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We present a planar surface-code-based
scheme for fault-tolerant quantum computation
which eliminates the time overhead of single-
qubit Clifford gates, and implements long-range
multi-target CNOT gates with a time overhead
that scales only logarithmically with the control-
target separation. This is done by replacing
hardware operations for single-qubit Clifford
gates with a classical tracking protocol. Inter-
qubit communication is added via a modified
lattice surgery protocol that employs twist de-
fects of the surface code. The long-range multi-
target CNOT gates facilitate magic state distil-
lation, which renders our scheme fault-tolerant
and universal.

1 Introduction

The performance of quantum computers is limited by
the coherence times of the underlying physical qubits.
Quantum error correction [1] offers the possibility to
enhance the qubits’ survival times by encoding quan-
tum information using logical qubits consisting of many
physical qubits. Topological quantum error-correcting
codes [2, 3] are of particular interest, as they only re-
quire the measurement of spatially local operators —
a feature that is compatible with the local opera-
tions accessible in two-dimensional solid-state qubit ar-
chitectures, such as superconducting qubits [4], spin
qubits [5], or Majorana-based qubits [6].

Quantum error-correcting codes typically operate in
cycles. In each code cycle, mutually commuting oper-
ators called stabilizers [7] are measured to reveal the
error syndrome, which is used to determine and cor-
rect errors. Surface codes [8, 9] are topological codes
that feature a high error threshold [10, 11], and only re-
quire the measurement of four-qubit stabilizer operators
for the readout of the error syndrome. The low-weight
stabilizers are an advantage over other codes such as
color codes [12, 13], which require the measurement of
six-qubit operators. This facilitates syndrome readout
in many physical architectures such as superconducting
qubits, where the measurement of higher-weight sta-

bilizers requires more potentially faulty controlled-not
(CNOT) gates.

The main drawback of surface codes in comparison
to color codes is the absence of transversal single-qubit
Clifford gates, i.e., the gates that are products of the
Hadamard gate H and the phase gate S. While the
transversal Clifford gates of color codes provide them
with fast logical H- and S-gates, defect-based propos-
als for surface codes [14] implement the H-gate via a
multi-step measurement protocol, and the S-gate via a
distilled ancilla qubit. In order to lower the overhead
of single-qubit Clifford gates, surface code qubits can
be encoded using twist defects [15], which are essen-
tially Majoranas that can be braided via code defor-
mation [16]. It was pointed out that braiding of twists
can also be implemented via a classical tracking proto-
col [17], in accordance with the Gottesman-Knill theo-
rem [18].

In this work, we present a scheme that implements
this tracking protocol for planar surface codes, as op-
posed to twist-based encodings. We refer to this proto-
col as edge tracking. In our scheme, Clifford complete-
ness is achieved via a modified lattice surgery [19] pro-
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Figure 1: An example of a surface code qubit with code distance
d = 5. Physical qubits are located on the vertices, and the
faces define the two- and four-qubit Z-type (bright) and X-
type (dark) stabilizer operators. X-strings along the X-edge
(orange) are logical X -operators, whereas Z-strings along Z-
edges (blue) are Zp-operators.
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Figure 2: An example of edge tracking with a wide surface code qubit. Starting from the default encoding Xcqge = X1 and
Zeage = Z1, an H-gate changes it to Xeqge = Z1 and Zegge = X1, and a subsequent S-gate modifies it to Xeqge = Zr and

Zedge - YL .

tocol. Twist defects are no longer used to encode quan-
tum information, but reappear in the lattice surgery, so
that we refer to the latter as twist-based lattice surgery.
Our scheme provides long-range multi-target CNOT
gates — i.e., CNOTs with one control and arbitrarily
many targets — between any set of edge-tracked sur-
face code qubits. These gates are particularly useful for
magic state distillation [20], which completes the univer-
sal gate set by fault-tolerantly implementing the T-gate
(or 7/8-gate). Our scheme not only eliminates the need
for hardware operations for single-qubit Clifford gates,
but also conceptually simplifies the twist-defect-based
approach to surface-code quantum computing. Even
though our scheme features twist defects and disloca-
tion lines, the only concepts necessary to understand
our scheme are the encoding of logical qubits and the
measurement of two-qubit parity operators. We discuss
the implementation of the single-qubit Clifford gates,
CNOT gates, and T-gates in Secs. 2, 3 and 4, respec-
tively. In a concluding section, we discuss our scheme in
the context of possible hardware implementations and
in comparison to alternative topological codes.

