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Abstract
For target unitary operations which preserve the basis of measurement
operators, the average fidelity of the corresponding N-qubit gate can be
determined efficiently. That is, the number of required experiments is inde-
pendent of system size and the classical computational resources scale only
polynomially in the number N of qubits. Here we address the question of how
to optimally choose the measurement basis for fidelity estimation when
replacing two-level qubits by d-level qudits. We define optimality in terms of
the maximal number of unitaries that preserve the measurement basis. Our
definition allows us to construct the optimal measurement basis in terms of
their spectra and eigenbases: the measurement operators are unitaries with d-
nary spectrum and partition into +d 1 Abelian groups whose eigenbases are
mutually unbiased.

Keywords: quantum process tomography, quantum protocols, qudit operations
PACS numbers: 03.65.Wj, 03.67.Ac

1. Introduction

The development and maintenance of quantum devices requires the capability to verify their
proper functioning. This is quantified by suitable performance measures such as the average
gate fidelity which compares the actual evolution of the quantum system to the desired unitary
[1]. In order to determine the gate fidelity in a given experimental setup, no matter what is the
specific protocol, one needs to define a set, or, more precisely, a complete and orthonormal
basis, of measurement operators [1]. The choice of measurement operators is typically

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor 47 (2014) 385305 (13pp) doi:10.1088/1751-8113/47/38/385305

1751-8113/14/385305+13$33.00 © 2014 IOP Publishing Ltd Printed in the UK 1

mailto:christiane.koch@uni-kassel.de
http://dx.doi.org/10.1088/1751-8113/47/38/385305


dictated by considerations of experimental convenience such as the requirement of local
measurements, in the sense that each operator can be measured in a separable eigenbasis.

Additional considerations become important for certain classes of quantum operations,
namely those that map a suitable basis of measurement operators onto itself, up to a phase
factor. For qubits, Pauli measurements represent such an operator basis. The corresponding
unitary operations are termed Clifford gates; they facilitate fault-tolerant computation [2] and
yield a universal set for quantum computation when augmented by a single non-Clifford gate,
such as a local phasegate [3]. The property of Clifford gates to map the operator basis onto
itself, up to a phase factor, can be exploited to obtain protocols for determining the average
gate fidelity that require a number of experiments that is independent of system size and
classical computational resources that scale only polynomially in the number of information
carriers [4–6].

When replacing two-level qubits by d-level qudits, one is faced with the problem that the
d-dimensional generalizations of the Pauli measurement basis cannot be Hermitian and
unitary at the same time. Qudits have attracted interest in both quantum communication and
quantum computation and often occur naturally, for example in superconducting devices.
Since device characterization is an important prerequisite for any practical application, it is
important to identify the most suitable measurement bases. Different choices exist that cor-
respond to different numbers of unitaries for which efficient characterization is possible [7].
This raises the question of the optimal choice for the measurement basis.

Here we address this question by defining optimality in terms of the maximal number of
unitaries that can be efficiently characterized and use this definition to construct the optimal
measurement basis in terms of their spectra and eigenbases. We find the optimal measurement
basis to consist of unitaries with d-nary spectrum that partition into +d 1 Abelian groups
whose eigenbases are mutually unbiased. Our result motivates the use of the generalized Pauli
group [2, 8] as an optimal measurement basis, not least because of its close connection to
mutually unbiased bases [9–11].

The paper is organized as follows: we first define optimality of an operator basis for
estimating the average fidelity of quantum gates in section 2. In the following, we use this
definition of optimality in sections 3 and 4 to construct the operators that make up the optimal
set in terms of their spectra and eigenbases for the case that the Hilbert space dimension d is a
prime number. The construction will allow us to show that the optimal operator basis consists
of unitaries with d-nary spectrum (i.e., the spectrum is made up of the dth roots of unity) and
partitions into +d( 1) Abelian groups whose eigenbases are mutually unbiased. The latter is
demonstrated in section 5. For the case that d is not prime, we construct the measurement
operators as tensor products and can thus reuse our results obtained for d prime in section 6.
Section 7 concludes.

2. Problem statement

We consider a Hilbert space of dimension p with p prime, that is a qupit Hilbert space. Any
suitable operator basis  defined on this Hilbert space must be complete and orthonormal.
Unitaries that map the operator basis onto itself, up to a phase factor, can be efficiently
characterized, for example, by employing Monte–Carlo estimation of the average fidelity
[4, 5] or by using randomized benchmarking [6]. Here, we take the perspective of Mon-
te–Carlo estimation of the average fidelity [4, 5, 12]. In a nutshell, it consists in rewriting the
average fidelity as expectation value of a random variable which is characterized by a rele-
vance (or probability) distribution, see [7] for a detailed discussion of three different choices

J. Phys. A: Math. Theor 47 (2014) 385305 D M Reich et al

2



of the random variable. The expectation value is evaluated by selecting, according to the
relevance distribution, pairs of input states and measurement operators and carrying out the
respective experiment. Monte–Carlo estimation thus requires classical computational
resources for the selection procedure and a certain number of experiments. While both scale
exponentially in the number of qubits for general unitaries, they become independent of
system size for unitaries which, up to a phase factor, map the operator basis onto
itself [4, 5, 12].

