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Time reversal invariant topological superconducting (TRITOPS) wires are known to host a frac-
tional spin ~/4 at their ends. We investigate how this fractional spin affects the Josephson current in
a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model which can
be tuned between a topological and a nontopological phase. We compute the equilibrium Joseph-
son current of the full model by continuous-time Monte Carlo simulations and interpret the results
within an effective low-energy theory. We show that in the topological phase, the 0-to-π transition
is quenched via formation of a spin singlet from the quantum dot spin and the fractional spins
associated with the two adjacent topological superconductors.

PACS numbers: 74.78.Na, 74.45.+c, 73.21.La

Introduction.—The interplay of many-body interac-
tions in quantum dots and superconductivity has been
at the focus of interest for some time [1–6]. While elec-
trons are paired in superconductors, the charging energy
effectively suppresses pairing in quantum dots. A promi-
nent consequence of this competition is the transition be-
tween 0 and π junction behavior of the Josephson current
in devices where a quantum dot (QD) connects between
ordinary (nontopological) singlet-superconducting wires
(S-QD-S junction) [7–10]. As a result of numerous stud-
ies [11–18], this phenomenon is now well understood for
conventional superconductors. Essentially, S-QD-S junc-
tions exhibit π-junction behavior when the QD hosts an
effective spin-1/2 degree of freedom.

Here, we address the 0 to π transition for Joseph-
son junctions in which a quantum dot connects be-
tween time-reversal-invariant topological superconduc-
tors (TRITOPS). Unlike their time-reversal-breaking
cousins [19–22], TRITOPS preserve time-reversal sym-
metry and can coexist with an unpolarized quantum-
dot spin. It is thus an interesting question whether
π-junction behavior can be observed in TRITOPS-QD-
TRITOPS junctions. Such junctions differ from con-
ventional S-QD-S junctions in several ways. First, the
Majorana-Kramers pairs present in the topological phase
allow for the coherent transfer of single electrons, while
the Josephson current of a conventional junction is car-
ried by Cooper pairs. Even more intriguing, TRI-
TOPS host a fractional ~/4 spin at their ends. Thus,
a TRITOPS-QD-TRITOPS junction allows one to study
the hybridization of fractional and ordinary spins. We
show that the 0-π transition constitutes a signature which
distinguishes between the topological and the nontopo-
logical phase, and trace the quenching of the transition
for TRITOPS to the formation of a spin singlet from the

quantum-dot spin and the fractional spins of the adjacent
TRITOPS.

In the wake of proposals to engineer time-reversal-
breaking topological phases and corresponding experi-
ments, there has also been substantial interest in time
reversal invariant topological superconductors (TRIP-
TOPS) [23–35]. TRITOPS are characterized by Kramers
pairs of Majorana end states and localized fractional
spins [27]. Time reversal protects the pair of Majoranas
from hybridizing which therefore generically remain at
zero energy. Similarly, the fractional spin is topologically
protected and cannot be determined from a local mea-
surement without breaking time reversal. Several routes
have been proposed to engineer TRITOPS although their
experimental realization is more demanding than that of
time-reversal-breaking topological superconductors [35].

Conventional Josephson junctions assume their mini-
mal energy at zero phase difference and their maximal
energy at a phase difference of π (0-junction behavior).
This behavior is reversed in π junctions which assume
their minimal energy at a phase difference of π [1, 2]. In
S-QD-S junctions, π-junction behavior occurs when the
quantum dot forming the junction is singly occupied and
acts effectively as a magnetic impurity. When the QD
is weakly coupled to the superconductors, tunneling of
Cooper pairs between the conventional superconductors
relies on a forth-order cotunneling process [1, 10]. This
process includes a π phase shift which originates from
the Fermi statistics of electrons and becomes manifest in
the π-junction behavior. As a consequence, the current-
phase relation of the junction phase shifts by π when the
occupation of the quantum dot is tuned from even to odd.
When the quantum dot is strongly coupled to the super-
conductors, Kondo correlations become relevant. For a
sufficiently large Kondo temperature TK , the dot spin
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is Kondo screened and the junction exhibits 0-junction
behavior even when the dot occupation is odd.

