermore that ∀j : cj ∈ R+ or else P
(U)
j would not be positive

which any projector needs to be. We may conclude that ∀j : cj = 1, i.e.

∀j : P̃j = UPjU
† . (A.11)

We will now move to bra-ket notation. Let |ψ̃j〉 be a vector with P̃j |ψ̃j〉 = |ψ̃j〉. Then, by multipli-

cation with 〈ψ̃k| from the left and |ψ̃k〉 from the right, it follows from Eq. (A.11) that

δjk =
〈
ψ̃k

∣∣∣U ∣∣∣ψj〉〈ψj ∣∣∣U† ∣∣∣ ψ̃k〉 =
∣∣∣〈ψ̃k ∣∣∣U ∣∣∣ψj〉∣∣∣2 , (A.12)

with |ψj〉 given by Pj |ψj〉 = |ψj〉. As a result, U must map |ψj〉 to a vector along |ψ̃j〉 or else not all

components for j 6= k would vanish in Eq. (A.12). Since U is a isometry, i.e. it preserves norms, we

may conclude for U that

∀j : U
∣∣∣ψk〉 = eiϕk

∣∣∣ψ̃k〉 ,
for a set {ϕk} of yet to be determined phases. Since we know the action of U on an orthonormal

basis we may consequently write

U =
∑
k

eiϕk
∣∣∣ψ̃k〉〈ψk∣∣∣ . (A.13)

Note that while the vectors |ψk〉 and 〈ψ̃k| are only determined up to a global phase, since they are

just defined as an eigenvector of a one-dimensional projector to eigenvalue 1, these phases can be

absorbed in the eiϕk .

Finally, the phases eiϕk in Eq. (A.13) can be determined by applying the dynamical map DU to

the matrix ρP . The corresponding image is given by

DU (ρP ) =
∑
kl

∑
ij

ei(ϕk−ϕl)αiδij

∣∣∣ψ̃k〉〈ψk ∣∣∣ψi〉〈ψj ∣∣∣ψl〉〈ψ̃l∣∣∣
+
∑
kl

∑
ij

ei(ϕk−ϕl)
1

d2
δ1j

∣∣∣ψ̃k〉〈ψk ∣∣∣ψi〉〈ψj ∣∣∣ψl〉〈ψ̃l∣∣∣
+
∑
kl

∑
ij

ei(ϕk−ϕl)
1

d2
δi1

∣∣∣ψ̃k〉〈ψk ∣∣∣ψi〉〈ψj ∣∣∣ψl〉〈ψ̃l∣∣∣
−
∑
kl

∑
ij

ei(ϕk−ϕl)
2

d2
δ11

∣∣∣ψ̃k〉〈ψk ∣∣∣ψi〉〈ψj ∣∣∣ψl〉〈ψ̃l∣∣∣
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⇐⇒ DU (ρP ) =
∑
kl

∑
ij

ei(ϕk−ϕl)αiδijδkiδlj

∣∣∣ψ̃k〉〈ψ̃l∣∣∣+
∑
kl

∑
ij

ei(ϕk−ϕl)
1

d2
δ1jδkiδlj

∣∣∣ψ̃k〉〈ψ̃l∣∣∣
+
∑
kl

∑
ij

ei(ϕk−ϕl)
1

d2
δi1δkiδlj

∣∣∣ψ̃k〉〈ψ̃l∣∣∣−∑
kl

∑
ij

ei(ϕk−ϕl)
2

d2
δ11δkiδlj

∣∣∣ψ̃k〉〈ψ̃l∣∣∣
=

∑
k

(
αk −

2

d2
δk1

) ∣∣∣ψ̃k〉〈ψ̃k∣∣∣+
∑
k

ei(ϕk−ϕ1)
∣∣∣ψ̃k〉〈ψ̃1

∣∣∣
+
∑
k

ei(ϕ1−ϕk)
∣∣∣ψ̃1

〉〈
ψ̃k

∣∣∣ .
By freedom of the global phase, i.e. U is an element of PU(d), we may set ϕ1 = 0 and it immediately

follows ∀k 6= 1 that 〈
ψ̃k

∣∣∣DU (ρP )
∣∣∣ ψ̃1

〉
= eiϕk

=⇒ ϕk = arg
〈
ψ̃k

∣∣∣DU (ρP )
∣∣∣ ψ̃1

〉
. (A.14)

A.4 A Unitary Differentiating Matrix

Proposition A.6. Consider the space Cd×d. The matrix M with (M)ij = δi+1,j is unitary differen-

tiating.

Proof. We show that ∀U ∈ PU(d) : [M,U ] = 0 =⇒ U = 1d. Assume that [M,U ] = 0. We

can directly calculate the matrix elements of this commutator, i.e. the following has to be fulfilled

∀a, b = 1, . . . , d,

([M,U ])ab = (MU)ab − (UM)ab =
∑
i

maiuib −
∑
i

uaimib

=
∑
i

δa+1,iuib −
∑
i

uaiδi+1,b =
∑
i

δa+1,iuib −
∑
i

ua,i−1δib

= ua+1,b − ua,b−1 , (A.15)

where we defined ud+1,k = 0∀k and uk,0 = 0∀k to facilitate notation.

Now it suffices to consider two cases: Firstly, for a = d the following relation follows directly from

Eq. (A.15),

0 = ud+1,b − ud,b−1 = −ud,b−1 .

In other words, ∀k 6= d the matrix elements udk have to vanish. But due to U ∈ PU (d) its column

vectors have to be an orthonormal basis, hence udd
!
= z ∈ C, |z| = 1.

Secondly, consider the case a + 1 = b ≡ k ⇐⇒ a = k − 1, b = k for arbitrary k = 2, . . . , d. Then

we obtain from Eq. (A.15)

ua+1,b − ua,b−1 = ukk − uk−1,k−1
!
= 0

⇐⇒ ukk = uk−1,k−1 .
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Iteratively, it is easy to see that with the condition udd = z it follows that

ukk = z∀k = 1, . . . , d .

Now, since |z| = 1 and the row (and column) vectors of U have to be normalised, it follows immedi-

ately that all non-diagonal elements of U have to vanish, i.e.

uij = zδij .

It follows, that a unitary U does not commute with M , it needs to be proportional to the unit matrix.

Since U ∈ PU (d), this implies immediately that z
!
= 1 and thus U

!
= 1. As a result, the only element

of PU(d) in the commutant space of M is the unit matrix. By Theorem 3.3 it follows that the set

{M} with a single element is unitary differentiating. This completes the proof.

A.5 Proofs for Minimal Unitary Characterisation

In order to prove Theorem 3.9 we will first prove a series of auxiliary statements.

Our first goal is to prove that the only projective unitary matrix that commutes with each el-

ement of a complete and totally rotating set of states is the identity. In order to make use of the

assumed commutation relations in the proof, we translate commutation of a unitary with a state into

commutation of a unitary with one or more projectors. To this end, we introduce a lemma. Using

commutation of a unitary with projectors, it is then straightforward to show that the unitary must

be the identity.

Lemma A.7. Let U ∈ PU(d) and ρ be a density matrix which has at least one non-degenerate

eigenvalue λ1. If [U, ρ] = 0, then the relation [U,P1] = 0 holds where P1 is the one-dimensional

projector onto the eigenspace E1 corresponding to the eigenvalue λ1.

Proof. Since ρ has a non-degenerate eigenvalue λ1, we can expand it in a set of orthonormal projectors,

ρ = λ1P1 +
∑d
i=2 λiPi, with P1 = |ξ1〉 〈ξ1| the projector onto the one-dimensional eigenspace E1. By

assumption,

[U, ρ] = 0 = λ1UP1 − λ1P1U +
d∑
i=2

(λiUPi − λiPiU)

= λ1UP1U
† − λ1P1 +

d∑
i=2

(
λiUPiU

† − λiPi
)
,

where in the second line we have multiplied by U† from the right. Defining P̄i = UPiU
†, this is

equivalent to

λ1P̄1 +

d∑
i=2

λiP̄i = λ1P1 +

d∑
i=2

λiPi .

The operator equality can be applied to |ξ1〉, leading to

λ1P̄1 |ξ1〉+
d∑
i=2

λiP̄i |ξ1〉 = λ1 |ξ1〉 .
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Inserting an identity,
∑d
i=1 P̄i = 1d, in the right-hand side, we obtain

λ1P̄1 |ξ1〉+
d∑
i=2

λiP̄i |ξ1〉 = λ1P̄1 |ξ1〉+
d∑
i=2

λ1P̄i |ξ1〉 .

Multiplying from the left by P̄i6=1 and using orthogonality of the P̄i and non-degeneracy of λ1,

λi6=1 6= λ1, we find that P̄i |ξ1〉 = 0 for all i 6= 1. Therefore |ξ1〉 lies also in the one-dimensional

eigenspace corresponding to P̄1, and the one-dimensional eigenspaces of P1 and P̄1 must be identical.

This implies

P1 = P̄1 ,

and, by definition of P̄1, we find that U leaves the one-dimensional eigenspace corresponding to P1

invariant, hence commutes with P1.

Remark. Note that if a density matrix ρ that commutes with U has more than one non-degenerate

eigenvalue, the lemma implies that U commutes with all the projectors onto the one-dimensional

eigenspaces.

Proposition A.8. The only projective unitary matrix U ∈ PU (d) that commutes with a complete

and totally rotating set of states {ρi}, with ρi ∈ Cd×d, is the unit matrix.

Proof. Repeated application of the lemma to states ρi yields a set of one-dimensional projectors

that each commute with U . By definition of a complete and totally rotating set of states, d + 1

projectors within this set must be elements of {Pc, PTR}. We can thus choose the complete set of

one-dimensional projectors Pc to represent U , U =
∑d
i=1 uiPi. An equally valid choice {P̃i} employs

the totally rotated projector, P̃1 = PTR, with ETR the corresponding eigenspace, and a suitable set

of orthonormal one-dimensional projectors {P̃i}i=2,...,d for the space E⊥TR such that U =
∑d
i=1 uiP̃i.

The spectrum {ui} is of course independent of the representation. Consider the action of U on a

vector |ζ〉 ∈ ETR,

U |ζ〉 =

d∑
i=1

uiPi |ζ〉 =

d∑
i=1

uiP̃i |ζ〉

= u1 |ζ〉 =
d∑
i=1

u1Pi |ζ〉 , (A.16)

where we have inserted
∑d
i=1 Pi = 1d in the last step. By total rotation, PTRPi 6= 0 ∀Pi ∈ Pc, or

equivalently, PiPTR 6= 0. Applying this to |ζ〉, we find

PiPTR |ζ〉 = Pi |ζ〉 6= 0 ∀i .

Since the Pi are one-dimensional orthonormal projectors, i.e. Pi = |ϕi〉 〈ϕi| with {|ϕi〉} a complete

orthonormal basis of the Hilbert space, we can rewrite Pi |ζ〉,

Pi |ζ〉 = µi |ϕi〉 ,
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with µi ∈ C, µi 6= 0. Inserting this into Eq. (A.16), we obtain

d∑
i=1

u1µi |ϕi〉 =
d∑
i=1

uiµi |ϕi〉 .

Comparing the coefficients yields u1µi = uiµi ∀i. Due to total rotation, ∀i : µi 6= 0, hence we can

divide and obtain

u1 = ui ∀i ,

i.e. a unitary with complete degeneracy in its eigenvalues. This necessarily has to be the matrix

eiϕ1d for ϕ ∈ [0, 2π], or, as an element of PU(d), the unit matrix.

We have thus shown that only the identity commutes with a set of states that is complete and

totally rotating. This set of states is therefore unitary differentiating, leading to Theorem 3.7.

Lemma A.9. Let D : Cd×d 7→ Cd×d be a unital dynamical map. If and only if there exists a set of

d one-dimensional, orthogonal projectors that is mapped by D onto another set of d one-dimensional

orthogonal projectors, there exists a complete set of density matrices whose spectrum is invariant

under D.

Proof. (=⇒ direction) We denote the set of d one-dimensional projectors Pi by P. By assumption,

we know that

∀i : D (Pi) = P̃i ,

where the P̃i also form a set of d one-dimensional, orthogonal projectors. Clearly, spec (Pi) =

spec(P̃i), hence ∀Pi ∈ P
spec (D (Pi)) = spec (Pi) = (1, 0, . . . , 0) .

Obviously, P itself corresponds to a specific complete set of density matrices, ρi = Pi.