Correspondingly, we define the set of unitaries  by the property that for all ∈ U M

and ∈ Mi there exists a ∈ Mj such that = ϕUM U Mei
i

j
† i with ϕ ∈i some phase. This

property guarantees a relevance distribution for the Monte–Carlo sampling with p2 non-
vanishing entries which is the minimal amount [7]. Furthermore, these entries all have equal
magnitude.

We define an operator basis set  to be optimal, ⋆ , if = umax where

= ′ ′ u maxmax and | · | denotes the cardinality of a set. That is to say that an operator
basis  is optimal if the number of unitaries that map the basis onto itself is maximal
amongst all possible operator bases. The map here is to be understood as the conjuga-
tion ↦U M UMU: †.

3. Spectral properties

Completeness of the operator basis implies that the set  contains p2 elements. We include
the identity in  since  is mapped onto itself by all unitaries. This provides a good starting
point for the construction of ⋆ which requires all Mi to be mapped to some ∈ ⋆Mj by as

many unitaries as possible. We can thus restrict the following discussion to the −d 12

traceless operators in . Tracelessness of the remaining operators … −M M M, , , p1 2 12 in 
follows from their orthogonality to the identity. We denote this set by ̃, i.e., = ⧹ ˜ .

By assumption, ∈ M ˜1 is mapped to some ∈ M ˜j for any unitary ∈ U , i.e.,

= ϕUM U Mei
j1

† 1 with ϕ1 a phase.Mj can either beM1 itself, and we speak of a cycle of degree
1, or some other element of ̃. In the latter case, we take j = 2 without loss of generality.

Applying the map to M2, = = ( )UM U UUM U U U M U2
†

1
† † 2

1
† 2

yields either a result pro-
portional to M1, in which case we have a cycle of degree 2, or a result proportional to another
Mj for which we can set j = 3. Note that the outcome ofUM U2

†cannot be M2 if =M UM U2 1
†

due to the bijectivity of rotations. The cycle will necessarily be closed after a number of
repeated applications of the map since this always leads to an element of ̃, and there are
only −p 12 elements in ̃. We define the cycle to be of degree n on the set ̃ if

= ϕ( )U M U Men n i
1

†
1n with ⩽ −n p 12 and ϕn a phase.

An iterative argument shows that every operator M in the set ̃ is contained in at least
one cycle. To see this, choose the lowest i such that Mi is not contained in a previously
considered cycle and apply U repeatedly onMi until = ϕ( )U M U Men

i
n i

i
† n . This procedure can

be repeated until the complete set ̃ is exhausted. In fact, for a specific ∈ U , every
operator ∈ M ˜ appears exactly once in all the cycles generated by this U. As a con-
sequence, the sum over the degrees of all cycles generated by U needs to be −p 12 . This can
be seen follows: Since rotations are bijective, ↦ = ϕU M UM U M: ei i

i
j

† i induces a mapping
between the integers i and j which is also bijective. Therefore each i can also only occur in
one cycle. The degree of a cycle measures how many indices i are present in this cycle. Since
the total number of indices is −p 12 , summing over the degrees of all cycles must amount to
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−p 12 . The two extreme cases are that there are −p 12 cycles of degree 1 (e.g. when U is
the identity) or that there is one cycle of degree −p 12 .

For the operator basis to be optimal, the unitary mappings on ̃ should allow for
arbitary cycle structures, i.e., cycles of degree 1, a single cycle of degree −p 12 , and
anything in between. This guarantees that the number of unitaries in  is not limited by the
cycle structure. While we do not prove this to be a strict requirement on the optimal set, it
represents a very reasonable assumption in terms of avoiding unnecessary restrictions on the
unitaries that map the operator basis onto itself. Specifically, for a cycle of degree −p 12 to
exist, all operators in the set ̃ must have the same spectrum4. This is due to all elements in
this cycle emerging from one another by unitary transformation which leaves the spectrum
invariant. The requirement of an identical spectrum for all ∈ ⋆M ˜i automatically also
allows for the existence of cycles of all other degrees. We denote the spectrum of the
operators in the set ̃ by ( )spec ˜ .