Model.—Our considerations are based on a time-
reversal-invariant superconductor with Hamiltonian [26]

Hα =

N∑
j=1

∑
σ

(
−tc†α,j+1,σcα,j,σ + iλσc

†
α,j+1,σcα,j,σ

+∆σe
iφαc†α,j+1,σc

†
α,j,σ + H.c.− µ nα,j,σ

)
, (1)

where λ↑,↓ = ±λ, ∆↑,↓ = ±∆ and ↑ =↓, ↓ =↑. More-
over, t is the hopping parameter, µ the chemical poten-
tial, and λ and ∆ are the strengths of Rashba spin-orbit
coupling and extended s-wave pairing, respectively. The
index α = L,R labels the left and right superconductors
of the junction with order parameter phases φα. The
phase difference φ = φL − φR = 2πΦ/Φ0 can be tuned
by including the junction in a superconducting loop and
threading the loop by a magnetic flux Φ. (Φ0 = h/2e
denotes the superconducting flux quantum.) The entire
TRITOPS-QD-TRITOPS Josephson junction is then de-
scribed by the Hamiltonian

H =
∑

α=L,R

Hα +Hc +Hd. (2)

Here,

Hd = εd
∑
σ

nd,σ + Und↑nd↓ (3)

describes the quantum dot with gate-tunable level energy
εd, spin-resolved level occupation nd,σ, and charging en-
ergy U , and

Hc = −t′
∑
σ

[(
c†L,N,σ + c†R,1,σ

)
dσ + H.c.

]
(4)

accounts for the hybridization between quantum dot and
superconductors.

The Hamiltonian Hα supports topological and non-
topological phases. The topological phase occurs when
|µ| < 2λ and is characterized by Kramers pairs of Ma-
jorana end states. For each lead, the corresponding
Majorana operators can be combined into conventional
fermionic operators

γL/R =

∫
dxϕL/R(x)[ψ↑(x)∓ iψ†↓(x)], (5)

where ϕL/R(x) denotes the Majorana wavefunctions of
the left (L) and right (R) superconducting lead and ψσ(x)
denotes the electron field operator for spin σ (see Supple-
mentary Material, Sec. 2 [36]). While the Majorana oper-
ators mix the two spin components, the operators γL/R
remove a spin of ~/2 from one end of the wire. Thus,

γL/R and γ†L/R toggle the the system between ground

states with fractional spins of ±~/4 localized at the ends
of the wire [27].

0 0.5 1 1.5 2

φ/π

-0.1

-0.05

0

0.05

0.1

I

µ = 0.0

µ = 0.4

µ = 0.8

µ = 1.0

µ = 1.4

µ = 1.8

0 0.25 0.5 0.75 1

φ/π

0

0.05

0.1

I

β = 400

β = 200

β = 100

0 0.5 1 1.5 2
φ/π

-0.2

-0.1

0

0.1

0.2

E 0(φ)

0 0.5 1 1.5 2
φ/π

0 0.5 1 1.5 2
φ/π

FIG. 1. (Color online) Top: Josephson current vs φ for a
quantum dot at T = 0 with U = 0, t′ = t, λ = t/2, ∆ =
t/5, and values of µ in the topological (µ < t) as well as
the nontopological (µ > t) phase. The wires have N = 500
sites. Inset: Josephson current at finite temperature. Red,
blue, and green lines correspond to β = 400, 200 and 100,
respectively. The T = 0 case is plotted in black for reference.
Bottom: Spectrum of ĤBdG for µ = εd = 0 (left), µ = 0,
εd = t (middle), and µ = −εd = 1.8 (right). Other parameters
as in top panel. Energies are measured in units of t = 1.