(⇐= direction) This part of the proof proceeds as follows: First we show that the assumption,

a dynamical map leaving the spectrum of a given density matrix invariant, implies that D maps

projectors onto the eigenspaces of the initial density matrices into projectors onto the eigenspaces of

the resulting density matrix with the same eigenvalue. As a consequence, a one-dimensional projector

onto a corresponding one-dimensional eigenspace is mapped into a one-dimensional projector. We

then repeat this argument for all density matrices in the complete set. In this set, by definition,

there exist density matrices with d one-dimensional, orthogonal projectors onto one-dimensional

eigenspaces which, according to the first step of the ⇐= proof, is mapped onto another set of one-

dimensional projectors. We show in a second step that the set of the mapped one-dimensional

projectors is also orthogonal.

We start by assuming that D leaves the spectrum of a given density matrix, ρ, invariant,

spec (D (ρ)) = spec
∑
k

(
EkρE

†
k

)
= spec (ρ) ,

where we have expressed D in terms of Kraus operators Ek. We can write ρ =
∑
i λiP

′
i where

P ′ = {P ′i} is a set of M orthogonal projectors onto the eigenspaces of ρ with M the number of

distinct eigenvalues of ρ. We assume the λi to be ordered by magnitude with λ1 corresponding to
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the largest eigenvalue. Since we know that the spectrum of D (ρ) to be identical to that of ρ, we can

decompose D (ρ),

D (ρ) =
∑
i

λiP̃
′
i ,

with {P̃ ′j} another set of M orthogonal projectors. Note that neither the P ′i nor the P̃ ′i have to be one-

dimensional but for a given i, P̃ ′i has the same dimensionality as the corresponding P ′i . Specifically,

D (ρ) = D
(∑

i

λiP
′
i

)
=
∑
i

λiD (P ′i ) =
∑
j

λjP̃
′
j .

Multiplying by another projector P̃ ′p from the set, where p can take integer values between 1 and M ,

we obtain ∑
i

λiD (P ′i ) P̃
′
p =

∑
j

λjP̃
′
jP̃
′
p = λpP̃

′
p , (A.17)

since P̃ ′j , P̃
′
p are orthogonal. Using proof by (transfinite) induction we now show that

D (P ′k) = P̃ ′k ∀i = k, . . . ,M .

The idea of the induction is the following: To show that indeed the projectors onto the eigenspaces

of ρ, P ′i , are mapped into projectors onto the eigenspaces of D(ρ) with the same eigenvalue, we start

with the projector onto the eigenspace with the largest eigenvalue and then inductively proceed to

increasingly smaller eigenvalues. Furthermore, to prevent having to deal with a possible smallest

eigenvalue of 0, we treat the lowest eigenvalue case separately. Calling the induction variable k, we

have to show that D (P ′k) = P̃ ′k follows from the assumption D (P ′i ) = P̃ ′i ∀i < k. Note that if k = M ,

i.e. for the smallest eigenvalue,

∑
i

D (P ′i ) = D
(∑

i

P ′i

)
= D (1d) = 1d , (A.18)

since, by definition, a unital dynamical map maps identity onto itself.

Hence, we assume k 6= M . Then λk > 0 since it is not yet the smallest eigenvalue because each

λk corresponds, by construction, to a different eigenspace. This implies that they are different. For

brevity we will employ vector notation instead of bra-ket notation in the following. For k = p, we

can rewrite Eq. (A.17), multiplying by an arbitrary normalised eigenvector ~xk ∈ Cd of P̃ ′k from the

left and right, ∑
i

λi~xk · D (P ′i ) · ~xk = λk . (A.19)

By assumption of the induction, D (P ′i ) = P̃ ′i ∀i < k, therefore

~xk · D (P ′i ) · ~xk = 0 ∀i < k .
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Introducing d
(i)
kk ≡ ~xk · D (P ′i ) · ~xk, Eq. (A.19) can be written as∑

i≥k

λid
(i)
kk = λk . (A.20)

Due to Eq. (A.18) and the assumption of the induction,∑
i

d
(i)
kk =

∑
i≥k

d
(i)
kk =

∑
i

~xk · D (P ′i ) · ~xk = 1 ,

and, since D (P ′i ) is the image of a positive matrix which has to be positive itself,

d
(i)
kk = ~xk · D (P ′i ) · ~xk ≥ 0∀i .

Now remember that λk 6= 0 is strictly larger than all the other λi with i > k since the eigenvalues

are assumed to be ordered. In addition, d
(i)
kk ≥ 0∀i and at least one d

(i)
kk with i ≥ k must be non-zero,

otherwise the d
(i)
kk would not sum up to 1. Then∑

i≥k

λid
(i)
kk ≤ λk

∑
i≥k

d
(i)
kk = λk ,

with equality if and only if d
(i)
kk = 0 for i 6= k. In fact, equality has to hold since otherwise we would

contradict Eq. (A.20). We conclude that

d
(i)
kk = ~xk · D (P ′i ) · ~xk = δik .

Since ~xk is normalised and arbitrary as long as it lies in the eigenspace Ẽk of P̃ ′k, ~xk must be an

eigenvector of D (P ′k) with eigenvalue 1. Consequently, the operator D (P ′k) maps the eigenspace of

P̃ ′k onto itself. Now we are almost done with showing that D (P ′k) and P̃ ′k are indeed identical. Since Ẽk
is mapped by D into itself, D (P ′k) has at least dim(Ẽk) eigenvalues equal to 1. The fact that D (P ′k)

has exactly dim(Ẽk) eigenvalues equal to 1 follows from D being trace-preserving: Tr [D (P ′k)] =

Tr [P ′k] = dim(Ek) and dim(Ek) = dim(Ẽk), where Tr [D (P ′k)] is the sum over the eigenvalues of

D (P ′k). Since all eigenvalues of D (P ′k) are non-negative, all other eigenvalues must vanish. Hence

D (P ′k) = P̃ ′k. This completes the induction and concludes the first step of the⇐= proof, i.e. we have

shown that a unital dynamical map that leaves the spectrum of a given arbitrary density matrix

invariant, maps projectors onto the eigenspaces of this density matrix onto projectors of the same

rank. This is specifically true for one-dimensional projectors. Iterating the argument for all density

matrices in the complete set and selecting a set P of d orthogonal, one-dimensional projectors, it

follows that these projectors will be mapped by D onto another set of one-dimensional projectors.

In the second step of the ⇐= proof we still need to show that the mapped set is also orthogonal.

We denote the complete set of projectors by {Pi}. From the first step of the ⇐= proof we know that

the P̃i,

D (Pi) = P̃i ,
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need to be one-dimensional projectors. Using the unitality of D, we see that

1d = D (1d) = D
(∑

i

Pi

)
=
∑
i

D (Pi) =
∑
i

P̃i .

The unit matrix can only be summed by d one-dimensional projectors if these are orthogonal. Hence

we have accomplished the second step, and the lemma follows.

Now we can turn to proving Theorem 3.9.

Theorem. Let H be a finite-dimensional Hilbert space with d = dim (H) and D be a dynamical map

on LH. The following statements are equivalent.

1. D is unitary.

2. D maps a set P of d one-dimensional orthogonal projectors onto a set of d one-dimensional

orthogonal projectors as well as a totally rotated projector PTR (with respect to P) onto a one-

dimensional projector.

3. D is unital and there exists a complete and totally rotating set of density matrices whose spectrum

is invariant under D.

4. D is unital and there exists a complete and totally rotating set of density matrices R such that

∀ρ ∈ R; k = 1, 2, . . . , d : Tr
(
ρk
)

= Tr
(
D (ρ)

k
)

.

Proof. (1) =⇒ (2) : If D is unitary, the action of D on any state is described by D(ρ) = UρU†

according to Eq. (2.21). Specifically for orthonormal projectors PiPj = δij , we find

D (Pi)D (Pj) = UPiU
†UPjU

† = UPiPjU
† = δijUPiU

† .

Since a one-dimensional projector can be written Pi = |ϕi〉 〈ϕi|, where {|ϕi〉} is a complete orthonor-

mal basis of H, UPiU
† is also one-dimensional projector. By the same argument, PTR is mapped

onto a one-dimensional projector if D(ρ) = UρU†. Therefore a dynamical map D describing unitary

time evolution maps a set of d orthonormal projectors, {Pi}, onto another such set, {P̃i = UPiU
†},

and PTR onto a one-dimensional projector.

(2) =⇒ (1) : We start with the representation of a dynamical map according to Theorem 2.1,

D =

K∑
k=1

EkρE
†
k , (A.21)

by Kraus operators Ek, that fulfil
K∑
k=1

E†kEk = 1d . (A.22)

We employ the canonical representation in which the Kraus operators are orthogonal, Tr[E†kEl] ∼ δkl.
By assumption, a set of d one-dimensional, orthonormal projectors {Pi} is mapped by D onto another

such set {P̃i},

D (Pi) =
K∑
k=1

EkPiE
†
k = P̃i . (A.23)
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We need to show that this implies D(ρ) = UρU†, or equivalently, as we demonstrate below, that D
is made up of a single Kraus operator E1 in the representation where Tr[E†kEl] ∼ δkl. In general,

we can employ a polar decomposition for each Kraus operator, factorising it into a unitary and a

positive-semidefinite operator, Ek = UkẼk. For unitary evolution, Uk = Ũ for all k and E1 = U1d

which is a special case of Ẽk being diagonal. We first show that the assumption for the d orthonormal

projectors {Pi} implies Uk = Ũ and diagonality of Ẽk. In a second step, we prove that the assumption

for the totally rotated projector implies that there is only a single Kraus operator and Ẽ1 = 1d.

We first show that Ẽk = EkU
† is diagonal in the orthonormal basis {|ϕi〉} corresponding to the

Pi. Eq. (A.23) suggests the definition of an operator Π
(i)
k ≡ EkPiE

†
k which is obviously Hermitian

and moreover positive semidefinite. The latter is seen by making use of P 2
i = Pi and Pi = P †i ,

〈ζ
∣∣Π(i)

k ζ〉 = 〈ζ|EkPiPiE†kζ〉 = 〈PiE†kζ|PiE
†
kζ〉 = 〈ξ|ξ〉 ≥ 0 for any |ζ〉 ∈ H. Eq. (A.23) implies∑K

k=1 Π
(i)
k = P̃i. For the normalised vector spanning the eigenspace of P̃i, |ϕ̃i〉 ∈ Ei, we find

K∑
k=1

〈
ϕ̃i

∣∣∣∣Π(i)
k ϕ̃i

〉
= 1 ,

while for all |ξ〉 ∈ E⊥i
K∑
k=1

〈
ξ

∣∣∣∣Π(i)
k ξ

〉
= 0 .

Due to positivity of Π
(i)
k , this implies 〈ξ

∣∣Π(i)
k ξ〉 = 0. Reinserting the definition of Π

(i)
k leads to

〈ξ|EkPiE†kξ〉 = 〈PiE†kξ|PiE
†
kξ〉 = 0, i.e. we find PiE

†
k |ξ〉 = 0 for all k, i and |ξ〉 ∈ E⊥i . For an

arbitrary Hilbert space vector |ζ〉, (1d − P̃i) |ζ〉 lies in E⊥i such that PiE
†
k(1d − P̃i) |ζ〉 = 0 for all k

and i. Therefore

PiE
†
k

(
1d − P̃i

)
= 0 ⇐⇒ PiE

†
k = PiE

†
kP̃i ∀i, k .

To make use of the orthogonality of the P̃i, we multiply by P̃j , j 6= i from the right. Since P̃j can

be written as P̃j = ŨPjŨ
† for a specific Ũ , we obtain, for all i, k and j 6= i, PiE

†
kŨPjŨ

† = 0.

Multiplication by Ũ from the right yields

PiE
†
kŨPj = 0 .

This implies that the operators E†kŨ have to be diagonal in the basis corresponding to the Pi,

E†kŨ =

d∑
i=1

eki Pi . (A.24)

Note that the unitary Ũ is the same for all Kraus operators Ek.