The condition of an identical spectrum together with the property that the operator basis
is mapped onto itself by ∈ U implies that the eigenvalues must form a closed cycle:

From = ϕUM U Mei
i

j
† i it follows that the spectrum needs to obey the condition

=ϕ ( ) ( )M Me spec speci
j ji , i.e., if λ ∈ ⋆( )spec ˜ then λ ∈ϕ ⋆( )e spec ˜i i . Multiplication

by a complex number ϕei i corresponds to rotating the eigenvalue by an angle ϕi in the
complex plane. Unless ϕi is a multiple of π2 , a new eigenvalue μ λ= ϕei i is obtained. Each
application of U thus rotates an eigenvalue onto the next one until the cycle is closed. The
degree of the cycle on the eigenvalues can be at most p since the operators in ̃ can at most
have p distinct eigenvalues. Similarly to asking above for the existence of operator cycles of
all degrees, asking for the longest eigenvalue cycle ensures that the number of unitaries in 
is not unnecessarily restricted. This implies =ϕ( )e 1i p

i , i.e., the smallest possible rotation

angle between two distinct eigenvalues is ϕ = π
i p

2 . As a consequence the spectrum in polar

representation λ = ϕr ei i
i i needs to fulfill = =r r const.i and ϕ ϕ= +π

i
k

p

2
0 with ϕ0 arbitrary

such that any rotation by π
p

2 leaves the spectrum invariant. The normalization condition on the

operator basis  yields r = 1. Since a global phase on the spectrum is physically irrelevant
we can choose ϕ = 00 .

To summarize, for an operator basis  not to restrict the number of unitaries that map
 onto itself, the spectrum is identical for all ∈ ⧹M and p-nary, i.e., it consists of the pth
roots of unity:

λ= = = … −⋆ π { }( ) k pspec e 0, , 1 . (1)k
i k

p
2

In particular, this requires all measurement operators in ⋆ to be unitary. As can be seen
from equation (1), the operators in ⋆ cannot be unitary and Hermitian at the same time for

>p 2. For a discussion of non-Hermitian, unitary measurements please see [7] and references
therein.

4 There is always the freedom of a global phase on the spectrum of each measurement operator. It does not influence
the relevance distribution and thus does not affect the property of efficient characterizability in any Monte–Carlo
protocol. For this reason we set the global phase to zero. Our term ’the same spectrum’ therefore corresponds to,
strictly speaking, ’the same spectrum up to a global phase’.
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4. Properties of the eigenbases

In the previous section, we have used the transformation of the operators ∈ M under a
special class of rotations together with the requirement not to restrict the number of unitaries
in this class to derive the spectral properties of the operator basis. We can now use ortho-
gonality of the operator basis,

δ= ∀ ∈Tr ⎡⎣ ⎤⎦M M M M, , (2)a b ab a b
†

to obtain information about the eigenbases of the operators in 5. Since any orthogonal basis
of the underlying Hilbert space is an eigenbasis of the identity, i.e., the eigenbasis of  is
undetermined, we only consider the −p 12 traceless operators in = ⧹ ˜ .

We order the eigensystem according to the complex phase in the spectrum, equation (1),
i.e., λ = π

ek
i k

d
2

for = … −k p0, , 1 and consider two distinct arbitary measurement operators
Ma and Mb, ≠a b, with corresponding eigenbases ψ∣ 〉

={ }k
a

k p1 ,...,
and ψ∣ 〉

={ }k
b

k p1 ,...,
.

Employing a spectral decomposition, λ ψ ψ= ∑ ∣ 〉〈 ∣Ma k k k
a

k
a , and expanding the trace in

equation (2) in the eigenbasis of Ma, we obtain

∑ ∑λ λ ψ ψ ψ ψ ψ ψ λ λ ψ ψ= = =Tr ⎡⎣ ⎤⎦M M 0.a b
klm

k l m
a

k
a

k
a

l
b

l
b

m
a

kl

k l k
a

l
b† * *

2

Inserting the ordered eigenvalues yields for the trace

∑ ∑

∑ ∑

ψ ψ ψ ψ

ψ ψ

= =

=

−

⊕

π π π

π

−
Tr ⎡⎣ ⎤⎦M M e e e

e , (3)

a b
kl

i i
k
a

l
b

kl

i
k
a

l
b

s

i

k
k s
a

k
b

† 2 2

2

k
p

l
p

k l
p

s
p

2 2 2 ( )

2

where in the last step we have shifted the index s to run from 0 to −p 1 and ⊕ denotes
addition modulo d corresponding to the group Zp on the eigenbasis indices. Equation (3) can
be interpreted as a change of basis between the eigenbases of Ma and Mb,

∑ ψ ψ=U a, (4 )ab

k
k
b

k
a

together with a right-shift by s in the eigenbasis of Ma,

∑ ψ ψ= ⊕S s b( ) . (4 )a

k
k s
a

k
a

With the definitions of equation (4), we can rewrite the orthogonality condition as

∑ ∑ ψ ψ= =π
Tr ⎡⎣ ⎤⎦M M S s Ue ( ) 0. (5)a b

s

i

k
k
a a ab

k
a†

2s
p

2

To derive from equation (5) requirements that the operator eigenbases of operators in the
optimal set ⋆ must meet, we first assume Ma and Mb to commute and analyze the case of
non-commuting operators in section 4.2 below.