Numerical results.—The Josephson current can be
computed from the Green function expression

I =
2t′2

β

∑
σ

∑
n

Im
[
g

(12)
1α,σ(iωn)G

(21)
d,σ (iωn)

]
. (6)

The derivation is included in Ref. [36] (see Sec. 1). The
Green functions correspond to the Matsubara compo-
nents of frequency ωn = (2n + 1)π/β (β is the inverse
temperature) of the imaginary-time Green functions

g
(12)
1α,σ(τ) = −〈Tτ

[
ĉ†α,1,σ(τ)ĉ†α,1,σ(0)

]
〉0 and G

(21)
d,σ (τ) =

−〈Tτ
[
d̂σ(τ)d̂σ(0)

]
〉, where 〈. . .〉0 (〈. . .〉) denotes the en-

semble average over the states ofHα (H). The first Green
function can be obtained exactly.

First consider a junction with a noninteracting quan-
tum dot. For U = 0, the Green function Gd,σ(iωn) and
thus the Josephson current can also be evaluated analyti-
cally. Moreover, our model can be written in Nambu rep-
resentation with a Bogoliubov de-Gennes (BdG) Hamil-
tonian ĤBdG = Ĥ0τz + ∆̂τx, where Ĥ0 results from the
normal parts of the Hamiltonian H while ∆̂ originates
from the pairing contributions. The Pauli matrices τi
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FIG. 2. (Color online) Josephson current for an interacting
quantum dot at β = 400 with t′ = t, εd = −U/2, λ = t/2, ∆ =
t/5. The upper (lower) panel corresponds to the topological
(nontopological) phase. The values of U and µ are indicated
in the Fig. Energies are expressed in units of t = 1 .

(with i = x, y, z) operate in particle-hole space. Diago-
nalizing the BdG Hamiltonian, the Josephson current can
be obtained from I = (2e/~)∂E0(φ)/∂φ, where E0(φ) is
the many-body ground state energy. Corresponding re-
sults are presented in Fig. 1.

The spectrum of ĤBdG is shown in the lower panels
for the topological (left and middle) and the nontopo-
logical (right) phase. In the topological phase, there
are zero-energy bound states (light-blue curves) which
emerge from the Majoranas states localized at the far
ends of the finite-length chains. The solid red curves
emerge from the hybridization of the dot states with the
adjacent Majoranas. In the nontopological phase, the
subgap states are gapped. As a consequence of Kramers
theorem, the subgap states are twofold degenerate at φ
equal to integer multiples of π. At other flux values,
time reversal is broken by the phase bias and the subgap
states are nondegenerate. The top panel of Fig. 1 shows
the Josephson current for values of µ both in the topo-
logical (µ < 2λ) and the nontopological (µ > 2λ) phases.
In the topological phase, the Josephson current jumps at
φ = π (up to finite-size effects), reflecting the level cross-
ing of the subgap states. (Note that we assume complete
equilibration over fermion parities.) The nontopological
phase exhibits the usual smooth behavior.

For a nonzero interaction U , the Josephson current

can be calculated by evaluating G
(21)
d,σ (iωn) using quan-

tum Monte Carlo simulations [37]. Previous works on
S-QD-S junctions [12, 15, 16] as well as normal wires
coupled to correlated dots and molecules [38, 39] proved
this strategy to be accurate and reliable. We perform a
Shiba transformation, mapping H to a particle-number
conserving Hamiltonian with negative U [15]. The Green
function of the transformed problem is then calculated by
the algorithm introduced in Refs. [40, 41]. Inversion of
the Shiba transformation leads to Gd,σ(iωn) which en-

ters the Josephson current (6). Results for a half-filled
configuration (i.e., 〈nd↑ + nd↓〉 = 1) are shown in Fig. 2.

The nontopological case (bottom panel) shows the ex-
pected 0 to π transition. When coupling the quan-
tum dot to superconducting leads, the local moment
persists when ∆ is larger than the Kondo temper-
ature TK , but becomes Kondo screened for ∆ �
TK . For a particle-hole symmetric configuration, the
Kondo temperature of the junction is given by kBTK =√

ΓU/2 exp (−πU/8Γ) [42] with the hybridization pa-

rameter Γ ∼ π(t′)2
√

1− µ2/(2t)2/(2t). Consequently,
there is a 0-π transition as U increases. For U = t,
the dot is in the intermediate valence regime, while for
U = 6t and U = 10t, it would be in the Kondo regime
when attached to normal leads. In our case, kBTK ∼ ∆
for U ∼ 8.5t, consistent with the observed transition be-
tween 0- and π-junction behavior between U = 6t and
U = 10t.