In the second step, we now need to show that the right-hand side of Eq. (A.24) is equal to the

identity, making use of the assumption that the totally rotated projector is mapped by D onto a

one-dimensional projector. The crucial information is captured in the coefficients eki . Let us sum-

marise what we know about the eki . From orthogonality of the Kraus operators, we find Tr[E†kEl] =

Tr[
∑d
i,j=1 e

k
i (elj)

∗PiŨ
†ŨPj ] =

∑d
i,j=1 e

k
i (elj)

∗Tr[PiPj ] =
∑d
i,j=1 e

k
i (elj)

∗δij =
∑d
i=1 e

k
i (eli)

∗ !∼ δkl. The

last sum can be interpreted as a scalar product for two orthogonal vectors ~e k, ~e l ∈ Cd with coefficients
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eki , eli. Defining the proportionality constants N (k),

N (k) ≡ Tr
[
E+
k Ek

]
=
∑
i

eki (eki )∗ = 〈~e k, ~e k〉 ≥ 0 , (A.25)

we find from Eq. (A.22) and Tr[1d] = d that
∑K
k=1N (k) = d (and, if we can show that N (k) = d for

one k, than the number of Kraus operators, K, must be one). Eq. (A.22) together with Eq. (A.24)

yields yet another condition on the eki : 1d =
∑K
k=1E

†
kEk =

∑d
i,j=1

∑K
k=1(eki )∗ekjPiPj =

∑
i,k

∣∣eki ∣∣2 Pi
such that

∑
k

∣∣eki ∣∣2 = 1 for each i. This can be interpreted as normalisation condition for a vector

~εi ∈ CK with coefficients eki ,

1 =
K∑
k=1

∣∣eki ∣∣2 = 〈~εi,~εi〉 . (A.26)

Since the vector sets {~ek} and {~εi} are not independent, it is clear that any information on the scalar

product 〈~εi,~εj〉 will be useful to determine N (k) (such that we can check whether there is one k

for which N (k) = d). To this end, we employ the assumption that PTR is mapped by D onto a

one-dimensional projector, P̃TR = D(PTR), i.e. the purity of PTR is preserved,

Tr
[
(D(PTR))

2
]

= 1 .

Inserting Eqs. (A.21) and (A.24), making use of the orthogonality of the Pi and of the trace being

invariant under cyclic permutation, we find

Tr
[
D (PTR)

2
]

= Tr

U
∑

ij

∑
k

∑
i′j′

∑
k′

(eki )∗ekj (ek
′

i′
)∗ek

′

j′
PiPTRPjPi′PTRPj′

U†


= Tr

∑
ij

∑
k

∑
j′

∑
k′

(eki )∗ekj (ek
′

j )∗ek
′

j′
PiPTRPjPTRPj′


=

∑
ij

∑
k

∑
j′

∑
k′

(eki )∗ekj (ek
′

j )∗ek
′

j′
Tr
[
PiPTRPjPTRPj′

]

=
∑
ij

∣∣∣∣∣∑
k

(eki )∗ekj

∣∣∣∣∣
2

Tr [PiPTRPjPTR] =
∑
ij

|〈~εi,~εj〉|2 Tr [PiPTRPjPTR] .

The trace over the projectors is easily evaluated in the basis {|ϕi〉}, Pi = |ϕi〉 〈ϕi|, in which PTR =

|Ψ〉 〈Ψ|. It yields Tr [PiPTRPjPTR] = |〈ϕi|Ψ〉|2 |〈ϕj |Ψ〉|2 = |µi|2 |µj |2 with µi ≡ 〈ϕi|Ψ〉 and µi 6=
0 due to total rotation, PiPTR 6= 0∀i. Estimating |〈~εi,~εj〉|2 by the Cauchy-Schwarz inequality,

|〈~εi,~εj〉|2 ≤ 〈~εi,~εi〉〈~εj ,~εj〉, and making use of the normalisation of ~εi, cf. Eq. (A.26), we obtain

1 = Tr
[
D (PTR)

2
]

=
∑
ij

|µi|2 |µj |2 |〈~εi,~εj〉|2

≤
∑
ij

|µi|2 |µj |2 = 1 .

In the last step, we have used
∑
i |µi|2 =

∑
i | 〈ϕi|Ψ〉 |2 =

∑
i 〈Ψ|ϕi〉 〈ϕi|Ψ〉 = 〈Ψ|Ψ〉 = 1. Since we
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find one on the left hand and right hand side, equality must hold for the inequality. Since µi 6= 0 for

all i, this is possible only for

|〈~εi,~εj〉|2 = 1 , or , |〈~εi,~εj〉| = 1 , ∀i, j .

Therefore, the normalised vectors ~εi, ~εj are identical up to a complex scalar, |eki | = |ekj | for all i, j

and k. This implies for the proportionality constants N (k), Eq. (A.25), equality of all summands,

N (k) =
d∑
i=1

eki (eki )∗ = d (eka)∗eka .

Each component is thus given by eki =
√
N (k)/d exp [iφi] which, making use of the orthogonality of

the vectors ~ek,
∑
i e
k
i (eli)

∗ ∼ δkl, leads to

d∑
i=1

eki (eli)
∗ =

d∑
i=1

√
N (k)N (l)

d
exp [iφi] exp [−iφi]

=
√
N (k)N (l) = 0 ∀k 6= l .

For this to be true, all N (k) except one and consequently all Ek except one must be zero. By

Eq. (A.24), its representation is

E = Ũ

[∑
i

(e1
i )
∗Pi

]
.

Making use of PiPj = δijPi and Pi = P †i , unitarity of the time evolution follows immediately since

E†E =

d∑
i=1

e1
i (e

1
i )
∗Pi =

2∑
i=1

√
N (1)

d
Pi =

k∑
i=1

Pi = 1d ,

EE† = Ũ

(∑
i=1

e1
i (e

1
i )
∗Pi

)
Ũ† = Ũ1dŨ

† = 1d ,

such that

D (ρ) = ŨρŨ†

for a unitary Ũ ∈ PU(d).

(2) =⇒ (3) : If D maps a set of d one-dimensional orthogonal projectors onto another set of d

one-dimensional orthogonal projectors, it leaves the spectrum of the projectors invariant. This can

be seen as follows. Projectors are idempotent and positive semi-definite, hence their spectrum can

only consist of zeros and ones. Since the projector is one-dimensional, its image under D has to be

one-dimensional, too, and there can only be one eigenvalue equal to one. Thus any one-dimensional

projector has the spectrum {1, 0, 0, . . . } which must be invariant under a mapping between one-

dimensional orthogonal projectors. We now use the linearity of dynamical maps to show that D
must be unital. Specifically, let {Pi} be the initial set of orthogonal projectors that is mapped

to another set of orthogonal projectors, {P̄i}. We find for the image of the totally mixed state,
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ρM = 1
d1d,

D(ρM ) = D
(

1

d

d∑
i=1

Pi

)
=

1

d

d∑
i=1

D(Pi)

=
1

d

d∑
i=1

P̄i = ρM ,

i.e. D maps identity onto itself, making it unital. We can thus use Lemma A.9 to obtain that

the spectrum of a complete set of density matrices is invariant under D. We now just have to

add ρTR = PTR to realise a complete and totally rotating set. The spectrum of ρTR = PTR is also

invariant under D since it is a one-dimensional projector that is mapped onto another one-dimensional

projector.

(3) =⇒ (2) : From Lemma A.9, we obtain that D maps a set of d one-dimensional, orthogonal

projectors onto another set of d one-dimensional orthogonal projectors. We are thus only left with

showing that D maps a totally rotated projector onto a one-dimensional projector: There always

exists a density matrix with a one-dimensional eigenspace corresponding to a totally rotated projector

PTR whose spectrum is invariant under the action of D. In the proof of Lemma A.9, we have shown

that a dynamical map that leaves the spectrum of projectors invariant maps these projectors onto

projectors of the same rank. Repeating the steps of the proof of Lemma A.9, we see that the image

of PTR has to be a one-dimensional projector.

(3) =⇒ (4) : Let {λn}n=1,...,d be the set of eigenvalues of ρ. Then ∀k ∈ N : Tr(ρk) =
∑d
n=1 λ

k
n. It

follows immediately that if ρ and D (ρ) have the same spectrum then ∀k ∈ N : Tr(ρk) = Tr(D (ρ)
k
),

specifically this is true ∀k ≤ d.

(4) =⇒ (3) : The characteristic equation of a matrix ρ is uniquely determined by the set

{Tr(ρk)}k=1,...,d [220]. Consequently, if ∀k ≤ d : Tr(ρk) = Tr(D (ρ)
k
), then the characteristic

equations of ρ and D (ρ) have identical roots. Since these roots correspond to the eigenvalues of

ρ, respectively D (ρ), their spectrum is identical.

A.6 Analytical Bounds for Two Classical Fidelities Utilising MUBs

Lemma A.10. Let d ∈ N, d ≥ 2 and a ∈ Z, |a| < d. Then

d∑
n=1

ei
2π
d an = dδa0 . (A.28)

Proof. For a = 0 the statement is obvious. Let us assume that a 6= 0. We then use the summation

formula of the geometric series,

d∑
n=1

ei
2π
d an =

d−1∑
n=0

ei
2π
d aei

2π
d an

= ei
2π
d a

d−1∑
n=0

(
ei

2π
d a
)n

= ei
2π
d a

1− ei 2π
d ad

1− ei 2π
d a

= ei
2π
d a

1− ei2πa
1− ei 2π

d a
= 0 ,
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whence follows the lemma.

Theorem A.11. Let H be a Hilbert space with dimH = d. Let B1 = {|k(1)
n 〉}n=1,...,d be an orthonor-

mal basis of H and let B2 = {|k(2)
n 〉}n=1,...,d be another orthonormal basis of H that is mutually

unbiased with respect to B1. Furthermore, let U0 ∈ U (d) and DC ∈ L (LH) be a dynamical map.

Defining for α = 1, 2 the so-called classical fidelities,

Fα =
1

d

d∑
i=1

〈k(α)
i |U†0DC(|k(α)

i 〉〈k
(α)
i |)U0|k(α)

i 〉 , (A.29)

the following inequality holds,

F1 + F2 − 1 ≤ Fpro ≤ min (F1, F2) , (A.30)

where Fpro is the process fidelity between D and the unitary dynamical map corresponding to U0.

Proof. Let us consider the set of unitaries dynamical maps which yield a classical fidelity of F1 = 1

with respect to B1. An orthonormal set U (1) of unitaries spanning the this space is given by U (1) =

{ 1√
d
U

(1)
m }m=0,...,d−1 having the property

∀m : U (1)
m

∣∣∣k(1)
n

〉
= e−i

2π
d mnU0

∣∣∣k(1)
n

〉
, (A.31)

where we set U
(1)
0 ≡ U0. This immediately follows from the fact that the set of unitaries that cannot

be differentiated from U0 by propagating the set B1 is given by the commutant space71 KU(d)(B1)

which by a straightforward generalisation of Proposition 3.4 is given by those unitaries that have a

common eigenbasis with U0. Furthermore the dimension of this space is d. To show that U (1) is

indeed an orthonormal set spanning this commutant space it suffices to show that the d elements of

U (1) are orthogonal which can be seen by direct calculation,

Tr

[(
1√
d
U (1)
a

)†
1√
d
U

(2)
b

]
=

1

d

d∑
n=1

〈
k(1)
n

∣∣∣ ei 2π
d anU†0U0e

−i 2π
d bn

∣∣∣ k(1)
n

〉
=

1

d

d∑
n=1

ei
2π
d (a−b)n

〈
k(1)
n

∣∣∣U†0U0

∣∣∣ k(1)
n

〉
=

1

d

d∑
n=1

ei
2π
d (a−b)n = δab ,

with the last equality following from Lemma A.10.

Similarly we can define a second orthonormal set U (2) of unitaries spanning the commutant space

KU(d) (B2) . We use the same notation, U (2) = { 1√
d
U

(2)
m }m=0,...,d−1 with U

(2)
0 = U0 having the

property

U (2)
m

∣∣∣k(2)
n

〉
= e−i

2π
d mnU0

∣∣∣k(2)
n

〉
. (A.32)

71We work here with the full unitary group instead of the projective unitary group for simplicity. Clearly unitary differentiation
with respect to the unitary group automatically implies unitary differentiation with respect to the lower-dimensional projective
unitary group.
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The calculation for the orthonormality of the objects in the set U (2) is identical to the one for U (1).

Now we will furthermore show, that ∀a, b with a = 0, b = 0 excluded the unitaries U
(1)
a and U

(2)
b are

orthogonal. This is done by calculating the Hilbert-Schmidt scalar product,

Tr

[(
1√
d
U

(2)
b

)†
1√
d
U (1)
a

]
=

1

d

∑
n

〈k(1)
n |
(
U

(2)
b

)†
U (1)
a |k(1)

n 〉

=
1

d

∑
n,m

〈k(1)
n |k(2)

m 〉〈k(2)
m |
(
U

(2)
b

)†
U (1)
a |k(1)

n 〉

=
1

d

∑
n,m

〈k(1)
n |k(2)

m 〉〈k(2)
m |ei

2π
d bme−i

2π
d an|k(1)

n 〉

=
1

d

∑
n,m

ei
2π
d (bm−an)〈k(1)

n |k(2)
m 〉〈k(2)

m |k(1)
n 〉

=
1

d

∑
n,m

ei
2π
d (bm−an)

∣∣∣〈k(1)
n |k(2)

m 〉
∣∣∣2 .