5 To be precise, the two properties that we have not yet exploited are orthogonality and completeness. However,
completeness immediately follows from orthogonality and the fact that  contains (by definition) p2 elements.
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4.1. Commuting measurement operators

We first show that a change of basis Uab between the eigenbases of two measurement
operators which commute, =[ ]M M, 0a b , is a permutation. Next, we derive, from the spectral
properties obtained in the previous section, the structure of the matrix Uab. The corresponding
constraints allow for the existence of only −p 2 such permutation operators. This implies
that there are p orthogonal, pairwise commuting measurement operators with their spectrum
given by equation (1), namely Ma plus the −p 2 operators obtained by applying Uab to Ma

plus identity.
Due to the spectral condition (1), all operators in ̃ are non-degenerate. This together

with the assumption of commutativity implies that for each index k enumerating the eigen-
basis of Ma there exists an index l enumerating the eigenbasis of Mb such that ψ ψ∣ 〉 = ∣ 〉k

a
l
b

and the mapping between k and l is bijective. That is to say that the eigenbases of Ma and Mb

are the same up to reordering which means that certain eigenvectors can correspond to
different eigenvalues. In this case, the change of basis Uab between the eigenbases of Ma and
Mb, defined by equation (4b), is a permutation operator.

In the eigenbasis of Ma, the matrix elements of Uab are either zero or one and the total
number of oneʼs is p. S s( )a is also a permutation operator which shifts the columns of Uab in
this representation by s to the right. This means that for all s, the sum over k in equation (5) is
a non-negative integer,

∑ ψ ψ =S s U c( ) . (6)
k

k
a a ab

k
a

s

2

Since Uab and S s( )a are both permutation operators, so is their product, =P s S s U( ) ( )ab a ab.
Note that = =S s( 0)a , and c0 is given by the sum over the diagonal elements squared of
Uab. For s = 1, all columns of Uab are shifted to the right by one, i.e., the first upper diagonal
of Uab becomes the diagonal of Pab, and the sum over its elements squared yields c1. In other
words, each cs corresponds to the sum over the diagonal of P s( )ab , that is the sth secondary
diagonal of Uab, and thus takes a value between 0 and p. Due to orthogonality of the operator
basis, equation (5), the set of integers = … −c{ }s s p0, , 1 has to fulfill the condition

∑ =
=

−
π

c e 0. (7)
s

d

s
i

0

1
s

p
2

Note that, ∑ ==
− c ps

p
s0

1 since summing over all cs corresponds to summing over all elements
squared of P(s), or Uab. We show in appendix A that for p prime no linear combination with
non-negative integers cs can exist that makes the sum go to zero except if cs = 1 for all s.

Since cs corresponds to the sum over the sth secondary diagonal of Uab, we have thus
restricted all possible matrices Uab for a change of basis between the eigenbases of com-
muting measurement operators ∈ M M, ˜a b to those that contain exactly one entry equal to
one on each (secondary) diagonal with all other entries being zero. In addition, each row and
each column of Uab also contains exactly one entry equal to one with all other entries being
zero since Uab is a permutation operator.

We now show that under these constraints there exist −p 2 distinct permutation
operators Uab, demonstrating first how one can construct −p 2 such unitaries and then
proving in a second step that these are indeed all unitaries that fulfill the given constraints. In
order to construct the −p 2 matrices Uab for a change of basis, we reorder the eigenbases of
Ma andMb such that the main diagonal always contains one as its first entry for all b: =U 1ab

11 ,
=U 0ii

ab for i = 2,…, p. This reordering does not interfere with ordering the eigenbases of Ma
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and Mb in terms of the eigenvalues, equation (1), since Ma and Mb can be multiplied by
π

ei t
p

2

for some t without changing the orthogonality condition. This multiplication performs exactly
the shift in the eigenbases required to ensure =U 1ab

11 for all b. In other words: The ordering
of the eigenvalues determines the indexing of the eigenbasis of Mb while now in addition the
global phase of Mb is fixed. Then, for p prime, a set of −p 2 permutation operators that have
on each of their diagonals exactly one entry equal to one with all others being zero and

=U 1ab
11 is given by

δ= = … −− ⊕( )U b pwith 2, , 1. (8)ab
ik

k i b,( 1)· 1

The construction that leads to equation (8) proceeds as follows: The first row is given by the
assumption =( )U 1ab