It is our central observation that there is no corre-
sponding 0-π transition when the superconducting leads
are in the topological regime. Instead, the current-phase
relation remains similar to the noninteracting case for all
interaction strengths U . In particular, the abrupt de-
pendence at a phase difference of φ = π, while slightly
smoothed by finite temperature, becomes more pro-
nounced as the number of sites increases, as in the nonin-
teracting case (cp. inset of Fig. 1). These results suggest
that the impurity spin is efficiently screened in the topo-
logical case, despite the presence of the superconducting
gap. This robust screening of the spin of the quantum
dot originates from its interaction with the subgap states
emerging from the Kramers pairs of Majoranas of the
adjacent left and right wires.

Effective Hamiltonian.—To arrive at this conclusion,
we interpret our numerical results in the context of
an effective Hamiltonian. Consider a singly-occupied,
interacting quantum dot coupled to two time-reversal-
invariant topological superconductors. For simplicity, we
assume that the superconducting gap is large compared
to the Kondo temperature so that we can neglect hy-
bridization with the quasiparticle continuum. Then, we
only need to consider the hybridization with the subgap
states originating from the Majorana bound states. We
can project out the empty and doubly occupied dot states
by employing a Schrieffer-Wolff transformation [43]. This
yields an effective Hamiltonian in the eight-dimensional
subspace spanned by the two eigenstates of the quantum
dot spin Sd and the two states for each of the supercon-
ducting leads which are associated with the Kramers pair
of Majorana operators. Here, we sketch the derivation of
this Hamiltonian (for details, see [36], Sec. 3).

In a first step, we project the tunneling Hamilto-
nian Hc to the subgap states of the wires, giving Hc =

teffe
iφ/4

∑
σ

(
γ†L,σdσ + d†σγR,σ

)
+H.c, where teff . t′ and

the Bogoliubov operators for the zero-energy modes sat-
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FIG. 3. (Color online) LDOS at the quantum dot obtained
by QMC. The black lines are the predictions for the peaks in
the density of states on the basis of Heff with J = 0.2. The
amplitude of the superconducting gap ∆ = 0.2 is indicated in
dashed lines. Other parameters are U = 4t, J = 0.2, λ = 0.5t,
t′ = t, µ = 0 and β = 400.

isfy γ†L = γ†L,↑ = iγL,↓, and γ†R = γ†R,↑ = −iγR,↓ (see [44]
and [36], Sec. 2). Focusing on the particle-hole symmetric
point εd = −U/2, and eliminating the empty and doubly
occupied states of the quantum dot by a Schrieffer-Wolff
transformation, we obtain (see [36], Sec. 3)

Heff = J

{
Szd

[
(nL + nR − 1) + i sin

φ

2

(
γ†LγR − γ

†
RγL

)]
+i cos

φ

2

(
S−d γ

†
Lγ
†
R − S

+
d γRγL

)}
, (7)

where J = 4t2eff/U and we defined the occupations
nα = γ†αγα. A convenient basis for this Hamiltonian
is |σ, nL, nR〉 with nα = 0, 1 and σ =↑, ↓. Note that nα
also labels the polarization of the fractional spins.

The Hamiltonian Heff is easily diagonalized. It con-
serves the number parity of n = nL + nR. For n = 1,
the terms involving S±d do not contribute and we find
doubly-degenerate eigenstates which are linear superpo-
sitions of |σ, 1, 0〉 and |σ, 0, 1〉 with energy ±J/2 sin(φ/2).
For even occupations n, we have two phase-independent
states with degenerate eigenergies J/2 corresponding to
| ↑, 1, 1〉 and | ↓, 0, 0〉 as well as a pair of nondegenerate
states with energies −J/2± J cos(φ/2), which are linear
combinations of the states | ↑, 0, 0〉 and | ↓, 1, 1〉.