2 Edge Tracking

The basic framework of our scheme are physical qubits
arranged on a 2D square lattice which allow for the
measurement of local stabilizer operators. Examples of
possible physical realizations include superconducting
qubits emulating stabilizer measurements using ancilla
qubits and CNOT gates [14], or Majorana-based qubits
using direct measurements of the stabilizers via Majo-
rana fermion parity measurements [21]. A single surface
code qubit can be defined using the checkered square
shown in Fig. 1, where physical qubits are located at
the vertices. We refer to the Pauli operators of the
physical qubits as X, Y, and Z. The faces define the
X®"_ and Z®"-stabilizers of the code, where n is the
number of qubits that are part of the face. The figure
shows an example of a code with code distance d = 5,
but this construction can be generalized to arbitrary
code distances.

Surface code qubits have two distinct types of bound-
aries, usually referred to as rough and smooth edges.
Here, we call them X- and Z-edges in analogy to the log-
ical Pauli operators X, and Z;, that they encode. Sur-
face code qubits can be easily initialized in the logical
+1-eigenstates |0y) and |4+1) of Z; and X, by initial-
izing all physical qubits in the corresponding physical
states |0) and |+), measuring all stabilizers, and cor-
recting the errors. Conversely, they can be read out in
the X - and Zp-basis by measuring all physical qubits
in the X- or Z-basis, and performing classical error cor-
rection.

We define the operator Xcdge (Zedge) as the string
of X-operators (Z-operators) on all physical qubits
along an X-edge (Z-edge). In the default encoding,
Xedge = X1, and Zegge = Z1. The edge tracking proce-
dure that we now introduce essentially modifies which
logical operators are encoded by Xeqge and Zegge. Logi-
cal single-qubit Clifford gates map the logical Pauli op-
erators X, Y7, and Z, onto other Pauli operators. In
particular, an H-gate maps Xy — Zr, Y, — =Y, and
Z;, — Xr. An S-gate maps X;, — Yy, Y, = — X, and
Z;, — Zy. Thus, we can replace single-qubit Clifford
gates by a classical tracking procedure. This is essen-
tially the content of the Gottesman-Knill theorem [18],
which states that Clifford gates can be simulated effi-
ciently on a classical computer.

In order to combine this tracking scheme with lat-
tice surgery, it will be convenient to use the wide qubits
shown in Fig. 2 instead of the square qubits that were
previously introduced. The only difference to square
qubits is that the edges of wide qubits are arranged dif-
ferently, such that there is an X-edge and a Z-edge on
the same side of the qubit. Compared to square qubits
with the same code distance, this comes at the price of a
larger number of physical qubits for each logical qubit.
The figure also shows an example of edge tracking.
The default encoding is Xcgge = X1 and Zeqge = Z1.-
An H-gate changes the encoding to Xegge = Zr and
Zedge = Xr. A subsequent S-gate modifies it to
Xedge = Zr and Zedge =Yr.
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Figure 3: A CNOT between a control |c) and a target |t) is
equivalent to a Z ® Z-parity measurement between |c) and an
ancilla in the |4)-state, followed by an X ® X-parity measure-
ment between ancilla and |t), and finally a Z-basis measure-
ment of the ancilla. The measurement outcomes determine a
Pauli correction.

3 Lattice surgery with a twist

Edge tracking requires a suitable CNOT gate protocol
in order to be useful for universal quantum computa-
tion. This is provided by twist-based lattice surgery.
It essentially implements the circuit identity shown in
Fig. 3 for edge-tracked qubits. Here, a CNOT between a
control and target qubit corresponds to three measure-
ments: a Z ® Z-parity measurement between the con-
trol and an ancilla initialized in the X-eigenstate |+), a
subsequent X ® X-parity measurement between ancilla
and target, and a final Z-basis readout of the ancilla
qubit. In order to use this protocol for logical CNOTs,
measurements of logical two-qubit parity operators are
required, e.g., operators such as Z; ® Zr, which are
nonlocal operators involving 2d physical qubits.