11
for all b. In the second row, ( )U ab

21
and ( )U ab

22
need to be zero due

to the constraints of each column and the main diagonal containing exactly one entry equal to
one. The smallest j for which ( )U ab

j2
can be non-zero is thus j = 3. Analogously, in the third

row, the smallest entry that can be non-zero is j = 5 (with j = 4 being excluded by the
condition on the first upper diagonal). This construction is similar to the movement of a
knight on a chess board: one step down, two steps to the right. It is continued until the last
row is reached to yield the first Uab (with b set to 2). The second Uab is obtained by choosing
j = 4 in the construction of the second row. This implies a modified movement of the knight
with one step down, b = 3 steps to the right. Once the right boundary on the matrix is reached,
the movement is simply continued by counting from the left, as implied by the modulo
algebra in equation (8). For a p×p matrix Uab, there are −p 2 distinct knight-type movements
since in the construction of the second row, ( )U ab

21
and ( )U ab

22
are always fixed and one

can choose at most j = p, i.e., move at most −p 1 steps to the right. As shown in
appendix A.2, for p prime, the construction rule, equation (8), yields proper unitary
permutation operators which have on each (secondary) diagonal only one entry equal to one.
This holds only for prime d = p. For non-prime d, the above construction leads to a
contradiction to the unitarity constraint of each column having exactly one entry equal to one
with all others being zero.

When applied to Ma, the U
ab constructed according to equation (8) yield −p 2 operators

Mb that are orthogonal to Ma. We now show that equation (8) represents all the unitaries that
fulfill the constraint of having exactly one entry equal to one on each (secondary) diagonal,
i.e., there are exactly p commuting measurement operators (including identity). As a side
result, we obtain that all Mb obtained from applying the Uab to Ma are not only orthogonal to
Ma but also to each other.

The fact that, for p prime, all permutation operators, that have on each of their diagonals
exactly one entry equal to one with all other entries being zero and =U 1ab

11 , are given by
equation (8) and that there are thus −p 2 such unitaries can be seen as follows: since Uab

maps the eigenvectors of Ma onto the eigenvectors of Mb, it also corresponds to a mapping
between the eigenvalues λak and λ ′k

b. The fact that we fixed =( )U 1ab
11

together with

equation (1) implies λ λ= = 1a b
0 0 . The other eigenvalues are redistributed according to

λ λ= ↦ =π π
e ek

b i k
kb
a i kb· ·p p

2 2
where the product kb is to be understood modulo p. Since the

eigenvalue λkb
a shows up in the spectral decomposition of the bth power of Ma,

∑ ∑ψ ψ ψ ψ= =π π
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )M e e , (9)a

b

k

i k
k
a

k
a

b

k

i kb
k
a

k
ap p

2 2
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we find

= = … −( )M M b pwith 2, , 1. (10)b a
b

Moreover, =( )Ma
p since kp = 1 when interpreted modulo d for all k. Then all powers ofMa

are orthonormal since, for all b,

= = = =− −
Tr Tr Tr

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩( ) ( ) ( )M M M M M M
b p1 if mod 1

0 otherwise
.a a

b
a a a

b
a

b† † † 1 † 1

The last step follows from the fact that −Ma
b 1 has the same spectrum as Ma and is

consequently traceless, unless − =b p1 where we obtain identity. This is evident from
equation (9). Adjungation of the operator just returns the complex conjugated result for the
trace. Since this result is real in either case, it is unaffected by adjungation. Finally, the
maximal number of commuting, pairwise orthogonal unitaries Ma defined on a p-dimensional
Hilbert space is p. This can be seen by considering their common eigenbasis ψ∣ 〉

={ }k k p1 ,...,
.

Any linear combination of the commuting, pairwise orthogonal unitaries Ma also has this
eigenbasis. We can thus employ the common eigenbasis to construct a representation of any
operator M with this eigenbasis, λ ψ ψ= ∑ ∣ 〉〈 ∣=

−M k
p

k k k0
1 . This is a linear combination of p

orthonormal operators ψ ψ∣ 〉〈 ∣k k with coefficients corresponding to the eigenvalues of M.
Consequently no orthonormal basis of the space of operators with common eigenbasis to Ma

can have more than p elements and as such the maximal number of commuting, pairwise
orthogonal unitaries Ma is p.

As a corollary, we obtain that the set =
= … −

 { }( )M˜ a a
b

b p1, , 1
with the spectrum of all

elements given by equation (1) together with the identity forms an Abelian group of pairwise
orthonormal operators with matrix multiplication as group operation. ̃a contains all the
unitaries that share an eigenbasis with Ma while having the same spectrum as Ma and being
pairwise orthogonal.

4.2. Complete set of measurement operators

After constructing p commuting measurement operators from the spectral conditions and
orthogonality, we now identify the remaining −p p2 measurement operators that are required
to complete the optimal operator basis. Since we have also shown in section 4.1 that there are
only p commuting measurement operators, the remaining ones are necessarily non-
commuting.