Using the fact that the two bases are mutually unbiased we obtain that

Tr

[(
1√
d
U

(2)
b

)†
1√
d
U (1)
a

]
=

1

d2

∑
n,m

ei
2π
d (bm−an) =

1

d
d2δa0δb0 = δa0δb0 ,

where we used once again Lemma A.10. Hence the stated orthonormality follows.

It is possible to write a general dynamical map in the following way,

DC (ρ) =
d2−1∑
ij=0

ξijŪiρŪ
†
j , (A.33)

where the Ūi form an orthonormal basis of unitaries of the Liouville space LH and ξij is a process

matrix, cf. Sec. 4.1. It is evident that we can choose the basis
{
Ūi
}

such that

Ū0 =
1√
d
U0 , (A.34a)

∀1 ≤ i ≤ d− 1 : Ūi =
1√
d
U

(1)
i , (A.34b)

∀d ≤ i ≤ 2 (d− 1) : Ūi =
1√
d
U

(2)
i−d+1 . (A.34c)

The remaining Ūi with 2 (d− 1) ≤ i ≤ d2 are not relevant for the further discussion but can be

constructed in such a way that they are orthonormal to the Ūi defined above. Note that ξij is a

positive Hermitian matrix. The process fidelity Fpro of DC with respect to the unitary dynamical

map described by U0 is given by

Fpro =
1

d
ξ00 . (A.35)
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This can be seen by using Eq. (4.24),

Fpro =
1

d2
Tr (DCU0) ,

with DC and U0 representing the Choi matrices of the corresponding dynamical maps. Noting that

the trace is invariant under unitary transformation, we can specifically use the Choi matrices in their

representation with respect to the orthonormal basis {Ūi}. In this representation U0 is matrix that is

composed entirely of zeros except for the (0, 0) entry which is equal to d and it immediately follows

that indeed Fpro = 1
dξ00 which, as argued above, corresponds to the corresponding entry of DC in

the representation with respect to {Ūi}.
Furthermore, it can be immediately seen by inserting the expansion of DC according to Eq. (A.33)

in the definition equations for the classical fidelities, that

F1 =
1

d

d−1∑
n=0

ξnn , (A.36)

This can be seen by rewriting Eq. (A.33) in a different orthonormal basis of Liouville space leading

to another process matrix ηrspq ≡ ξ(p,q)(r,s) in terms of double indices,

DC (ρ) =

d∑
pqrs=0

ηrspq

∣∣∣U0k
(1)
p

〉〈
k(1)
q

∣∣∣ ρ ∣∣∣k(1)
r

〉〈
U0k

(1)
s

∣∣∣ .
Note that {|U0k

(1)
i 〉 〈k

(1)
j |}i,j=1,...,d is indeed an orthonormal basis of Liouville space due to

Tr

[(∣∣∣U0k
(1)
i

〉〈
k

(1)
j

∣∣∣)† ∣∣∣U0k
(1)
i′

〉〈
k

(1)
j′

∣∣∣] = Tr
[〈
k

(1)
j

∣∣∣ 〈U0k
(1)
i

∣∣∣U0k
(1)
i′

〉 ∣∣∣k(1)
j′

〉]
= δii′δjj′ .

Thus, the classical fidelity F1 reads

F1 =
1

d

d∑
j=1

〈k(1)
j |U†0DC(|k(1)

j 〉〈k
(1)
j |)U0|k(1)

j 〉

=
1

d

d∑
j=1

d∑
pqrs=0

ηqrps〈k(1)
j |U†0 |U0k

(1)
p 〉〈k(1)

q |k(1)
j 〉〈k

(1)
j |k(1)

r 〉〈U0k
(1)
s |U0|k(1)

j 〉

=
1

d

d∑
j=1

ηjjjj .

Now, note that from Eq. (A.31) it immediately follows that

∀m = 0, . . . , d− 1 : U (1)
m =

d∑
n=1

e−i
2π
d mn

∣∣∣U0k
(1)
n

〉〈
k(1)
n

∣∣∣ .
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This means that the span of the orthonormal basis elements {|U0k
(1)
j 〉 〈kj |}j=1,...,d in Liouville space

is identical to the span of the orthonormal set {Ū (1)
m }m=0,...,d−1. As a result, there exists a unitary

transformation between them which means that the unitary transformation between the process

matrices ξ and η has block structure. This block unitary transformation preserves the trace of the

corresponding blocks of the process matrix, hence the partial coefficient sums of the process matrices∑d
j=1 η

jj
jj and

∑d−1
j=0 ξjj need to be identical. This proves Eq. (A.36) and we can slightly rewrite it

to obtain

F1 =
1

d
ξ00 +

1

d

d−1∑
i=1

ξii , (A.37)

Analogously, one obtains the following equation for the second classical fidelity,

F2 =
1

d
ξ00 +

1

d

2(d−1)∑
i=d

ξii . (A.38)

Due to the properties of the matrix χ (namely positivity) it follows immediately that

F1 ≥
1

d
ξ00 andF2 ≥

1

d
ξ00 (A.39)

as well as (using trace d of χ combined with positivity),

F1 + F2 =
2

d
ξ00 +

1

d

2(d−1)∑
i=1

ξii =
1

d
ξ00 +

1

d

ξ00 +

2(d−1)∑
i=1

ξii

 ≤ 1

d
ξ00 + 1 ,

⇐⇒ F1 + F2 − 1 ≤ 1

d
ξ00 , (A.40)

such that with Eq. (A.35) the following bound can be formed,

F1 + F2 − 1 ≤ Fpro ≤ min (F1, F2) ,

which is equivalent to the bound in Eq. (4.38) for the specific construction used by Hofmann.

A.7 Monte Carlo Certification for General Operator Bases

In this subsection we will discuss Monte Carlo certification of unitary dynamical maps for a general

(not necessarily Hermitian) choice of the measurement basis, following the derivations in Refs. [59,60]

where a similar calculation for a Hermitian measurement basis has been performed.

Analogously to Eq. (4.45) we will introduce the quantities,

αik =
1

d
Tr
[
D (Wi)

†
Wk

]
, (A.41a)

βik =
1

d
Tr
[
UW †i U

†Wk

]
, (A.41b)
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for an orthogonal set of Liouville space operators {Wk}k=1,...,d2 fulfilling

Tr
(
W †kWk

)
= d .

In general, αik and βik are complex; they are real only if Wk is Hermitian. The process fidelity can

be expressed in terms of αik and βik,

Fpro =
1

d2

∑
i,k

αikβ
∗
ik =

∑
i,k

|βik|2
d2

αik
βik

=
∑
i,k

Pr (i, k)
αik
βik

, (A.42)

with the real-valued relevance distribution,

Pr (i, k) =
|βik|2
d2

. (A.43)

Note that if U0 is a (generalised) Clifford gate and the {Wk} are chosen to be (generalised) Pauli

operators, then for any i there is only a single k such that βik 6= 0, taking the value 1
d2 . This is

because a (generalised) Clifford gate maps a (generalised) Pauli operator to another generalised Pauli

operator. For Monte Carlo sampling we define now the complex random variable X on the event

space given by the set of tuples (i, k),

X (i, k) =
αik
βik

. (A.44)

It is easy to see that the expectation value of this random variable corresponds to Fpro,

E (X (i, k)) =
∑
i,k

Pr (i, k)
αik
βik

= Fpro . (A.45)

The Monte Carlo approach seeks an estimate of Fpro with additive error ε and failure probability

δ. In other words, one wants to find an estimator Y such that the likelihood that this estimator Y

is greater or equal ε away from the fidelity Fpro to be less or equal δ,

Pr [|Y − Fpro| ≥ ε] ≤ δ . (A.46)

The complex version of Chebyshev’s inequality [221] states that, ∀t > 0 and each complex random

variable Z with expectation value µ, the following relation is fulfilled

Pr [|Z − µ| ≥ t |µ|] ≤ E (ZZ∗)− E (Z)E (Z∗)

t2 |µ|2
. (A.47)

Mapping t > 0 onto t |µ| ≡ κ > 0 leads to

Pr [|Z − µ| ≥ κ] ≤ E (ZZ∗)− E (Z)E (Z∗)

κ2
. (A.48)
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Now one just needs to find a suitable estimator Y and calculate its expectation value and variance.

To this end, set the number of draws L from the event space given by the tuples (i, k) to L = d 1
ε2δ e

where d·e is the ceiling, i.e. rounding up to the nearest integer. Choosing independently some events

(i1, k1), . . . , (iL, kL) out of the total event space yields independent estimates X1 =
αi1k1

βi1k1
, . . . , XL =

αiLkL
βiLkL

. Now define Y = 1
L

∑L
l=1Xl. We explain how to estimate Y which in turn is an approximation

to Fpro.

Consider the choice of (il, kl) with l = 1, . . . , L chosen as explained above and il denoting the

index of the input operator of the l-th measurement by kl the index of the measured operator of

the l-th measurement. For each l the operator Wkl will be measured on the state that is obtained

by sending a randomly drawn eigenstate |φila 〉 of Wil with corresponding eigenvalue λila through the

device (a is drawn out of the set {1, . . . , d}). This is repeated a total number of ml times where

ml =

⌈
4

|βilkl |2 Lε2
log

(
4

δ

)⌉
. (A.49)

This choice of ml guarantees that Eq. (A.46) is fulfilled as we show below. Note that each measure-

ment gives an eigenvalue of the operator Wkl . We denote these, in general complex, measurement

results by wln with n referring to the n-th repetition of the l-th measurement. Each of these measure-

ments results in an eigenvalue wln ∈ spec (Wk). We assume the expectation value of a measurement

of an operator Wkl for a state ρ to be given by

〈Wkl〉ρ = Tr
[
ρ†Wkl

]
= Tr [ρWkl ]

also for non-Hermitian operators. Let us define now Aln = (λilan)∗wln where λilan is the eigenvalue

corresponding to the eigenstate |φilan〉 of the operator Wil . Note that

E (Aln) =
1

d

d∑
an=1

(
λilan
)∗
wln

=
1

d

d∑
an=1

(
λilan
)∗

Tr
[
D
(∣∣φilan〉 〈φilan∣∣)†Wkl

]

=
1

d

d∑
an=1

Tr
[(
λilan
)∗D (∣∣φilan〉 〈φilan∣∣)†Wkl

]

=
1

d
Tr

D( d∑
an=1

λilan
∣∣φilan〉 〈φilan∣∣

)†
Wkl


=

1

d
Tr
[
D (Wil)

†
Wkl

]
= αilkl . (A.50)

Estimators corresponding to Xl, denoted by X̃l, can now be introduced,

X̃l =
1

βilkl
· 1

ml

ml∑
n=1

Aln . (A.51)
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Since E(Bln) ≡ 〈Aln〉 = αilkl , it is clear that 1
ml

∑ml
n=1Aln → αilkl .

For the final step in the Monte Carlo estimation, let

Ỹ =
1

L

L∑
l=1

X̃l . (A.52)

Just like X̃l is an approximation to Xl, Ỹ is an approximation to Y or in other words an estimate

for Y . The goal is to fulfil Hoeffding’s inequality, which we prove below,

Pr
[∣∣∣Ỹ − Y ∣∣∣ ≥ ε] ≤ δ . (A.53)

The whole procedure uses the channel a total number of m =
∑L
l=1ml times. This value in estimation

can be bounded by calculating E(ml) which is the expected number of experimental repetitions for

the given setting (il, kl). In other words, E (ml) is the number of experiments one has to perform

for a setting (i, k) multiplied by the probability that this setting is chosen. Denoting by ml (i, k) the

number of experiments for the tuple (i, k), given by Eq. (A.49), the expectation value becomes

E (ml) =
∑
ik

Pr (i, k)ml (i, k)

=
1

d2

∑
ik

|βik|2
⌈

4

|βik|2 Lε2
log

(
4

δ

)⌉
(A.54)

≤ 1 +
4d2

Lε2
log

(
4

δ

)
, (A.55)

where 1 accounts for the fact that the smallest integer greater than the expression in the ceiling d·e
is taken. The total number of experiments given by the sum of all ml is found to be

E (m) =

L∑
l=1

E (ml) ≤ L ·
[
1 +

4d2

Lε2
log

(
4

δ

)]
≤ 1 +

1

ε2δ
+

4d2

ε2
log

(
4

δ

)
, (A.56)

where the additive 1 appears for the same reason as above. Note that this scales as O(d2).