3.1 Nearest-neighbor CNOT

Let us first discuss standard lattice surgery between two
neighboring wide qubits in the default encoding. Con-
sider the CNOT protocol in Fig. 4. Lattice surgery [19]
is a protocol for fault-tolerant logical parity measure-
ments which only requires the measurement of local sta-
bilizer operators. After initializing an ancilla qubit in
the |+)-state, lattice surgery between the Z-edges of
the control and ancilla qubit in step (2) measures their
Z1, ® Zy-parity. This is done by modifying the stabiliz-
ers along the boundaries. The boundary X-stabilizers
are merged to form four-qubit stabilizers (orange), and
new Z-stabilizers (blue) are introduced. While the sta-
bilizers still mutually commute, this procedure increases
the total number of stabilizers by one. In other words,
the number of degrees of freedom is reduced by one,
and one bit of information is measured during this pro-
tocol. The measurement outcome of the orange stabiliz-
ers is trivial, as they are products of previously known
boundary stabilizers. The outcome of the blue stabiliz-
ers, on the other hand, is nontrivial. They contain each
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Figure 4: CNOT by lattice surgery corresponding to the gate
circuit in Fig. 3. (1) All qubits are in the default encoding
Xedge = X1 and Zeqge = Zr, and the ancilla is initialized
in the |+)-state. (2) To measure the Z; ® Zp-parity be-
tween control and target, the two-qubit boundary stabilizers
are merged (orange), and new Z-type stabilizers (blue) are in-
troduced, whose product is precisely the parity. (3) Similarly,
the X1 ® X -parity between ancilla and target is measured by
the product of new X-type stabilizers (orange).

boundary qubit exactly once. Therefore, their product
is precisely the operator ZC(SZICMOD ®Z§Zg§lna), which cor-
responds to the Z; ® Z-parity in the default encoding.
Thus, lattice surgery implements a fault-tolerant par-
ity measurement between logical qubits. Similarly, in
the following lattice surgery step (3), the blue stabiliz-
ers are trivial, and the product of orange stabilizers is
X égggma) ® X é;a;get). A Z;-basis measurement of the
ancilla qubit completes the gate circuit in Fig. 3. The
subsequent Pauli corrections are Clifford gates and can

be handled by edge tracking.
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Figure 5: Long-range CNOT between two wide qubits in the default encoding that are separated by three other qubits. After
initializing two ancillas in the |+)-state (1), lattice surgery (2) simultaneously measures the Z1, ® Z-parities between control and
ancilla 1, and ancilla 1 and ancilla 2. This also yields the Z; ® Z-parity between control and ancilla 2, such that ancilla 2 can
be used for an X1 ® X -parity measurement (3) with the target qubit. At the end of the CNOT protocol, ancilla 1 is read out in
the X-basis with outcome m, leading to a Z™ correction on the control.

3.2 Long-range CNOT

A similar protocol can be used to perform CNOTSs be-
tween logical qubits that are not nearest neighbors, but
separated by some distance. For this, we use lattice
surgery to measure the Z; ® Zp-parities between the
control qubits and multiple ancilla qubits simultane-
ously [19, 22, 23]. In the protocol in Fig. 5, two ancilla
qubits are initialized in the |+)-state, one long ancilla
that spans the entire distance between the control and
target, and another that is adjacent to the X-edge of
the target. In step (2), lattice surgery simultaneously
measures the Z; ® Zp-parities between control and long
ancilla, and between both ancillas. This effectively mea-
sures the Zj ® Zp-parity between control and ancilla 2
as the product of both measurements. Thus, ancilla
2 can be used as the ancilla of the CNOT protocol of
Fig. 3. An X ® X-parity measurement between an-
cilla 2 and the target qubit, and a subsequent Z-basis
readout of ancilla 2 complete the CNOT protocol. Since
ancilla 1 is still entangled with the control qubit, it can-
not be discarded right away, but needs to be measured
in the X-basis with outcome m € {0, 1}, which leads to

a subsequent Z™-Pauli correction on the control qubit.