The complete set of measurement operators ̃ is obtained iteratively: That is, one
chooses a starting point, i.e., an operator Ma with spectrum according to equation (1). Ma

defines the commmuting set ̃a with all operators in ̃a given by equation (10). Next one
needs to find another matrix ′Ma with the same spectrum, equation (1), but orthogonal to all

∈ M ˜a a. By construction, ′Ma does not share an eigenbasis with the ∈ M ˜a a. Rather, it
defines, according to equation (10), its own set of commuting operators, ′̃a which, together
with the identity, forms another Abelian group. A constructive method to determine ′Ma is
obtained by exploiting mutual unbiasedness of the eigenbases of the sets ̃a for different a,
as we show below in section 5.The step of identifying ′Ma and its commuting set needs to be
repeated until +p 1 Abelian groups ∪̃a have been found. The procedure of identifying

+p 1 sets of p commuting, pairwise orthogonal measurement operators yields, without
double-counting the identity which is an element of all the Abelian groups, p2 orthogonal
measurement operators, i.e., the complete operator basis .
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Clearly, one cannot find more than +p 1 Abelian groups of orthogonal operators since
there exist only p2 orthogonal operators on a p-dimensional Hilbert space. Note that we know
of the existence of at least one such set of Abelian groups–the generalized Pauli operator basis
 and its separation into mutually commuting subsets. The operators belonging to the gen-
eralized Pauli basis are given by [2, 10, 11, 13]

∈ −X Z a b p a, , [0, 1] , (11 )a b

where ω π= i pexp (2 ) and

= ⊕X n n b1 , (11 )

ω=Z n n c, (11 )n

with ∈ −n p[0, 1] and addition is modulo p.

5. Mutually unbiased bases

The existence of +p 1 Abelian groups ∪̃a of orthogonal measurement operators is in a
one-to-one correspondence to the existence of +p 1 mutually unbiased bases [10]. This is
easily seen using our constructions of section 3 and 4: the common eigenbasis of ̃a,

ψ∣ 〉{ }k
a , can be used to construct an operator basis,

∑ ψ ψ= = π( )M M e .au a
u

k

i uk
k
a

k
ap

2

Projectors can be defined in terms of the operator basis, that is,

∑ψ ψ= = − π ( )P
p

M
1

e .n
a

n
a

n
a

u

i un
a

u
p

2

Then

∑ψ ψ = = ′′ ′
′

− −
′

π
Tr Tr

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦( ) ( )P P

p
M M

1
e .n

a
n
b

n
a

n
b

uu

i un u n
au bu

2 †

2
†p

prime2

If Ma and Mb are from different Abelian groups, only identity ( = ′ =u u 0) contributes due to
orthogonality of all other measurement operators. In this case

ψ ψ = =′ Tr
p p

1
[ ]

1
. (12)n

a
n
b

2

2

If Ma and Mb are from the same set ∪̃a , all = ′u u contribute and then

∑ ∑ψ ψ δ= = =′
′ ′− − − −

′
π π

Tr ⎡⎣ ⎤⎦
p

M M
p

1
e

1
e .( ) ( )

n
a

n
a

u

i u n n
au au

u

i u n n
nn

2

2
†p p

2 2

These findings allow us to construct the set of measurement operators as mentioned
above in section 4.2. After identifying the first set ̃a of p commuting measurement
operators by picking an Ma and employing equation (10), a new measurement operator ′Ma is
found by choosing its eigenvectors as a MUB with respect to the eigenbases of ̃a (in the
subsequent steps of the iterative procedure, the eigenvectors have to be mutually unbiased
with respect to all previously constructed sets). The eigenvectors of ′Ma are assigned a
spectrum analogously to equation (9), using equation (1). Thus ′Ma and all of its powers form
a commuting set with proper spectrum that is orthogonal to all matrices from ̃a (or, in the
subsequent steps of the iterative procedure, to all previously constructed sets ̃a, ′̃a ,…). It
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is indeed possible to construct a complete basis of measurement operators with this method
since the maximal number of +p 1 MUB does exist for prime dimension p.

The identification of the eigenbases of the measurement operators with mutually
unbiased bases allows us to determine which unitaries can be efficiently characterized with
this operator basis. The candidate unitaries need to map any measurement operator onto
another measurement operator from the set, modulo a phase corresponding to a pth root of
unity. Consider a specific measurement operator M from an optimal set ⋆̃ . M is mapped by
the candidate unitaries either to the same or to a different Abelian group in ⋆̃ . Given the
spectral decomposition of M in terms of its eigenbasis, ψ∣ 〉{ }k

a , with eigenvalues λa, we can
write

∑ ∑λ ψ ψ λ ψ ψ= =UMU U U U U
a

a k
a

k
a

a

a k
a

k
a† †

which must be equal to ′M where ′ ∈ ⋆M ˜ by definition of U. Since the ψ∣ 〉{ }k
a are

orthonormal, so are the ψ∣ 〉U{ }k
a ; hence they correspond to the eigenbasis of ′M .