For (generalised) Clifford gates and (generalised) Pauli measurements, there are only d2 nonvan-

ishing entries the sum in Eq. (A.54) since for each k there exists only one l for which βkl 6= 0. This

leads to

E (ml) ≤ 1 +
4

Lε2
log

(
4

δ

)
(A.57)

and consequently

E (m) ≤ 1 +
1

ε2δ
+

4

ε2
log

(
4

δ

)
, (A.58)

resulting in a scaling of O (1).

Finally we prove validity of Eqs. (A.46) and (A.53). We first consider Eq. (A.46), where the
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numerator of the right hand side of the Chebyshev inequality needs to be estimated for Z = Xl,

E (XlX
∗
l )− E (Xl)E (X∗l ) =

∑
ik

Pr (i, k)
|αik|2

|βik|2
−
∣∣∣∣∣∑
ik

Pr (i, k)
αik
βik

∣∣∣∣∣
2

=
1

d2

∑
ik

|αik|2 − F 2
pro

=
1

d4

∑
ik

〈〈D (Wi) ‖Wk〉〉〈〈Wk‖D (Wi)〉〉 − F 2
pro

=
1

d4

∑
ik

∣∣∣Tr
[
W †kD (Wi)

]∣∣∣2 − F 2
pro . (A.59)

Obviously 0 ≤ Fpro ≤ 1 =⇒ 0 ≤ F 2
pro ≤ 1. The same is true for the first term. This can be seen most

easily in terms of the process matrix, cf. Eq. (4.1). For any operator O, one can write

D (O) =
∑
nm

χnmWmOW
†
n .

Clearly for O = Wi,

D (Wi) =
∑
nm

χnmWmWiW
†
n .

It follows that

∣∣∣Tr
[
W †kD (Wi)

]∣∣∣2 =

∣∣∣∣∣∑
nm

χnmTr
[
W †kWmWiW

†
n

]∣∣∣∣∣
2

≤
∑
nm

|χnm|2
∣∣∣Tr
[
W †kWmWiW

†
n

]∣∣∣2
For fixed i and k, the operator W †kWmWi is proportional to a Pauli operator. Consider the expression

∑
ik

∣∣∣Tr
[
W †kWmWiW

†
n

]∣∣∣2 .
For fixed m,n and a certain i there exists exactly one k such that this is non-zero, namely if and

only if

W †kWmWiW
†
n ∼ 1d . (A.60)

That is,

Wk ∼WmWiW
†
n .

Due to orthonormality of the operator basis, there is only one such k for which this relation can be

fulfilled. For Pauli operators the proportionality constant has modulus 1, hence

∑
ik

∣∣∣Tr
[
W †kWmWiW

†
n

]∣∣∣2 = d2 · d2 = d4 .
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This results in a trace of d for the d2 tuple (i, k) for which relation (A.60) holds. Consequently

1

d4

∑
ik

∣∣∣Tr
[
W †kD (Wi)

]∣∣∣2 ≤∑
ik

|χik|2 .

Due to the Choi-Jamio lkowski isomorphism, the normalised Choi matrix72 corresponds to a density

matrix in the d2-dimensional Hilbert space H⊗H, cf. Sec. 2.7. It can easily be seen that
∑
ik |χik|2

corresponds to the purity of this density matrix which cannot be greater than 1. Therefore

1

d4

∑
ik

∣∣∣Tr
[
W †kD (Wi)

]∣∣∣2 ≤ 1 .

Hence [E (XlX
∗
l )− E (Xl)E (X∗l )] is the difference between two numbers in the interval [0, 1] and

consequently smaller than 1,

E (XlX
∗
l )− E (Xl)E (X∗l ) ≤ 1 .

It follows for Y = 1
L

∑L
l=1Xl that

E (Y Y ∗)− E (Y )E (Y ∗) = E

((
1

L

∑
l

Xl

)(
1

L

∑
l′

X∗l′

))
− E

(
1

L

∑
l

Xl

)
E

(
1

L

∑
l

X∗l

)

=
1

L2

∑
ll′

E (XlX
∗
l′)−

1

L2

∑
ll′

E (Xl)E (X∗l′)

=
1

L2

∑
ll′

[E (XlXl′)− E (Xl)E (X∗l′)] =
1

L2

∑
l

[E (XlXl)− E (Xl)E (X∗l )]

≤ L

L2
=

1

L
,

where use has been made of E (XlXl′) = E (Xl)E (Xl′) for the Xl 6= Xl′ which are uncorrelated.

Chebyshev’s inequality, Eq. (A.47), consequently yields

Pr [|Y − F | ≥ κ] ≤ 1

Lκ2
.

Now set κ =
√

1
Lδ and L = 1

ε2δ to obtain

Pr [|Y − F | ≥ ε] ≤ δ .

To show the validity of Eq. (A.53) we use the complex version of Hoeffding’s inequality [222].

Lemma A.12. Let ~a ∈ Rn and {Xi}i=1,...,N be independent zero-mean complex-valued random

variables with ∀i : |Xi| ≤ ai. Then ∀δ > 0

Pr

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ δ
)
≤ 4 exp

(
− δ2

4
∑n
i=1 |ai|

2

)
. (A.61)

72Note that due to the lack of normalisation of the {Wk}, the Choi matrix is actually normalised in this calculation.
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Corollary A.13. Let ~a ∈ Rn and {Xi}i=1,...,N be independent complex-valued random variables with

mean value
∑N
i=1 〈Xi〉 = 〈X〉 where X =

∑N
i=1Xi and ∀i : |Xi − 〈Xi〉| ≤ ai. Then ∀δ > 0

Pr (|X − 〈X〉| ≥ δ) ≤ 4 exp

(
− δ2

4
∑n
i=1 |ai|

2

)
. (A.62)

Proof. Apply Hoeffding’s inequality to the random variables Xi − 〈Xi〉.

Specifically this means for δ > 0, n = L and Ỹ = 1
L

∑L
l=1 X̃l with 〈Ỹ 〉 = 1

L

∑L
l=1〈X̃l〉 =

1
L

∑L
l=1Xl = Y . Note furthermore that the X̃l themselves are composed of a sum of indepen-

dent random variables Aln corresponding to measurement results with modulus smaller than 1 and

expectation value with modulus smaller than 1. As such we can write

Pr
[∣∣∣Ỹ − Y ∣∣∣ ≥ ε] ≤ 4 exp

(
−4ε2

C

)
, (A.63)

where

C =

L∑
l=1

1

L
ml |2cl|2 , cl =

1

mlβilkl
(A.64)

since the quantity [Aln − 〈Aln〉], as discussed for Eq. (A.51), always takes values with modulus smaller

than 2.

Calculating C leads to

C =

L∑
l=1

4

L2β2
ilkl

ml
=

L∑
l=1

4β2
ilkl

Lε2

4L2β2
ilkl

log
(

4
δ

)
=

L∑
l=1

ε2

L log
(

4
δ

) =
ε2

log
(

4
δ

) . (A.65)

Plugging this into Hoeffding’s inequality yields

Pr
[∣∣∣Ỹ − Y ∣∣∣ ≥ ε] ≤ 4 exp

(
−4ε2

C

)
= 4 exp

(
−4 log

(
4

δ

))
= 4 exp

(
log

(
δ4

256

))
=

δ4

256
≤ δ . (A.66)

Hence the failure probability is ≤ δ, as desired.

A.8 Proper Normalisation of the Relevance Distribution for Reduced Fidelities

Consider an n-qubit Hilbert space H with dimH = 2n = d. In order to prove normalisation of the

relevance distribution Pr(i, k), cf. Eq. (4.53), we first show that

d2∑
k=1

〈ϕi |Wk |ϕj〉 〈ϕn |Wk |ϕm〉 = dδimδjn , (A.67)
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with {|ϕj〉} the canonical basis where Wk is an arbitrary Pauli operator on H. Note that for each

pair |ϕi〉 , |ϕj〉, there are exactly d operators Wk with 〈ϕi|Wk|ϕj〉 6= 0. This is seen easily in the bit

representation (Wk = ω1
k⊗ . . .⊗ωNk ). For the m-th qubit, the scalar product vanishes if there is a bit

flip between the two states at the m-th qubit and ωmk = σ0 or σz. Analogously, the scalar product

vanishes if the m-th qubit has the same value between the two states and ωmk = σx or σy. There are

thus only two choices of Wk for each qubit that lead to a non-zero scalar product. Repeating the

argument over all n qubits gives exactly 2n = d possible operators Wk for which 〈ϕi|Wk|ϕj〉 6= 0.

Consider now 〈ϕi|Wk|ϕj〉 〈ϕn|Wk|ϕm〉 for a certain Wk with |ϕi〉 6= |ϕm〉 and |ϕj〉, |ϕn〉 fixed.

Since |ϕi〉 6= |ϕm〉 there exists a qubit, l, where the two states differ. We differentiate two cases for

this qubit.

1. |ϕj〉 and |ϕi〉 take the same value on the l-th qubit. Then ωlk must be σ0 or σz for

〈ϕi|Wk|ϕj〉 〈ϕn|Wk|ϕm〉 not to vanish. However, there exists an operator Wk′ such that the

contribution of the two operators to the sum, Eq. (A.67),

〈ϕi |Wk |ϕj〉 〈ϕn |Wk |ϕm〉+ 〈ϕi |Wk′ |ϕj〉 〈ϕn |Wk′ |ϕm〉 ,

vanishes. This operator is identical to Wk except that ωlk′ = σ0 if ωlk = σz and vice versa. Then

〈ϕi|Wk′ = −〈ϕi|Wk and Wk′ |ϕm〉 = Wk |ϕm〉 ,

with the minus sign due to σz on the l-th qubit for either Wk or Wk′ .

2. Alternatively, |ϕj〉 and |ϕi〉 take different values on the l-th qubit. Then ωlk must be σx or σy

for 〈ϕi|Wk|ϕj〉 〈ϕn|Wk|ϕm〉 not to vanish. Again, there exists an operator Wk′ such that the

contribution of the two operators to the sum, Eq. (A.67), vanishes. This operator is identical

to Wk except that ωlk′ = σx if ωlk = σy and vice versa. If |ϕli〉 = |1〉 (and thus |ϕlm〉 = |0〉),

〈ϕi|Wk′ = −i 〈ϕi|Wk and Wk′ |ϕm〉 = −iWk |ϕm〉 .

Otherwise, if |ϕli〉 = |0〉 (and thus |ϕlm〉 = |1〉),

〈ϕi|Wk′ = i 〈ϕi|Wk and Wk′ |ϕm〉 = iWk |ϕm〉 .

In both cases, the terms in the sum cancel.

Consequently, for each Wk and |ϕi〉 , |ϕj〉 , |ϕm〉 , |ϕn〉 with |ϕi〉 6= |ϕj〉 there exists a “pair operator”

Wk′ which cancels the contribution of Wk to Eq. (A.67) such that
∑d2

k=1 〈ϕi|Wk|ϕj〉 〈ϕn|Wk|ϕm〉 = 0

if |ϕi〉 6= |ϕm〉. Repeating the argument for |ϕj〉 6= |ϕn〉 leads to

d2∑
k=1

〈ϕi |Wk |ϕj〉 〈ϕn |Wk |ϕm〉 = δimδjn

d2∑
k=1

〈ϕi |Wk |ϕj〉 〈ϕn |Wk |ϕm〉

= δimδjn

d2∑
k=1

|〈ϕi |Wk |ϕj〉|2 ,
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using Hermiticity of Wk in the last step. Now, validity of Eq. (A.67) follows simply from the fact

that there exist, for each pair |ϕi〉 , |ϕj〉, exactly d operators Wk with non-vanishing 〈ϕi|Wk|ϕj〉, and,

in the canonical basis, these matrix elements are equal to one.