Note that the width of the long ancilla can be smaller
than the code distances of the wide qubits, as the ancil-
las only need to survive for the duration of the CNOT
protocol, as opposed to data qubits that may need to
survive for the entire computation. However, vertical
X-error strings connecting the (orange) X-edges of the
long ancilla qubit can introduce errors to the CNOT
protocol. While the number of possible error strings in-
creases linearly with the control-target separation s, the
probability of error strings decreases exponentially with
the width of the ancilla. Therefore, the width needs to
increase with O(log s) in order to maintain the CNOT
gate fidelity, implying a space overhead of O(slog s) for
the long-range CNOT. There are two factors that con-
tribute to the time overhead of the protocol: decoding
and syndrome readout errors. While decoding can be
done with a runtime that scales with O(log s) [24], the
correction of stabilizer measurement errors is handled
by recording multiple rounds of syndrome extraction
for one code cycle [25]. This effectively introduces a
third dimension to the code. The number of recorded
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Figure 6: X1 ® X1-parity measurements between an ancilla and an edge-tracked target qubit. In (a), edge tracking has changed the
encoding of the target to Xeage = Zr and Zeqge = Xr. The stabilizer configuration that measures the X ® Xr-parity corresponds
to a dislocation line. In (b), the encoding of the target qubit is Xedge = Z1 and Zeqge = Y7. Here, the X1 ® X -parity is measured
by a stabilizer configuration that corresponds to a dislocation line that is terminated by a twist defect.

measurement rounds for each code cycle depends on
the measurement fidelity. With higher measurement fi-
delity, fewer measurement rounds are required to reach
the same logical CNOT gate fidelity. As with the width
of the long ancilla, errors in the time dimension are
suppressed exponentially with the number of measure-
ment rounds, i.e., with the code distance in time, but
the number of possible error strings increases linearly
with s. This implies that the number of measurement
rounds needs to increase with O(log s). Thus, the total
time overhead is still just O(log s), which is essentially
constant for finite-size systems.

3.3 CNOT between edge-tracked qubits

The previously discussed standard lattice surgery pro-
tocols can be used to measure Zeqge ® Zedge and
Xedge ® Xedge- However, CNOTSs between edge-tracked
qubits may require additional parity measurements.
This is where dislocations and twist defects come into
play.

In Fig. 6, we explore the two additional situations

that may occur for X; ® X-parity measurements be-
tween an ancilla and an edge-tracked target qubit dur-
ing a CNOT protocol. In the first situation (a), the
Xp-operator is defined by the target’s Z-edge as a con-
sequence of edge tracking. Thus, lattice surgery needs

to measure the operator Xégggma) ® Zégagzgm). For this,
the boundary stabilizers are merged, and new stabilizers
are introduced. One can check that all stabilizers com-
mute, and that the product of the nontrivial stabilizers

indeed yields X; ® Xp.

The remaining possibility is that, as a consequence of
edge tracking, none of the edges of the target define its
Xr. In (), the target qubit is in the encoding where
Xedge = 21, and Zegge = Y. Since X = iZ1 Yy, and
therefore X = iXcqge Zedge, lattice surgery now needs

to measure Xc(ggglna) ® iXC((tiagrcht) . Zc(gagrcg(’t). Similar
to the previous cases, stabilizers along the boundary
in (b3) are merged yielding the trivial stabilizers. The
product of the newly introduced nontrivial stabilizers is
again the X ® X -parity. Note that the center qubit of

the blue five-qubit operator contributes to the stabilizer
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Figure 7: Long-range multi-target CNOTs with edge-tracked qubits. The control, ancillas, and target 1 are in the default encoding
Zedge = Z1, and Xcgge = X1, Whereas target 2 and target 3 have been modified by edge tracking, such that X ® X-parity
measurements require lattice surgery between different edge types. Five ancilla qubits are initialized in the |+)-state (1) and their
Z1,® Z-parities with the control qubit are measured simultaneously (2). Ancillas 2 and 4 merely provide long-range communication
and are not used for CNOTs, but are instead read out in the X-basis. Subsequent X1 ® Xp-parity measurements (3) use the
previously discussed lattice surgery protocols for edge-tracked qubits.

measurement in the Y-basis, since it is part of both the
X- and the Z-edge.

Such a parity measurement can also be used to mea-
sure the product i Xcqge - Zedge Of a qubit, e.g., to read
out the qubit in the Yj-basis in the default encod-
ing. For this, an ancilla can be initialized in the |0)-
state, such that a Yéqublt) ® Z}Jancma)—parity measure-
ment between qubit and ancilla is equivalent to a Y-
measurement of the qubit.