At all phase differences, the ground state is an equal-
probability superposition of | ↑, 0, 0〉 and | ↓, 1, 1〉. These
states describe configurations with overall zero spin. In-
deed, in both states the quantum dot spin of ~/2 is point-
ing opposite to the fractional spins of ~/4 of the two ad-
jacent superconductors. Thus, these configurations can
be interpreted as an effective singlet configuration of the
quantum dot spin and the fractional spins of the topo-
logical superconductors.

Similar to the singlet formation via the Kondo effect
originating from the hybridization with the continuum
state of nontopological superconductors, this singlet for-
mation with the fractional spins quenches the π-junction
behavior. Indeed, the low-energy spectrum emerging
from the Schrieffer-Wolff treatment predicts a Josephson
energy which is minimal at phase differences equal to in-
teger multiples of 2π. Moreover, we also see that there is
a cusp in the ground state energy at a phase difference of
π. Both of these results are consistent with our numeri-
cal results which incorporate the hybridization with the
quasiparticle continuum above the superconducting gap.

In Fig. 3, we benchmark our low-energy Hamiltonian
with results for the local density of states (LDOS) at the
quantum dot ρ(ω) = −2

∑
σ Im[GRd,σ(ω)]. The latter was

calculated by analytically continuing the Monte Carlo
data to the real frequency axis. Results are shown in
the color plot. The low-energy spectrum obtained from
Heff is shown as solid lines for comparison. The peaks
in the LDOS reflect the energy necessary to add or re-
move one particle. Thus, the peak positions can be es-
timated from Heff by the energy difference between the
odd-parity eigenstates and the ground state, which yields
± [J/2 + J | cos(φ/2)| ± J/2 sin(φ/2)]. We find that our
numerics is qualitatively consistent with the predictions
of Heff , although the numerics is performed in a regime
where the addition spectrum already hybridizes with the
quasiparticle continuum. Apart from shifts in energy,
the hybridization lifts the degeneracies at φ = 0 and 2π.
Besides the low energy features which are qualitatively
described by Heff , the numerical results also exhibit high-
energy features at ±U/2, which are associated with the
charge-transfer peaks of the impurity Anderson model.

TRITOPS-QD-TRITOPS Josephson junctions com-
bine topological superconductivity with time reversal
symmetry and electron-electron interactions. This is sim-
ilar to quantum spin Hall Josephson junctions includ-
ing interactions either within the edge states [45, 46] or
through coupling to an interacting quantum dot [47, 48].
These quantum spin Hall Josephson junctions exhibit an
8π-perodic Josephson effect which can be interpreted as
resulting from the tunneling of e/2 charges enabled by
the formation of Z4 parafermions. While the system con-
sidered here shares some basic ingredients, its Josephson
effect is 4π periodic. In addition to spin conservation,
the present system differs in that it does not exhibit a
fermion parity anomaly and the resulting spin transmu-
tation discussed in Ref. [47].
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[6] J.-D. Pillet, P. Joyez, R. Žitko, and M. F. Goffman, Phys.
Rev. B 88, 045101 (2013).

[7] I.O. Kulik, Zh. Eksp. Teor. Fiz. 49, 585 (1965) [Sov.
Phys. JETP 22, 841 (1966)].

[8] H. Shiba and T. Soda, Prog. Theor. Phys. 41, 25 (1969).
[9] L. I. Glazman and K. A. Matveev, Pisma Zh. Eksp. Teor.

Fiz. 49, 570 (1989) [JETP Lett. 49, 659 (1989)].
[10] B. I. Spivak and S. A. Kivelson, Phys. Rev. B 43, 3740

(1991).
[11] E. Vecino, A. Martin-Rodero, and A. Levy Yeyati, Phys.

Rev. B 68, 035105 (2003).
[12] F. Siano and R. Egger , Phys. Rev. Lett. 93, 047002

(2004).
[13] M.-S. Chi, M. Lee, K. Kang, and W. Belzig, Phys. Rev.