Expanding a general vector |Φ〉 in the canonical basis and using Eq. (A.67), we find our second

intermediate result,

d2∑
k=1

|〈Φ |Wk |Φ〉|2 =
d2∑
k=1

∣∣∣∣∣∣
d∑

i,j=1

c∗i cj 〈ϕi |Wk |ϕj〉

∣∣∣∣∣∣
2

=
d2∑
k=1

d∑
i,j,n,m=1

c∗i cjc
∗
ncm 〈ϕi |Wk |ϕj〉 〈ϕn |Wk |ϕm〉

=
d∑

i,j,n,m=1

c∗i cjc
∗
ncmdδimδjn = d

(
d∑
i=1

|ci|2
)

= d . (A.68)

It is now straightforward to prove normalisation of Pr(i, k), starting from the definition

Pr(i, k) =
1

dI
|αik|2 =

1

dI

∣∣∣Tr
[
U0PiU

†
0Wk

]∣∣∣2 .
Writing Pi = |ψi〉 〈ψi| we obtain when evaluating the trace in some orthonormal basis {|ψn〉} con-

taining |ψi〉 as one element

I∑
i=1

d2∑
k=1

Pr(i, k) =
1

dI

I∑
i=1

d2∑
k=1

∣∣∣∣Tr
[
U0PiU

†
0Wk

] ∣∣∣∣2

=
1

dI

I∑
i=1

d2∑
k=1

d∑
n,m=1

〈ψn|UWkU
†|ψi〉〈ψi|ψn〉〈ψm|ψi〉〈ψi|U†WkU |ψm〉

=
1

dI

I∑
i=1

d2∑
k=1

〈ψi|UWkU
†|ψi〉〈ψi|U†WkU |ψi〉 =

1

dI

I∑
i=1

d = 1 , (A.69)

where we have used Eq. (A.68) in the last line with |Φ〉 = U |ψi〉.

A.9 Bounded Variance for the Random Variables Involved in Reduced Fidelities

Consider an n-qubit Hilbert space H with dimH = 2n = d. Xl, the random variable of the top

level of sampling in the Monte Carlo estimation of arithmetic means of pure state fidelities, has been

defined in Appendix A.7 as the ratio of the measurement outcomes for the actual dynamical map

and the ideal unitary dynamical map,

Xl =
βilkl
αilkl

. (A.70)
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In analogy to the discussion in Sec. A.6 we will show that the variance of each Xl is not too large,

Var (Xl) = E
(
X2
l

)
− E (Xl)

2
=

I∑
i=1

d2∑
k=1

Pr (i, k)

(
βilkl
αilkl

)2

−

 I∑
i=1

d2∑
k=1

Pr (i, k)
βilkl
αilkl

2

=
1

dI

I∑
i=1

d2∑
k=1

β2
ilkl
− 1

dI

[
I∑
i=1

Tr
[
UPiU

+D (Pi)
]]2

=
1

dI

I∑
i=1

d2∑
k=1

∣∣∣∣Tr [WkD (Pi)]

∣∣∣∣2 − F 2 , (A.71)

with F being the fidelity from Eq. (4.51). Since 0 ≤ F ≤ 1 it follows that 0 ≤ F 2 ≤ 1. The same

is true for the first term. This can be seen as follows. Each term D (Pi) can be written as a density

matrix ρi,

D (Pi) = ρi =

d∑
n=1

λ(i)
n |φ(i)

n 〉〈φ(i)
n | ,

with eigenvectors |φ(i)
n 〉 and eigenvalues λ

(i)
n . Evaluating the trace for each i in the corresponding

eigenbasis yields

1

dI

I∑
i=1

d2∑
k=1

∣∣∣∣Tr [WkD (Pi)]

∣∣∣∣2 =
1

dI

I∑
i=1

d2∑
k=1

∣∣∣∣∣
d∑

n,m=1

〈φ(i)
m |Wkλ

(i)
n |φ(i)

n 〉〈φ(i)
n |φ(i)

m 〉
∣∣∣∣∣
2

=
1

dI

I∑
i=1

d2∑
k=1

∣∣∣∣∣
d∑

n=1

〈φ(i)
n |Wkλ

(i)
n |φ(i)

n 〉
∣∣∣∣∣
2

≤ 1

dI

d∑
i=1

d∑
n=1

(
λ(i)
n

)2 d2∑
k=1

∣∣∣〈φ(i)
n |Wk|φ(i)

n 〉
∣∣∣2 .

Using Eq. (A.68) from Appendix A.8 with |Φ〉 = |φ(i)
n 〉 and Tr

[
ρ2
i

]
=
∑d
n=1(λ

(i)
n )2 ≤ 1, we obtain

1

dI

I∑
i=1

d2∑
k=1

|Tr [WkD (Pi)]|2 ≤
1

I

I∑
i=1

d∑
n=1

(
λ(i)
n

)2

≤ 1

d

d∑
i=1

1 = 1 . (A.72)

Hence Var (Xl) is the difference between two numbers in the interval [0, 1] and therefore ≤ 1.
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B Optimal Measurement Bases for MC Certification

Before we begin with the construction of optimal measurement basis sets for a qupit Hilbert space,

we will first introduce two lemmas.

Lemma B.1. Let p ∈ N be prime. The only solution of

p−1∑
s=0

cse
i 2πs
p = 0 (B.1)

for cs ∈ N0 under the additional constraint
∑p−1
s=0 cs = p is cs = 1 for all s.

Proof. We use the fact that ei
2πs
p is a p-th root of unity for all s and then apply a theorem of Ref. [223]

about sums over roots of unity. Abbreviating ei
2π
p = ω, Eq. (B.1) becomes

p−1∑
s=0

csω
s = 0 . (B.2)

Since all cs are non-negative integers, this can be rewritten as

p−1∑
t=0

Ωt = 0 , (B.3)

where Ωt is a p-th root of unity. We absorbed the integer values of cs into the Ωt by allowing for

repetitions in the sum. So for example if a cs was greater than one, there would be multiple indices t

in Eq. (B.3) with Ωt = ωs. Furthermore, some cs could be zero which means that the corresponding

root of unity ωs does not appear in the set of Ωt. Note furthermore that since we know that the cs

sum up to p, the sum in Eq. (B.3) indeed has p− 1 elements.

Consider now the general situation of sums over p-th roots of unity with an arbitrary number of

summands, n. As in Eq. (B.3), the same root of unity may appear multiple times. Lam and Leung

showed [223] that if p is prime, such a sum can only be equal to zero if n is equal to a multiple of p.

As a consequence there exists no proper subsum of the sum in Eq. (B.3) that goes to zero by itself.

This property is called minimal. Moreover, Corollary 3.4. from Ref. [223] implies that for p prime

the only minimal vanishing sum of p roots of unity, including repetitions, is given by

p−1∑
t=0

ωt = ei
2πt
p = 0 . (B.4)

This translates into the sum in Eq. (B.3) having no repetitions and every root of unity appears

exactly once. Consequently, cs = 1 in for all s in Eq. (B.1) and the statement is proven.

Lemma B.2. The p× p matrices given by the matrix elements

(
U b
)
ik

= δk,(i−1)·b⊕1 , (B.5)

for b = 2, . . . , p− 1 with ⊕ denoting modulo p addition, are unitary and contain on each (secondary)
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diagonal only one entry equal to one.

Proof. For simplicity we use normal addition symbols but all algebraic manipulations are to be

understood modulo p. We first note that each (secondary) diagonal contains only one entry equal

to one with all others being zero. Consider a fixed b and a fixed diagonal t. An element on this

(secondary) diagonal, (U b)i,i+t with i = 1, . . . , p, is non-zero according to Eq. (B.5) if and only if

δi+t,(i−1)·b+1 = 1. To prove that, given b and t, there is exactly one i for which this can happen, we

consider the solutions of the equation

(i− 1) · (b− 1) = t , (B.6)

which follows directly from (i− 1) · b+ 1 = i+ t. If we keep b fixed, showing that for each t there is

one i for which Eq. (B.6) is fulfilled is equivalent to showing that for each i there is exactly one t for

which Eq. (B.6) is fulfilled, i.e. t(i) is bijective. Then in each row a different diagonal acquires the

value 1. Since the map t(i) maps the finite set {1, . . . , p} onto itself, injectivity implies surjectivity.

Hence we only need to prove that t(i) is injective.

To do this, we need to find out how many solutions i are allowed for Eq. (B.6) with t ∈
{0, . . . , p− 1}. At least one solution to Eq. (B.6) must exist since by construction of Ub, there

is one entry equal to 1 on each row. According to the rules of modulo algebra, if one solution exists,

then there are g solutions with g = gcd (b− 1, p) where gcd denoting the greatest common divisor.

Since b < p and p is a prime number, g = 1 and there exists only one solution. This proves injectivity

of t(i). Therefore the map t(i) is bijective and so is i(t) which implies that the construction of Ub,

Eq. (B.5), indeed fulfils the condition of exactly one entry equal to 1 on each (secondary) diagonal.

Next we show unitarity of Ub. By construction, there exists exactly one entry equal to 1 in each

row. It remains to be shown that in each column there exists also only one entry equal to 1. Unitarity

of Ub then follows immediately.

Let us consider for fixed b a column k. According to Eq. (B.5), an entry in the i-th row is non-zero

if and only if δk,(i−1)·b+1 = 1. To show that for fixed b and k there is exactly one i for which this can

happen, we consider the solutions of the equation

(i− 1) · b+ 1 = k . (B.7)

Eq. (B.7) defines a map k(i). Showing that k(i) is bijective implies that for each k there exists only

one i as a solution and vice versa, i.e. for each column there is only one row with an entry equal to

1. Employing the same argument as above, there exist g solutions to Eq. (B.7) with g = gcd (b, p)

and, since b < p and p is prime, g = 1 and there exists only one solution. As a consequence the map

k(i) is bijective and so is the map i(k), i.e. the Ub constructed according to Eq. (B.5) are indeed

unitary.

We can now turn to constructing optimal measurement basis sets for qupit Hilbert spaces,

i.e. Hilbert spaces of dimension p with p prime. Correspondingly, we define the set of efficiently

characterisable unitaries UM by the property that for all U ∈ UM and Mi ∈ M there exists a

Mj ∈ M such that UMiU
† = eiφiMj with φi ∈ R some phase. This property guarantees a rele-

vance distribution for the Monte Carlo sampling with p2 non-vanishing entries which is the minimal

amount [75]. Furthermore, these entries all have equal magnitude.
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We define an operator basis setM to be optimal,M?, if |UM| = umax where umax = maxM′ |UM′ |
and |·| denotes the cardinality of a set. That is to say that an operator basis M is optimal if the

number of unitaries that map the basis onto itself is maximal amongst all possible operator bases.

The map here is to be understood as the conjugation U : M 7→ UMU†.

B.1 Spectrum of the Basis Operators

Completeness of the operator basis implies that the set M contains p2 elements. We include the

identity inM since 1p is mapped onto itself by all unitaries. This provides a good starting point for

the construction ofM? which requires all Mi to be mapped to some Mj ∈M? by as many unitaries

as possible. We can thus restrict the following discussion to the d2 − 1 traceless operators in M.

Tracelessness of the remaining operators M1,M2, . . . ,Mp2−1 in M follows from their orthogonality

to the identity. We denote this set by M̃, i.e. M̃ =M\ 1p.
By assumption, M1 ∈ M̃ is mapped to some Mj ∈ M̃ for any unitary U ∈ UM, i.e. UM1U

† =

eiφ1Mj with φ1 a phase. Mj can either be M1 itself, and we speak of a cycle of degree 1, or some

other element of M̃. In the latter case, we take j = 2 without loss of generality. Applying the map

to M2, UM2U
† = UUM1U

†U† = U2M1

(
U†
)2

yields either a result proportional to M1, in which

case we have a cycle of degree 2, or a result proportional to another Mj for which we can set j = 3.

Note that the outcome of UM2U
† cannot be M2 if M2 = UM1U

† due to the bijectivity of rotations.

The cycle will necessarily be closed after a number of repeated applications of the map since this

always leads to an element of M̃, and there are only p2 − 1 elements in M̃. We define the cycle to

be of degree n on the set M̃ if UnM1

(
U†
)n

= eiφnM1 with n ≤ p2 − 1 and φn a phase.

An iterative argument shows that every operator M in the set M̃ is contained in at least one

cycle. To see this, choose the lowest i such that Mi is not contained in a previously considered cycle

and apply U repeatedly on Mi until UnMi

(
U†
)n

= eiφnMi. This procedure can be repeated until

the complete set M̃ is exhausted. In fact, for a specific U ∈ UM, every operator M ∈ M̃ appears

exactly once in all the cycles generated by this U . As a consequence, the sum over the degrees of

all cycles generated by U needs to be p2 − 1. This can be seen follows: Since rotations are bijective,

U : Mi 7→ UMiU
† = eiφiMj induces a mapping between the integers i and j which is also bijective.

Therefore each i can also only occur in one cycle. The degree of a cycle measures how many indices

i are present in this cycle. Since the total number of indices is p2 − 1, summing over the degrees of

all cycles must amount to p2 − 1. The two extreme cases are that there are p2 − 1 cycles of degree 1

(e.g. when U is the identity) or that there is one cycle of degree p2 − 1.