This covers all the necessary lattice surgery protocols
for CNOTs between edge-tracked qubits. The Zp ® Zp-
parity measurements between ancilla qubits and edge-
tracked control qubits are analogous to the X ® Xp-
parity measurements in Fig. 6.

3.4 Connection to twist defects

The stabilizer configurations in these modified lattice
surgery protocols feature dislocations and twist defects.
The mixed stabilizers in (a3) correspond to a dislocation
in the surface code. The stabilizer configuration in (b3)
corresponds to a dislocation line between the X-edge
of the ancilla and the Z-edge of the target which is
terminated by a five-qubit twist defect [15, 16].
Twist-based lattice surgery can also be interpreted in
a Majorana fermion picture. It was pointed out that
the corners of square surface code qubits (as in Fig. 1)
correspond to twist defects [16]. Similarly, the ends
of the X- and Z-edges of wide qubits can be replaced

by twist defects — i.e., Majorana fermions — such that
the logical operators X, Zr, and Y7, are two-Majorana
fermion parity operators. Lattice surgery then effec-
tively implements a four-Majorana fermion parity mea-
surement [16]. In Fig. 6 (b3), these four Majorana
fermions are in the bottom left and right corners of the
target, and in the top left and right corners of the an-
cilla. The twist defect corresponds to the remaining
Majorana fermion residing between the X- and Z-edge
of the target qubit, which is not part of the parity mea-
surement.

3.5 Long-range multi-target CNOT

The simultaneous Zj,® Z -parity measurements of long-
range CNOTSs can be used for multi-target CNOTs, i.e.,
for multiple CNOTs with the same control, but different
target qubits. An example is shown in Fig. 7, where five
ancillas are used to perform three CNOTs with three
edge-tracked targets simultaneously. Step (2) shows the
simultaneous measurement of Zj ® Zp-parities of six
neighboring qubits, which correspond to one control and
five ancilla qubit. This protocol effectively measures the
Z5, ® Z-parities of all pairs of qubits, and in particular
of the control and each ancilla qubit. Thus, each of
the five ancilla qubits can be used for X ® X -parity
measurements with target qubits. While ancillas 1, 3,
and 5 are used for CNOTs with targets 1, 2, and 3,
ancillas 2 and 4 merely bridge distances between distant
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Figure 8: Example of a two-dimensional arrangement of surface code qubits, where qubits are grouped in blocks of six. The long
ancilla qubits can be used for three simultaneous long-range CNOT gates.

qubits.

Thus, by simultaneously initializing multiple ancillas,
lattice surgery provides long-range multi-target CNOT's
with edge-tracked qubits with the same time overhead
as single CNOTs. At the end of the protocol, ancillas
that are used for X ® X -parity measurements with
target qubits are read out in the Z-basis, whereas an-
cillas used to bridge long distances are read out in the
X-basis. Multi-target CNOTs are particularly useful
for logical T-gates, as magic state distillation schemes
typically consist of many multi-target CNOTs. These
complete the universal gate set of our scheme, as we
discuss in the following section.

4 2D arrangement of logical qubits

So far, we have considered logical qubits arranged on
a line. The lattice-surgery-based CNOT gates can also
provide long-range connectivity in two dimensions. For
this, it will be convenient to use the space of wide qubits
to encode two logical qubits instead of just one. The
double-sided qubits shown in Fig. 9 reduce the space
overhead from ~ 2d? physical qubits for each logical
(wide) qubit back to ~ d? physical qubits, similar to
the square qubits in Fig. 1. The downside of double-
sided qubits is that state initialization and readout is
more complicated, as the two encoded qubits cannot be
measured independently. However, one can use lattice
surgery to initialize and read out in any Pauli basis. For

instance, a qubit can be initialized in the |0)-state by
initializing a standard ancilla encoding a single qubit
in the |0)-state and performing lattice surgery via the
Z-edges of both qubits. Readout is done the same way,
using the appropriate edge of the qubit. Should one
require fast initialization and readout, it is still possible
to use wide qubits instead of double-sided qubits.