Consequently, the set ψ∣ 〉U{ }k
a must either be identical to the set ψ∣ 〉{ }k

a modulo
phasefactors on the individual states or correspond to a basis which is mutually unbiased
to ψ∣ 〉{ }k

a . Therefore a unitary U is efficiently characterizable if and only if it keeps the
partitioning of the +p 1 mutually unbiased bases in a Hilbert space of prime dimension p
intact.

6. Tensor products

We now consider N qupits ( >N 1) and assume the measurement operators to be tensor
products of single-qupit operators. This choice is motivated by the requirement to allow for
product input states since the preparation of these states is experimentally much easier.
Product input states imply a tensor product structure for the measurement basis since, in
Monte–Carlo estimation of the average fidelity, the input states are the eigenstates of the
measurement basis [4, 5, 7].

Assuming the measurement basis to be given by tensor products, we obtain a natural
partition of the total Hilbert space into a tensor product of smaller Hilbert spaces. It corre-
sponds to the direct product structure imposed on the measurement basis. A natural approach
to identify optimal measurement bases on the total Hilbert space starts from maximizing the
number of efficiently characterizable unitaries on each subspace [7]. This is achieved by
finding an optimal measurement basis on each subspace as discussed above, provided the
dimension of the subspace is prime. The optimal measurement basis of the total Hilbert space
is then constructed in terms of tensor products of the operators defined on the subspaces. This
yields indeed an orthonormal basis of measurement operators on the total Hilbert space.

The dimension of each subspace is prime for N identical qupits but also for mixtures of
e.g. qubits and qutrits (p = 3). If a subspace has non-prime dimension, we suggest to perform
a prime decomposition of the dimension and construct the measurement basis as tensor
products of the optimal bases defined on the resulting prime dimension subspaces, analo-
gously to the discussion above. Most likely, this yields an optimal measurement basis.
However, it remains an open question whether the explicit use of non-prime dimension
subspaces can be used to increase the number of efficiently characterizable unitaries beyond
the one following from the prime factor decomposition approach. Nonetheless, our conjecture
that a measurement basis constructed from the prime factor decomposition represents indeed
an optimal choice is motivated by the fact that existence of +p 1 mutually unbiased bases is
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not guaranteed for non-prime dimension Hilbert spaces but seems to be a central prerequisiste
for obtaining efficiently characterizable unitaries [7].

7. Conclusions

Efficient estimation of the average fidelity of Clifford gates relies on the property of these
unitaries to map the basis of measurement operators onto itself, up to a phase factor. We have
used this property to define optimality of a measurement basis in terms of the maximum
number of unitaries that can be efficiently characterized. For Hilbert spaces of prime
dimension, we have shown that this definition yields a constructive proof for the optimal
measurement basis and also allows for identifying the unitaries which can be efficiently
characterized. For N identical qudits, an optimal measurement basis is obtained in terms of
tensor products of the single-qudit operators making up the optimal single-qudit operator
basis. This choice guarantees that the measurements are local in the sense that only separable
input states are required.

Our construction of an optimal set of measurement operators with the corresponding set
of measurement bases is determined only up to a global rotation. In other words, the choice of
the eigenbasis for the first Abelian group of measurement operators is arbitrary. This corre-
sponds to mutual unbiasedness being defined only in relation of one basis to another. If, in a
given experimental setting, it is possible to perform measurements and prepare input states
relative to a rotated set of mutually unbiased bases, this can be used to also rotate the set of
efficiently characterizable unitaries. Specifically, for any unitary U there exists a measurement
basis in which U can be efficiently characterized. This is essentially the idea underlying
randomized benchmarking [6] where arbitrary unitaries are rotated into identity. The corre-
sponding rotation on the input states requires, however, application of the inverse of the
unitary that shall be characterized. This is in general not practical. In other words, the freedom
of choice for the global rotation of the measurement can in principle be used to tune the set of
efficiently characterizable unitaries. Typically, however, the choice of the eigenbasis for the
first Abelian group of measurement operators is dictated by experimental convenience such as
the requirement of a separable eigenbasis. This fixes the set of unitaries that can be char-
acterized efficiently.