For the operator basis to be optimal, the unitary mappings on M̃ should allow for arbitrary

cycle structures, i.e. cycles of degree 1, a single cycle of degree p2 − 1, and anything in between.

This guarantees that the number of unitaries in UM is not limited by the cycle structure. While

we do not prove this to be a strict requirement on the optimal set, it represents a very reasonable

assumption in terms of avoiding unnecessary restrictions on the unitaries that map the operator basis

onto itself. Specifically, for a cycle of degree p2 − 1 to exist, all operators in the set M̃ must have

the same spectrum73. This is due to all elements in this cycle emerging from one another by unitary

transformation which leaves the spectrum invariant. The requirement of an identical spectrum for

73There is always the freedom of a global phase on the spectrum of each measurement operator. It does not influence the
relevance distribution and thus does not affect the property of efficient characterisability in any Monte Carlo protocol. For this
reason we set the global phase to zero. Our term “the same spectrum” therefore corresponds to, strictly speaking, “the same
spectrum up to a global phase”.
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all Mi ∈ M̃? automatically also allows for the existence of cycles of all other degrees. We denote the

spectrum of the operators in the set M̃ by spec(M̃).

The condition of an identical spectrum together with the property that the operator basis is

mapped onto itself by U ∈ UM implies that the eigenvalues must form a closed cycle: From UMiU
† =

eiφiMj it follows that the spectrum needs to obey the condition eiφispec(Mj) = spec(Mj), i.e. if

λ ∈ spec(M̃?) then eiφiλ ∈ spec(M̃?). Multiplication by a complex number eiφi corresponds to

rotating the eigenvalue by an angle φi in the complex plane. Unless φi is a multiple of 2π, a new

eigenvalue µ = eiφiλ is obtained. Each application of U thus rotates an eigenvalue onto the next

one until the cycle is closed. The degree of the cycle on the eigenvalues can be at most p since the

operators in M̃ can at most have p distinct eigenvalues. Similarly to asking above for the existence

of operator cycles of all degrees, asking for the longest eigenvalue cycle ensures that the number of

unitaries in UM is not unnecessarily restricted. This implies
(
eiφi

)p
= 1, i.e. the smallest possible

rotation angle between two distinct eigenvalues is φi = 2π
p . As a consequence the spectrum in polar

representation λi = rie
iφi needs to fulfil ri = r = const. and φi = 2πk

p + φ0 with φ0 arbitrary such

that any rotation by 2π
p leaves the spectrum invariant. The normalisation condition on the operator

basis M yields r = 1. Since a global phase on the spectrum is physically irrelevant we can choose

φ0 = 0. To summarise, for an operator basis M not to restrict the number of unitaries that mapM
onto itself, the spectrum is identical for all M ∈ M \ 1p and p-nary, i.e. it consists of the p-th roots

of unity,

spec (M?) =
{
λk = ei

2πk
p | k = 0, . . . , p− 1

}
. (B.8)

In particular, this requires all measurement operators in M to be unitary. As can be seen from

Eq. (B.8), the operators in M? cannot be unitary and Hermitian at the same time for p > 2.

B.2 Eigenbases of the Basis Operators

In the previous section, we have used the transformation of the operators M ∈ M under a special

class of rotations together with the requirement not to restrict the number of unitaries in this class

to derive the spectral properties of the operator basis. We can now use orthogonality of the operator

basis,

Tr
[
MaM

†
b

]
= δab ∀Ma,Mb ∈M , (B.9)

to obtain information about the eigenbases of the operators in M74. Since any orthogonal basis of

the underlying Hilbert space is an eigenbasis of the identity, i.e. the eigenbasis of 1p is undetermined,

we only consider the p2 − 1 traceless operators in M̃ =M\ 1p.
We order the eigensystem according to the complex phase in the spectrum, Eq. (B.8), i.e. λk =

ei
2πk
d for k = 0, . . . , p − 1 and consider two distinct arbitrary measurement operators Ma and Mb,

a 6= b, with corresponding eigenbases {|ψak〉}k=1,...,p and
{
|ψbk〉

}
k=1,...,p

. Employing a spectral decom-

position, Ma =
∑
k λk |ψak〉 〈ψak |, and expanding the trace in Eq. (B.9) in the eigenbasis of Ma, we

obtain

Tr
[
MaM

†
b

]
=

∑
klm

λkλ
∗
l 〈ψam |ψak〉

〈
ψak
∣∣ψbl 〉 〈ψbl ∣∣ψam〉 =

∑
kl

λkλ
∗
l

∣∣〈ψak ∣∣ψbl 〉∣∣2 = 0 .

74 To be precise, the two properties that we have not yet exploited are orthogonality and completeness. However, completeness
immediately follows from orthogonality and the fact that M contains (by definition) p2 elements.
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Inserting the ordered eigenvalues yields for the trace

Tr
[
MaM

†
b

]
=

∑
kl

ei
2πk
p e−i

2πl
p

∣∣〈ψak ∣∣ψbl 〉∣∣2 =
∑
kl

ei
2π(k−l)

p

∣∣〈ψak ∣∣ψbl 〉∣∣2
=

∑
s

ei
2πs
p

∑
k

∣∣〈ψak⊕s ∣∣ψbk〉∣∣2 , (B.10)

where in the last step we have shifted the index s to run from 0 to p−1 and ⊕ denotes addition modulo

d corresponding to the group Zp on the eigenbasis indices. Equation (B.10) can be interpreted as a

change of basis between the eigenbases of Ma and Mb,

Uab =
∑
k

∣∣ψbk〉 〈ψak | , (B.11)

together with a right-shift by s in the eigenbasis of Ma,

Sa (s) =
∑
k

∣∣ψak⊕s〉 〈ψak | . (B.12)

With the definitions of Eq. (B.12), we can rewrite the orthogonality condition as

Tr
[
MaM

†
b

]
=

∑
s

ei
2πs
p

∑
k

∣∣〈ψak ∣∣Sa (s)Uab
∣∣ψak〉∣∣2 = 0 . (B.13)

To derive from Eq. (B.13) requirements that the operator eigenbases of operators in the optimal set

M? must meet, we first assume Ma and Mb to commute and analyse the case of non-commuting

operators afterwards.

We first show that a change of basis Uab between the eigenbases of two measurement operators

which commute, [Ma,Mb] = 0, is a permutation. Next, we derive, from the spectral properties

obtained in the previous section, the structure of the matrix Uab. The corresponding constraints

allow for the existence of only p − 2 such permutation operators. This implies that there are p

orthogonal, pairwise commuting measurement operators with their spectrum given by Eq. (B.8),

namely Ma plus the p− 2 operators obtained by applying Uab to Ma plus identity.

Due to the spectral condition, Eq. (B.8), all operators in M̃ are non-degenerate. This together

with the assumption of commutativity implies that for each index k enumerating the eigenbasis of

Ma there exists an index l enumerating the eigenbasis of Mb such that |ψak〉 = |ψbl 〉 and the mapping

between k and l is bijective. That is to say that the eigenbases of Ma and Mb are the same up to

reordering which means that certain eigenvectors can correspond to different eigenvalues. In this

case, the change of basis Uab between the eigenbases of Ma and Mb, defined by Eq. (B.11), is a

permutation operator.

In the eigenbasis of Ma, the matrix elements of Uab are either zero or one and the total number of

one’s is p. Sa (s) is also a permutation operator which shifts the columns of Uab in this representation

by s to the right. This means that for all s, the sum over k in Eq. (B.13) is a non-negative integer,∑
k

∣∣〈ψak ∣∣Sa (s)Uab
∣∣ψak〉∣∣2 = cs . (B.14)
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Since Uab and Sa (s) are both permutation operators, so is their product, P ab(s) = Sa (s)Uab. Note

that Sa(s = 0) = 1p, and c0 is given by the sum over the diagonal elements squared of Uab. For s = 1,

all columns of Uab are shifted to the right by one, i.e. the first upper diagonal of Uab becomes the

diagonal of P ab, and the sum over its elements squared yields c1. In other words, each cs corresponds

to the sum over the diagonal of P ab(s), that is the s-th secondary diagonal of Uab, and thus takes

a value between 0 and p. Due to orthogonality of the operator basis, Eq. (B.13), the set of integers

{cs}s=0,...,p−1 has to fulfil the condition

p−1∑
s=0

cse
i 2πs
p = 0 . (B.15)

Note that,
∑p−1
s=0 cs = p since summing over all cs corresponds to summing over all elements squared

of P ab(s), or Uab. According to Lemma B.1 for p prime no linear combination with non-negative

integers cs can exist that makes the sum go to zero except if cs = 1 for all s.

Since cs corresponds to the sum over the s-th secondary diagonal of Uab, we have thus restricted

all possible matrices Uab for a change of basis between the eigenbases of commuting measurement

operators Ma,Mb ∈ M̃ to those that contain exactly one entry equal to one on each (secondary)

diagonal with all other entries being zero. In addition, each row and each column of Uab also contains

exactly one entry equal to one with all other entries being zero since Uab is a permutation operator.

We now show that under these constraints there exist p− 2 distinct permutation operators Uab,

demonstrating first how one can construct p−2 such unitaries and then proving in a second step that

these are indeed all unitaries that fulfil the given constraints. In order to construct the p−2 matrices

Uab for a change of basis, we reorder the eigenbases of Ma and Mb such that the main diagonal always

contains one as its first entry for all b: (Uab)11 = 1, (Uab)ii = 0 for i = 2, . . . , p. This reordering

does not interfere with ordering the eigenbases of Ma and Mb in terms of the eigenvalues, Eq. (B.8),

since Ma and Mb can be multiplied by ei
2πt
p for some t without changing the orthogonality condition.

This multiplication performs exactly the shift in the eigenbases required to ensure (Uab)11 = 1 for all

b. In other words: The ordering of the eigenvalues determines the indexing of the eigenbasis of Mb

while now in addition the global phase of Mb is fixed. Then, for p prime, a set of p− 2 permutation

operators that have on each of their diagonals exactly one entry equal to one with all others being

zero and (Uab)11 = 1 is given by

(
Uab

)
ik

= δk,(i−1)·b⊕1 with b = 2, . . . , p− 1 . (B.16)

The construction that leads to Eq. (B.16) proceeds as follows: The first row is given by the assumption

(Uab)11 = 1 for all b. In the second row, (Uab)21 and (Uab)22 need to be zero due to the constraints

of each column and the main diagonal containing exactly one entry equal to one. The smallest j for

which (Uab)2j can be non-zero is thus j = 3. Analogously, in the third row, the smallest entry that

can be non-zero is j = 5 (with j = 4 being excluded by the condition on the first upper diagonal).

This construction is similar to the movement of a knight on a chess board: one step down, two steps

to the right. It is continued until the last row is reached to yield the first Uab (with b set to 2).

The second Uab is obtained by choosing j = 4 in the construction of the second row. This implies

a modified movement of the knight with one step down, b = 3 steps to the right. Once the right
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boundary on the matrix is reached, the movement is simply continued by counting from the left,

as implied by the modulo algebra in Eq. (B.16). For a p × p matrix Uab, there are p − 2 distinct

knight-type movements since in the construction of the second row, (Uab)21 and (Uab)22 are always

fixed and one can choose at most j = p, i.e. move at most p − 1 steps to the right. According

to Lemma B.2, for p prime, the construction rule, Eq. (B.16), yields proper unitary permutation

operators which have on each (secondary) diagonal only one entry equal to one. This holds only

for prime d = p. For non-prime d, the above construction leads to a contradiction to the unitarity

constraint of each column having exactly one entry equal to one with all others being zero.

When applied to Ma, the Uab constructed according to Eq. (B.16) yield p − 2 operators Mb

that are orthogonal to Ma. We now show that Eq. (B.16) represents all the unitaries that fulfil

the constraint of having exactly one entry equal to one on each (secondary) diagonal, i.e. there are

exactly p commuting measurement operators (including identity). As a side result, we obtain that

all Mb obtained from applying the Uab to Ma are not only orthogonal to Ma but also to each other.