An example of a 2D arrangement of double-sided
qubits is shown in Fig. 8, where they form blocks of
six logical qubits. The space between blocks is used for
ancilla qubits for long-range CNOT gates. The separa-
tion between blocks not only sets the maximum width
of the ancilla qubits, but also influences the number
of multi-target CNOTs that can be performed simul-
taneously. The larger the separation, the more ancilla
qubits can fit between the qubit blocks. The example
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Figure 9: Double-sided qubits encode two logical qubits using
(a) 2d*> +d — 1 or (b) 2d*> — d physical qubits. The left and
right edges correspond to the logical operators Z;, ® Z;, and
X1 ® X, of both encoded qubits, respectively.
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Figure 10: Example of the 15-to-1 magic state distillation protocol using long-range multi-target CNOTs via lattice surgery. By
appropriately partitioning the long ancilla qubit, it can be used for each of the five multi-target CNOTs of the protocol.

in Fig. 8 shows three simultaneous CNOT gates, where
the space between qubit blocks allows for two parallel
“lanes” of CNOT ancillas. Thus, a larger separation be-
tween qubit blocks increases the connectivity, but also
the space overhead.

4.1 Example: Magic state distillation

Having discussed the implementation of the logical Clif-
ford gates in our scheme, the remaining gate for univer-
sal quantum computation is the logical T-gate. One
possibility to implement the logical T-gate using physi-
cal T-gates and logical Clifford gates is magic state dis-
tillation [20]. The aim of this scheme is to generate an
encoded magic state |m) = (|0) + ¢™/*|1))/v/2, which
corresponds to a |+)-state on which a T-gate has been
performed. A CNOT gate between |m) and a target
qubit, followed by the measurement of |m) corresponds
to a logical T-gate on the target qubit, up to a Clifford
correction.

However, it is only possible to prepare physical magic
states, which are moreover faulty states |m), i.e., gener-
ated using an imprecise physical T-gate. These physical
states can be converted into logical faulty magic states
|m) via state injection [19]. Magic state distillation pro-
tocols take many faulty magic states and convert them
to fewer, but more precise magic states. These protocols
typically consist of many multi-target CNOT gates.

One example of a magic state distillation protocol
is shown in Fig. 10 for the example of 15-to-1 conver-
sion [20], which converts 15 faulty magic states into
one better magic state. It consists of 34 CNOT gates
grouped into five multi-target CNOTs. The figure also
shows an arrangement of qubits that can be used to
implement the protocol. By appropriately partition-

ing the long ancilla qubit, each of the five multi-target
CNOQOTs can be performed using the protocol in Fig. 7.
We provide the detailed stabilizer configurations for this
15-to-1 conversion in Appendix A. The space overhead
of the 15-to-1 conversion depends on the code distances
of the magic states and the width of the ancilla. The
time overhead is mostly determined by the five multi-
target CNOTSs, which require two code cycles (includ-
ing repetitions accounting for stabilizer measurement
errors) for their parity measurements by lattice surgery.

5 Conclusion

We have demonstrated that edge tracking can be used
to eliminate the time overhead of logical single-qubit
Clifford gates in surface codes, as should be expected
considering the Gottesman-Knill theorem. Twist-based
lattice surgery provides long-range multi-target CNOT's
with a time overhead that only scales with O(logs) of
the control-target separation s, and a space overhead
that scales with O(slogs). Compared to color code
qubits, the surface code qubits used in our scheme re-
quire more physical qubits (~ d?) for each logical qubit
with code distance d, but — with the exception of twist
defects — only require the measurement of weight-four
stabilizers. Our scheme can provide full 2D connectivity
between logical qubits, where the degree of connectiv-
ity is governed by the separation of qubit blocks, and
therefore by the space overhead. Together with magic
state distillation, our scheme allows for fault-tolerant
universal quantum computation.

One may be wondering whether there is still any ad-
vantage offered by the transversal gates of color codes
and the color-code-based scheme presented in Ref. [23].




color code

wide surface code double-sided surface code

space overhead + low (=~ 3d* or 1d?)

— high (=~ 2d?) ~ moderate (~ d?)

initialization & readout + fast X,Y,Z

~ fast X, Z; slow Y —slow X, Y, Z

stabilizer weight

— high (six or eight)

+ low (four) + low (four)

Table 1: Comparison between color-code-based [13, 23] and surface-code-based schemes.