The fact that our proof relies on the dimension of the Hilbert (sub)spaces to be prime
highlights the intimate relation between finding efficiently characterizable unitaries and the
existence of mutually unbiased bases. In particular, for prime dimensions we have proven that
the optimal basis of measurement operators can be partitioned into +p 1 commuting sets,
i.e., it gives rise to a maximal partitioning. The generalized Pauli operators [2, 10, 11, 13]
represent one example of such an optimal measurement basis. Generalized Pauli operators can
also be defined for Hilbert spaces whose dimension cannot be expressed as pN with p
prime [8].
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Appendix A. Details of the proofs

A.1. The solution to equation (7) is cs = 1

We show here that the only solution of equation (7) for = … ∈c 0, 1,s under the addi-
tional constraint

∑ =
=

−

c p (A.1)
s

p

s

0

1

is

=c 1s

for all s. To prove this we use the fact that
π

ei s
p

2
is a pth root of unity for all s and then apply a

theorem of [14] about sums over roots of unity. Abbreviating ω=π
ei p

2
, equation (7) becomes

∑ ω =
=

−

c 0. (A.2)
s

p

s
s

0

1

Since all cs are non-negative integers, this can be rewritten as

∑Ω =
=

−

0, (A.3)
t

p

t

0

1

where Ωt is a pth root of unity. We absorbed the integer values of cs into the Ωt by allowing
for repetitions in the sum. So for example if a cs was greater than one, there would be multiple
indices t in equation (A.3) with Ω ω=t

s. Furthermore, some cs could be zero which means
that the corresponding root of unity ωs does not appear in the set of Ωt. Note furthermore that
since we know that the cs sum up to p, the sum in equation (A.3) indeed has −p 1 elements.

Consider now the general situation of sums over pth roots of unity with an arbitrary
number of summands, n. As in equation (A.3), the same root of unity may appear multiple
times. Lam and Leung in [14] showed that if p is prime, such a sum can only be equal to zero
if n is equal to a multiple of p. As a consequence there exists no proper subsum of the sum in
equation (A.3) that goes to zero by itself. This property is called minimal. Moreover, corollary
3.4. from [14] implies that for p prime the only minimal vanishing sum of p roots of unity,
including repetitions, is given by

∑ω = =
=

−
π

e 0. (A.4)
t

p
t i

0

1
t

p
2

This translates into the sum in equation (A.3) having no repetitions but every root of unity
appears exactly once. Consequently, cs = 1 in for all s in equation (7) and the statement is
proven.

A.2. All matrices constructed according to equation (8) are unitary for p prime

We show here that all matrices constructed according to equation (8) are unitary for p prime
and contain on each (secondary) diagonal only one entry equal to one.

For simplicity we use normal addition symbols in this section but all algebraic manip-
ulations are to be understood modulo p. We first show that each (secondary) diagonal con-
tains only one entry equal to one with all others being zero. Consider a fixed b and a fixed
diagonal t. An element on this (secondary) diagonal, +U( )i i t

ab
, with i = 1,…, p, is non-zero

according to equation (8) if and only if δ =+ − + 1i t i b,( 1)· 1 . To prove that, given b and t, there is
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exactly one i for which this can happen, we consider the solutions of the equation

− − =i b t( 1) · ( 1) , (A.5)

which follows directly from − + = +i b i t( 1) · 1 . If we keep b fixed, showing that for each
t there is one i for which equation (A.5) is fulfilled is equivalent to showing that for each i
there is exactly one t for which equation (A.5) is fulfilled, i.e. t(i) is bijective. Then in each
row a different diagonal acquires the value 1. Since the map t(i) maps the finite set p1 ,..., onto
itself, injectivity implies surjectivity. Hence we only need to prove that t(i) is injective.

To do this, we need to find out how many solutions i are allowed for equation (A.5) with
∈ −t p{0 ,..., 1}. At least one solution to equation (A.5) must exist since by construction of

Uab, there is one entry equal to 1 on each row. According to the rules of modulo algebra, if
one solution exists, then there are g solutions with = −g b pgcd ( 1, ) where gcd denoting the
greatest common divisor. Since <b p and p is a prime number, g = 1 and there exists only
one solution. This proves injectivity of t(i). Therefore the map t(i) is bijective and so is i(t)
which implies that the construction of Uab, equation (8), indeed fulfills the condition of
exactly one entry equal to 1 on each (secondary) diagonal.

Next we show unitarity of Uab. By construction, there exists exactly one entry equal to 1
in each row. It remains to be shown that in each column there exists also only one entry equal
to 1. Unitarity of Uab then follows immediately.

Let us consider for fixed b a column k. According to equation (8), an entry in the ith row
is non-zero if and only if δ =− + 1k i b,( 1)· 1 . To show that for fixed b and k there is exactly one i
for which this can happen, we consider the solutions of the equation

− + =i b k( 1) · 1 . (A.6)

Equation (A.6) defines a map k(i). Showing that k(i) is bijective implies that for each k there
exists only one i as a solution and vice versa, i.e., for each column there is only one row with
an entry equal to 1. Employing the same argument as above, there exist g solutions to
equation (A.6) with =g b pgcd( , ) and, since <b p and p is prime, g = 1 and there exists only
one solution. As a consequence the map k(i) is bijective and so is the map i(k), i.e., the Uab

constructed according to equation (8) are indeed unitary.
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