The fact that, for p prime, all permutation operators, that have on each of their diagonals exactly

one entry equal to one with all other entries being zero and
(
Uab

)
11

= 1, are given by Eq. (B.16)

and that there are thus p− 2 such unitaries can be seen as follows: Since Uab maps the eigenvectors

of Ma onto the eigenvectors of Mb, it also corresponds to a mapping between the eigenvalues λak and

λbk′ . The fact that we fixed (Uab)11 = 1 together with Eq. (B.8) implies λa0 = λb0 = 1. The other

eigenvalues are redistributed according to λbk = ei
2π
p ·k 7→ λakb = ei

2π
p ·kb where the product kb is to

be understood modulo p. Since the eigenvalue λakb shows up in the spectral decomposition of the b-th

power of Ma,

(Ma)
b

=

(∑
k

ei
2π
p k |ψak〉 〈ψak |

)b
=
∑
k

ei
2π
p kb |ψak〉 〈ψak | , (B.17)

we find

Mb = (Ma)
b

with b = 2, . . . , p− 1 . (B.18)

Moreover, (Ma)
p = 1p since kp = 1 when interpreted modulo p for all k. Then all powers of Ma are

orthonormal since, for all b,

Tr
[
Ma

(
M†a
)b]

= Tr
[
MaM

†
a

(
M†a
)b−1

]
= Tr

[(
M†a
)b−1

]
=

1, if bmod p = 1

0, otherwise
. (B.19)

The last step follows from the fact that M b−1
a has the same spectrum as Ma and is consequently

traceless, unless b− 1 = p where we obtain identity. This is evident from Eq. (B.17). Adjungation of

the operator just returns the complex conjugated result for the trace. Since this result is real in either

case, it is unaffected by adjungation. Finally, the maximal number of commuting, pairwise orthogonal

unitaries Ma defined on a p-dimensional Hilbert space is p. This can be seen by considering their

common eigenbasis {|ψk〉}k=1,...,p. Any linear combination of the commuting, pairwise orthogonal

unitaries Ma also has this eigenbasis. We can thus employ the common eigenbasis to construct a

representation of any operator M with this eigenbasis, M =
∑p−1
k=0 λk |ψk〉 〈ψk|. This is a linear

combination of p orthonormal operators |ψk〉 〈ψk| with coefficients corresponding to the eigenvalues

of M . Consequently, no orthonormal basis of the space of operators with common eigenbasis to Ma

can have more than p elements and as such the maximal number of commuting, pairwise orthogonal
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unitaries Ma is p.

As a corollary, we obtain that the set M̃a = {(Ma)
b}b=1,...,p−1 with the spectrum of all elements

given by Eq. (B.8) together with the identity forms an Abelian group of pairwise orthonormal op-

erators with matrix multiplication as group operation. M̃a contains all the unitaries that share an

eigenbasis with Ma while having the same spectrum as Ma and being pairwise orthogonal.

After constructing p commuting measurement operators from the spectral conditions and ortho-

gonality, we now identify the remaining p2− p measurement operators that are required to complete

the optimal operator basis. Since we have also shown above that there are only p commuting mea-

surement operators, the remaining ones are necessarily non-commuting.

The complete set of measurement operators M̃ is obtained iteratively: That is, one chooses a

starting point, i.e. an operator Ma with spectrum according to Eq. (B.8). Ma defines the commuting

set M̃a with all operators in M̃a given by Eq. (B.18). Next one needs to find another matrix

Ma′ with the same spectrum, Eq. (B.8), but orthogonal to all Ma ∈ M̃a. By construction, Ma′

does not share an eigenbasis with the Ma ∈ M̃a. Rather, it defines, according to Eq. (B.18), its

own set of commuting operators, M̃a′ which, together with the identity, forms another Abelian

group. A constructive method to determine Ma′ is obtained by exploiting mutual unbiasedness of

the eigenbases of the sets M̃a for different a, as we show below. The step of identifying Ma′ and

its commuting set needs to be repeated until p + 1 Abelian groups M̃a ∪ 1p have been found. The

procedure of identifying p+1 sets of p commuting, pairwise orthogonal measurement operators yields,

without double-counting the identity which is an element of all the Abelian groups, p2 orthogonal

measurement operators, i.e. the complete operator basis M.

Clearly, one cannot find more than p+ 1 Abelian groups of orthogonal operators since there exist

only p2 orthogonal operators on a p-dimensional Hilbert space. Note that we know of the existence

of at least one such set of Abelian groups – the generalised Pauli operator basis P and its separation

into mutually commuting subsets, cf. Sec. 4.3.

The existence of p + 1 Abelian groups M̃a ∪ 1p of orthogonal measurement operators is in a

one-to-one correspondence to the existence of p+ 1 mutually unbiased bases [84]. This is easily seen

using the construction from above. The common eigenbasis of M̃a, {|ψak〉}, can be used to construct

an operator basis,

Mau = (Ma)
u

=
∑
k

ei
2π
p uk |ψak〉 〈ψak | .

Projectors can be defined in terms of the operator basis, that is,

P an = |ψan〉 〈ψan| =
1

p

∑
u

e−i
2π
p un (Ma)

u
.

Then, ∣∣〈ψan ∣∣ψbn′〉∣∣2 = Tr
[
P an
(
P bn′
)†]

=
1

p2

∑
uu′

e−i
2π
p (un−u′n′)Tr

[
MauM

†
bu′

]
.

If Ma and Mb are from different Abelian groups, only identity (u = u′ = 0) contributes due to

orthogonality of all other measurement operators. In this case

∣∣〈ψan ∣∣ψbn′〉∣∣2 =
1

p2
Tr [1p] =

1

p
. (B.20)
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If Ma and Mb are from the same set M̃a ∪ 1p, all u = u′ contribute and as a result

|〈ψan |ψan′〉|2 =
1

p2

∑
u

e−i
2π
p u(n−n

′)Tr
[
MauM

†
au

]
=

1

p

∑
u

e−i
2π
p u(n−n

′) = δnn′ .

B.3 Optimal Measurement Bases and Efficiently Characterisable Unitaries

The findings from Secs. B.1 and B.2 allow us to construct the set of measurement operators as

mentioned above. After identifying the first set M̃a of p commuting measurement operators by

picking an Ma and employing Eq. (B.18), a new measurement operator Ma′ is found by choosing its

eigenvectors as a MUB with respect to the eigenbases of M̃a (in the subsequent steps of the iterative

procedure, the eigenvectors have to be mutually unbiased with respect to all previously constructed

sets). The eigenvectors of Ma′ are assigned a spectrum analogously to Eq. (B.17), using Eq. (B.8).

Thus Ma′ and all of its powers form a commuting set with proper spectrum that is orthogonal to all

matrices from M̃a (or, in the subsequent steps of the iterative procedure, to all previously constructed

sets M̃a, M̃a′ , . . .). It is indeed possible to construct a complete basis of measurement operators

with this method since the maximal number of p+ 1 MUB does exist for prime dimension p.

The identification of the eigenbases of the measurement operators with mutually unbiased bases

allows us to determine which unitaries can be efficiently characterised with this operator basis. The

candidate unitaries need to map any measurement operator onto another measurement operator

from the set, modulo a phase corresponding to a p-th root of unity. Consider a specific measurement

operator M from an optimal set M̃?. M is mapped by the candidate unitaries either to the same or

to a different Abelian group in M̃?. Given the spectral decomposition of M in terms of its eigenbasis,

{|ψak〉}, with eigenvalues λa, we can write

UMU† =
∑
a

λaU |ψak〉 〈ψak |U† =
∑
a

λa |Uψak〉 〈Uψak | , (B.21)

which must be equal to M ′ where M ′ ∈ M̃? by definition of U . Since the {|ψak〉} are orthonormal, so

are the {|Uψak〉}; hence they correspond to the eigenbasis of M ′. Consequently, the set {|Uψak〉} must

either be identical to the set {|ψak〉} modulo phase factors on the individual states or correspond to

a basis which is mutually unbiased to {|ψak〉}. Therefore a unitary U is efficiently characterisable if

and only if it keeps the partitioning of the p+ 1 mutually unbiased bases in a Hilbert space of prime

dimension p intact.
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C Controllability for High-Frequency Amplitude Control on a

Phase Qudit

In this section we will analyse the dynamical Lie algebra of the Hamiltonian

H =
∑
n

[
1

2
un |n〉 〈n− 1|+ 1

2
u∗n |n− 1〉 〈n|

]
(C.1)

for un purely imaginary, i.e. we want to find a basis of the Lie algebra spanned by the matrices

hn = |n〉 〈n− 1| − |n− 1〉 〈n| (C.2)

and their commutators.

Since the notation would otherwise get very confusing in the following, we will keep the plus and

minus signs inside kets, bras, and indices as a standard +, respectively −, while using the symbols

⊕, respectively 	, for the matrix operations between dyadic products.

We first calculate the commutators [hm, hn],

[hn, hm] = |n〉 〈n− 1 |m〉 〈m− 1| 	 |n〉 〈n− 1 |m− 1〉 〈m|
	 |n− 1〉 〈n |m〉 |m− 1〉 ⊕ |n− 1〉 〈n |m− 1〉 〈m|
	 |m〉 〈m− 1 |n〉 〈n− 1| ⊕ |m〉 〈m− 1 |n− 1〉 〈n|
⊕ |m− 1〉 〈m |n〉 〈n− 1| 	 |m− 1〉 〈m |n− 1〉 〈n|

= δn−1,m |n〉 〈m− 1| 	 δn,m |n〉 〈m| 	 δn,m |n− 1〉 〈m− 1| ⊕ δn,m−1 |n− 1〉 〈m|
	δn,m−1 |m〉 〈n− 1| ⊕ δn,m |m〉 〈n| ⊕ δn,m |m− 1〉 〈n− 1| 	 δn−1,m |m− 1〉 〈n|

= δn−1,m (|n〉 〈m− 1| 	 |m− 1〉 〈n|)⊕ δn,m−1 (|n− 1〉 〈m| 	 |m〉 〈n− 1|) .

Hence, the only nonvanishing commutators are of the form

[hn−1, hn] = |n− 2〉 〈n| ⊕ |n〉 〈n− 2| ≡ h(2)
n . (C.3)

Defining

h(j)
n ≡ |n− j〉 〈n| ⊕ |n〉 〈n− j| (C.4)
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we can now calculate the remaining commutators,[
h(j)
n , h(k)

m

]
= |n〉 〈n− j |m〉 〈m− k| 	 |n〉 〈n− j |m− k〉 〈m|
	 |n− j〉 〈n |m〉 |m− k〉 ⊕ |n− j〉 〈n |m− k〉 〈m|
	 |m〉 〈m− k |n〉 〈n− j| ⊕ |m〉 〈m− k |n− j〉 〈n|
⊕ |m− k〉 〈m |n〉 〈n− j| 	 |m− k〉 〈m |n− j〉 〈n|

= δn−j,m |n〉 〈m− j| 	 δn−j,m−k |n〉 〈m| 	 δn,m |n− j〉 〈m− k| ⊕ δn,m−k |n− j〉 〈m|
	δn,m−k |m〉 〈n− j| ⊕ δn−j,m−k |m〉 〈n| ⊕ δn,m |m− k〉 〈n− j| 	 δn−j,m |m− k〉 〈n|

= δn−j,m (|n〉 〈m− k| 	 |m− k〉 〈n|)⊕ δn,m−k (|n− j〉 〈m| 	 |m〉 〈n− j|)
	δn−j,m−k (|n〉 〈m| 	 |m〉 〈n|)	 δn,m (|n− j〉 〈m− k| 	 |m− k〉 〈n− j|) .

If n = m and j = k, then the commutator will vanish. Otherwise, since j 6= 0, k 6= 0 only at most one

of the four summands will be non-zero. As a result, these commutators can be written in the form

of a h
(j)
n for j 6= 0. The condition j 6= 0 is due to the fact that any contribution that would lead to a

|n〉 〈n| is immediately cancelled out with another term in the above expression. As a consequence, a

basis of the Lie algebra is given by matrices of the form h
(j)
n in Eq. (C.4) for j 6= 0.
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[216] H. S. Knowles, D. M. Kara, and M. Atatüre. Observing bulk diamond spin coherence in high-

purity nanodiamonds. Nature Materials 13, 21 (2014).



176 References

[217] C. H. Baldwin, A. Kalev, and I. H. Deutsch. Quantum process tomography of unitary and

near-unitary maps. Phys. Rev. A 90, 012110 (2014).

[218] R. Piziak and P. L. Odell. Matrix Theory: From Generalized Inverses to Jordan Form, volume

288 (CRC Press, 2007).

[219] J. Todd. Induced norms. In: Basic Numerical Mathematics, volume 22 of ISNM International

Series of Numerical Mathematics, pp. 19–28 (Birkhäuser Basel, 1977).
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Hilfe Dritter angefertigt und andere als die in der Dissertation angegebenen Hilfsmittel nicht benutzt
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