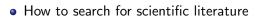


QUANTUM MAGNETISM AND THE THEORY OF STRONGLY CORRELATED ELECTRONS

Johannes Reuther

Freie Universität Berlin Helmholtz Zentrum Berlin

Berlin, April 16, 2015


Outline

Format of the seminar

• How to give a presentation

Format of the seminar

Format of the seminar

• Prepare a beamer presentation (~45 min) about a topic in the field of quantum magnetism/ strongly correlated electrons

Preparation includes:

- search for literature (some initial reference will be given)
- ▶ hand in a abstract (1 week before talk, will be announced on webpage)
- one meeting with instructor (myself) before talk (optional)

- Present the talk in front of the seminar group
- Participation in discussion after each talk

source: sbs.ox.ac.uk

How to give a presentation

Giving a talk

- Tell a story
- Motivate your topic. Why is this topic interesting?
- Keep things simple!
 - Use simple physical pictures/illustrations/graphs
 - Avoid complex formulas

- Fair citation
- Understand everything you present!

source: trainingsoutheast.blogspot.com

Consider the audience

• Your talk is intended for students, not for specialists in the field

- Be pedagogical (give introductions)
- Repeat basics (if necessary)
- Engage the audience
 - Make eye contact
 - Move
 - Make the audience think and not just listen (e.g. ask a question, pause, then give the answer)

source: netrafic.com

Structure of the talk

Timing of a 45 min talk (\sim 2-3 min per slide):

 Title 	${\sim}1$ min
 Contents 	2-4 min
 Introduction 	10-20 min
 Main body 	20-30 min
 Conclusions 	2-4 min
- Discussion	

source: jackmalcolm.com

Etiquette:

- Beginning: Thank organizers for invitation or opportunity to present work
- End: Thank for attention
- Acknowledgement (if applicable)

Preparation of slides/talk

Slides:

- Limit amount of text/formulas
- No need for complete sentences
- Never over-crowd slides
- Make images and text large enough
- highlight keywords/ use colors

Freie Universität

source: pixabay.com

Talk:

- Practice your talk (transition between slides)
- Do not read from slides
- Anticipate questions
 - you appear competent when you answer questions
 - but be honest if you don't know the answer

How to search for scientific literature

Scientific literature

- Textbooks
- Journal articles
 - Regular research article
 - Review articles
 - ▶ Popular articles (Physics Today, Physik Journal, ...)

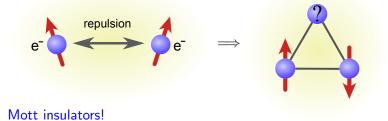
source: imgkid.com

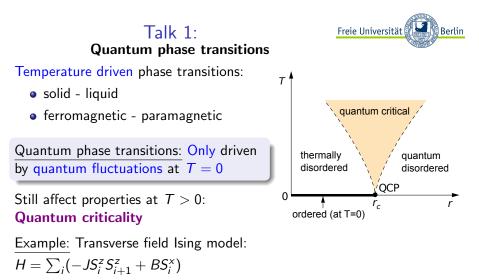
Search for scientific literature

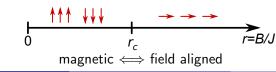
- General scientific database: www.webofknowledge.com
- Search engines of individual journals Common journals
 - Nature (Nature physics, Nature materials, Nature nanotechnology)
 - Science
 - APS journals (PRL, PRB, Rev. Mod. Phys.)
 - ▶ ...
- Preprint server arXiv (http://arXiv.org)

Google

source: criticalproof.com

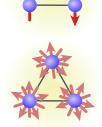

Possible topics for a presentation




Quantum magnetism and the theory of strongly correlated electrons

strong interactions:

magnetic phenomena:



Spin liquids: General theory

<u>Frustration</u>: Competing spin interactions $+\vec{S}_i\vec{S}_j$ in certain arrangements of spins:

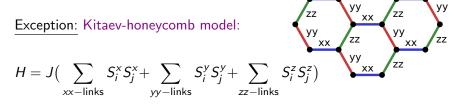
⇒ Can lead to destruction of magnetic longrange order:

 $\Rightarrow \frac{\text{Spin liquid:}}{\text{symmetries.}} \text{ A spin state without any spontaneously broken}$

Still has hidden (topological) order and fractional spin excitations (spinons).

Johannes Reuther

Quantum magnetism


Talk 3:

хх

Spin liquids in Kitaev-honeycomb models

Hard to identify a spin liquid in a given spin Hamiltonian \implies numerical approaches necessary!

Exactly solvable using Majorana fermions: $\gamma^{\dagger} = \gamma \implies \mathbb{Z}_2$ spin liquid.

Possible experimental realizations: Iridate compounds Na₂IrO₃ and Li₂IrO₃.