A comparison of these codes is shown in Tab. 1. While
color codes require the measurement of higher-weight
stabilizers, they offer fast qubit readout in all Pauli
bases, and a lower space overhead of ~ %dg physical
qubits per logical qubit for 6.6.6 color codes, or even
~ %dz for 4.8.8 color codes. So if the measurement of
higher-weight stabilizers is not substantially more dif-
ficult in a given physical implementation, as might be
the case for Majorana-based qubits, it is advantageous
to use the color-code-based scheme. In other implemen-
tations, such as superconducting qubits, the difficulty of
higher-weight stabilizer measurements shifts the prefer-
ence towards surface-code-based architectures.

An important point is that the Gottesman-Knill the-
orem allows for the classical tracking of all Clifford
gates, including CNOT gates. As CNOT gates map
X®1 = X®Xand 107 — Z® Z, tracking of CNOTs
does not preserve the locality of the logical operators, in
contrast to single-qubit Clifford gates. By tracking all
Clifford gates, any layer of Clifford gates followed by n
single-qubit measurements can always be compressed to
n measurements of nonlocal products of Pauli operators
without any preceding gate operations (see Fig. 11 for
an example). With distilled magic states as a resource,
any non-Clifford gate corresponds to trackable Clifford
gates and a measurement of the magic state. In this
case, Pauli product measurements are the only hard-
ware operations that need to be performed explicitly.
The fault-tolerant measurement of any nonlocal Pauli
product can be implemented using an ancilla qubit and
a multi-target CNOT gate on edge-tracked qubits. An
example of such a protocol is shown in Fig. 12 for the
measurement of the Pauli product Z;, ® Y, ® Z;, @ X.

1) opP— A o) {zHz
o) AL ) v HZ
|g3) {ZI - lgs) < 2

) T

)
9 l94)

Figure 11: Example of a Clifford circuit that is reduced to Pauli
product measurements.

Thus, any quantum computation can be performed us-
ing only two types of hardware operations: distillation
of resource states and Pauli product measurements via
multi-target CNOT gates on edge-tracked qubits.

A crucial problem of quantum information theory is
the optimization of quantum circuits in order to mini-
mize the space-time overhead of any quantum computa-
tion. However, any circuit optimization depends on the
constraints set by the quantum computer hardware and
the code used for error correction. Based on the existing
schemes for surface-code and color-code quantum com-
putation, the following minimal assumptions concern-
ing the underlying hardware and the logical operations
accessible by the code appear reasonable: (i) The un-
derlying hardware can measure local products of phys-
ical Pauli operators. (i) The quantum error-correcting
code allows for the measurement of nonlocal products
of logical Pauli operators. (iii) Resource states can be
generated for the implementation of logical non-Clifford

) T7L ||Oi PP P—A
a1

N
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Figure 12: Circuit identity for the measurement of the Pauli
product operator Z®Y ® Z ® X using an ancilla and a multi-
target CNOT gate. The circuit identity exploits the fact that
the roles of control and target can be reversed by the application
of Hadamard gates before and after a CNOT gate. Any product
of Pauli operators can be measured this way.




gates. Based on these constraints, an important circuit
optimization problem is to find heuristics that minimize
the number of required resource states and the number
of layers of Pauli product measurements, as these are
the only operations that cannot be relegated to a clas-
sical computer.

Open questions related to our surface-code scheme
include the efficient decoding of wide, long and double-
sided qubits, estimations of their survival times, and
implementations of our scheme in a concrete phys-
ical system. Our scheme may also be adapted to
surface-code quantum computing with twist-based tri-
angle codes [26], in order to avoid the reorientation of
triangles, and to further reduce the space overhead of
surface codes. We hope that our lattice-surgery-based
approach can contribute to ongoing efforts to realize a
surface-code quantum computer.
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A Magic state distillation protocol

Here, we explicitly show the lattice surgery protocols for
the multi-target CNOTs part of the 15-to-1 magic state
distillation scheme in Fig. 10. Figures 13 and 14 show
the five multi-target CNOTs of the distillation proto-
col, where the control and target qubits are highlighted
in blue and orange, respectively. Note that the default
encodings of the X- and Z-edges of qubits 5, 9 and 11
are inverted in this protocol. The figures only show
the Z; ® Zp-parity measurements. The subsequent
X, ® Xp-parity measurements are done via lattices
surgeries between the highlighted orange edges and the
adjacent ancilla qubits.
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Figure 13: First and second multi-target CNOT of the distillation protocol in Fig. 10.
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Figure 14: Third, fourth and fifth multi-target CNOT of the distillation protocol in Fig. 10.
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