B ( R) 70, 020502 (2004).
[14] T. Meng, P. Simon, S. Florens, Phys. Rev. B 79, 224521

(2009).
[15] D. J. Luitz and F. F. Assaad, Phys. Rev. B 81, 024509

(2010).
[16] D. J. Luitz, F. F. Assaad, T. Novotny, C. Karrasch, and

V. Meden, Phys. Rev. Lett. 108, 227001 (2012).
[17] A. Oguri, Y. Tanaka, and J. Bauer, Phys. Rev. B 87,

075432 (2013).
[18] R. Allub and C. R. Proetto, Phys. Rev. B 91, 045442

(2015).
[19] J. Alicea, Rep. Prog. Phys. 75, 076501, (2012).
[20] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).
[21] R. M. Lutchyn, J. D. Sau,and S. Das Sarma, Phys. Rev.

Lett. 105 077001 (2010).
[22] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett.

105 177002 (2010).
[23] C. L. M. Wong and K. T. Law, Phys. Rev. B 86, 184516

(2012).
[24] S. Nakosai, Y. Tanaka, and N. Nagaosa, Phys. Rev. Lett.

108, 147003 (2012).
[25] S. Deng, L. Viola and G. Ortiz, Phys. Rev. Lett. 108,

036803 (2012).
[26] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett.

111, 056402 (2013).
[27] A. Keselman, L. Fu, A. Stern, and E. Berg, Phys. Rev.

Lett. 111, 116402 (2013).
[28] E. Dumitrescu and S. Tewari, Phys. Rev. B 88, 220505

(2013).
[29] S. B. Chung, J. Horowitz, and X-L. Qi, Phys. Rev. B 88,

214514 (2013).
[30] S. Nakosai, J. C. Budich, Y. Tanaka, B. Trauzettel, and

N. Nagaosa, Phys. Rev. Lett. 110, 117002 (2013).
[31] A. Haim, A. Keselman, E. Berg, and Y. Oreg, Phys. Rev.

B 89, 220504(R) (2014).

[32] E. Gaidamauskas, J. Paaske, and K. Flensberg, Phys.
Rev. Lett. 112, 126402 (2014).

[33] J. Klinovaja, A. Yacoby, and D. Loss, Phys. Rev. B 90,
155447 (2014).

[34] C. Schrade, A. A. Zyuzin, J. Klinovaja, and D. Loss,
Phys. Rev. Lett. 115, 237001 (2015).

[35] A. Haim, E. Berg, K. Flensberg, and Y. Oreg, Phys. Rev.
B 94, 161110(R) (2016).

[36] Supplementary Material
[37] J.E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521

(1986).
[38] L. Arrachea and M. J. Rozenberg, Phys. Rev. B 72,

041301 (2005).
[39] A. Camjayi and L. Arrachea, Phys. Rev. B 86, 235143

(2012) and J. Phys.: Condens. Matter 26 035602 (2014).
[40] P. Werner, A. Comanac, L. De Medici, M. Troyer, and

A.J. Millis, Phys. Rev. Lett. 97, 076405 (2006).
[41] K. Haule, Phys. Rev. B 75, 155113 (2007).
[42] A. Hewson, The Kondo Problem to Heavy Fermions,

Cambridge University Press (Cambridge, 1993).
[43] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491

(1966).
[44] We introduce the notation γL/R,σ to make the tunnel-

ing Hamiltonian more compact. It also turns out that
this notation is helpful in performing the Schrieffer-Wolff
transformation (see [36], Section 3).

[45] F. Zhang and C.L. Kane, Phys. Rev. Lett. 113, 036401
(2014).

[46] C. P. Orth, R. P. Tiwari, T. Meng, and T. L. Schmidt,
Phys. Rev. B 91, 081406(R) (2015).

[47] Y. Peng, Y. Vinkler-Aviv, P.W.Brouwer, L.I. Glazman,
and F. von Oppen, arXiv:1609.01896 (2016).

[48] H.-Y. Hui and J.D. Sau, arXiv:1609.02909 (2016).


	Fractional spin and Josephson effect in time-reversal-invariant topological superconductors
	Abstract
	 References