XX

Talk 4:

Spin ice

Dy₂Ti₂O₇, Ho₂Ti₂O₇:

Classical spins on a pyrochlore lattice

Point either in or out a tetrahedron

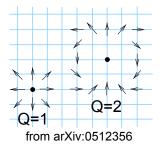
Ice rule: "two in two out"

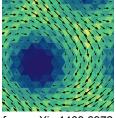
 \implies Extensive ground-state degeneracy!

from Lacroix, Mendels, Mila: Introduction to Frustrated Magnetism

Emergent phenomena: magnetic monopoles, effective photons...

Vortices in 2D spin systems


<u>XY-model</u>: $H = -J \sum_{ij} (S_i^x S_j^x + S_i^y S_j^y)$ classical spins in the *x*-*y*-plane.

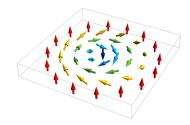

Vortex generation above $T_{KT} \sim J$ (Kosterlitz-Thouless transition) (Q = topological charge)

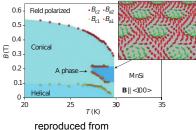
In certain U(1) broken systems vortices can even exist at T = 0:

$$\mathbb{Z}_2$$
 vortices with $Q=0,1$

from arXiv:1409.6972

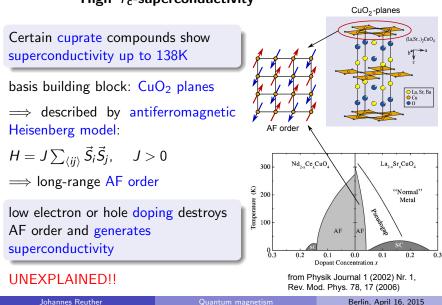
Talk 6:


Magnetic skyrmions


Skyrmions: Topological defects in non-centrosymmetric magnets (similar to vortices)

Stabilized in MnSi by

- Dzyaloshinkii-Moriya interactions $\sim \vec{D}(\vec{S}_i \times \vec{S}_j)$
- External magnetic field B
- finite temperature T
- \implies form a skyrmion lattice

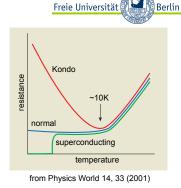

nature nanotechnology 2013.243

Talk 7:

High T_c -superconductivity

21 / 28

Talk 8:


Kondo effect

Anomalous increase of resistance below $T_{\rm K}$ (Kondo temperature) in metals with magnetic impurities

Explanation:

- screening of impurity spin by conduction electrons
- strong correlations between impurity spin and surrounding electrons (Kondo resonance, Kondo singlet $\frac{1}{\sqrt{2}}(|\uparrow_{imp}\downarrow_{cond}\rangle - |\downarrow_{imp}\uparrow_{cond}\rangle)$

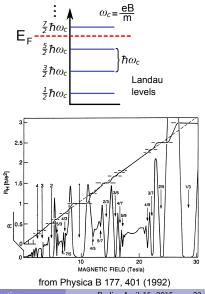
 \Rightarrow many-body effect!

Source: www.st-andrews.ac.uk/~topnes/ research/research_publications.php

Talk 9:

Fractional quantum Hall effect

2D electron gas in a magnetic field \implies integer quantum Hall effect:


Plateaus in the Hall resistance R_H whenever the Fermi energy is between two Landau levels

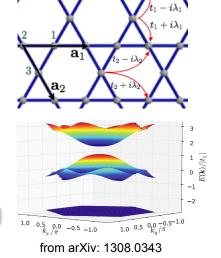
Effectively no kinetic energy in Landau levels

 \implies very strong correlation effects

new many-body states can form due to strong interaction

additional plateaus at fractional filling

Talk 10:


Fractional Chern insulators

Similar to fractional quant. Hall effect

- but: flat bands (Landau levels) not generated by magnetic field
- instead: lattice tight binding models (e.g. Kagome lattice) with spin orbit coupling.
- \implies proper choice of tight binding parameters can lead to flat bands

 \implies fractional quantum Hall states!

Quantum magnetism

Talk 11:

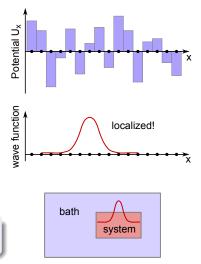
Many-body localization

Anderson localization:

non-interacting tight-binding model:

$$H = t \sum_{x} (c_x^{\dagger} c_{x+1} + c_{x+1}^{\dagger} c_x) + \sum_{x} U_x c_x^{\dagger} c_x$$

 U_x =random potential


 \implies wave functions are localized!

Localization also occurs in interacting systems: many-body localization

$$H = J \sum_{x} \vec{S}_{x} \vec{S}_{x+1} + \sum_{x} h_{x} S_{x}^{z}$$

 $h_{\rm x} =$ random magnetic field

System does not thermalize when connected to a bath!

Summary/conclusions...

Outlook...

Future directions of research...

Acknowledgements

• Collaborators...

• Funding...

Thank you for your attention!