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The geometry of multiparameter families of quantum states is important in numerous contexts, including
adiabatic or nonadiabatic quantum dynamics, quantum quenches, and the characterization of quantum
critical points. Here, we discuss the Hilbert space geometry of eigenstates of parameter-dependent random
matrix ensembles, deriving the full probability distribution of the quantum geometric tensor for the Gaussian
unitary ensemble. Our analytical results give the exact joint distribution function of the Fubini-Study metric
and the Berry curvature. We discuss relations to Levy stable distributions and compare our results to
numerical simulations of random matrix ensembles as well as electrons in a random magnetic field.
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Introduction.—The geometry underlying the eigenstates
of parameter-dependent quantum Hamiltonians is concisely
described in terms of the quantum geometric tensor [1,2].
Its symmetric part is the Fubini-Study metric, while its
antisymmetric part is the Berry curvature [3]. Both
contributions to the quantum geometric tensor have impor-
tant physical consequences, in particular in the context
of adiabatic quantum dynamics beyond the Born-
Oppenheimer approximation. When a slow system is
coupled to a fast one, the symmetric and antisymmetric
parts of the quantum geometric tensor govern electric and
magnetic gauge forces acting on the slow system [4]. An
important application of these ideas is to the semiclassical
dynamics of Bloch electrons [5], where these gauge forces
are at the core of anomalous Hall effects, both unquantized
and quantized. In this case, each band defines a family of
quantum states which is parametrized by the Bloch
momenta, and it is by now well understood that the physics
of electronic systems is affected by the local geometry [5]
as well as the global topology of the bands [6]. In
disordered or interacting systems, the magnetic fluxes
threading the system in a real-space torus geometry play
a role which is quite analogous to that of the Bloch
momenta of noninteracting clean systems [7]. The corre-
sponding boundary geometric tensor has been shown to
provide an appropriate scaling variable for Anderson
transitions, and to assume a universal probability distribu-
tion at the critical point [8]. More generally, the quantum
geometric tensor is an important characteristic of quantum
phase transitions [2,9].
Here, we derive the exact joint probability distribution of

the quantum geometric tensor for the Gaussian unitary

ensemble (GUE) of random matrix theory. The probability
distribution of the quantum geometric tensor for random
matrix ensembles was recently introduced by Berry and
Shukla [10], extending earlier work on the Berry curvature
and the fidelity susceptibility [11–14]. Berry and Shukla
base their discussion on analytical results for small random
matrices, which is sufficient to obtain the correct asymp-
totics of the distribution function, but fails to describe the
bulk of the distribution for generic systems. Here, we find
the exact analytical distribution for large random matrices
which describe systems with delocalized dynamics in the
absence of time-reversal symmetry. Large random matrices
are a powerful tool to describe spectra and eigenstates of
generic quantum systems [15,16] and are applicable to a
remarkably diverse set of systems, including nuclear
spectra [17], chaotic billiards [18], quantum chromo-
dynamics [19], few-body chaotic quantum systems [20],
disordered electron systems [21,22], nonintegrable many-
body systems [23,24], and many-body localization
[25–27]. Most recently, random matrix theory was instru-
mental in claims that quantum processors have reached the
regime of quantum supremacy [28]. A central role in this
argument was played by the Porter-Thomas distribution,
one of only a few distribution functions in random matrix
theory which are known exactly and have a simple
analytical form. In view of the scarcity of exact analytical
distributions in random matrix theory, it is quite remarkable
that the characteristic function of the joint distribution
function of the quantum geometric tensor can be obtained
exactly.
Quantum geometric tensor.—We consider the eigen-

states jñðλÞi of a multiparameter family of Hamiltonians
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HðλÞ with λ ¼ ðλ1;…; λnÞ. A metric structure associated
with the parameter-dependent eigenstates can be obtained
by defining the distance in Hilbert space for two states with
infinitesimally different parameters as

ds2¼ 1− jhñðλÞjñðλþdλÞij2¼
X
αβ

RegðnÞαβ ðλÞdλαdλβ: ð1Þ

Explicitly expanding in dλ yields the Hermitian quantum
geometric tensor [1,2]

gðnÞαβ ¼ h∂αñj∂βñi − h∂αñjñihñj∂βñi: ð2Þ
The distance ds2 is entirely determined by the real and
symmetric part, which is also known as the quantum metric
tensor. The imaginary and antisymmetric part is readily
identified as the Berry curvature [3], which can be nonzero
for broken time-reversal symmetry. Equation (1) indicates

that the quantum geometric tensor gðnÞαβ quite generally
governs the behavior of systems under quantum quenches
which involve small changes of the parameters.
Following Berry and Shukla [10], we consider a two-

parameter family of Hermitian N × N Hamiltonians

H ¼ H0 þ xHx þ yHy; ð3Þ
which depend on the real parameters x and y [29].
Evaluating the derivatives in Eq. (2) at x ¼ y ¼ 0, one
can express the quantum geometric tensor in terms of the
eigenenergies En and eigenstates jni of H0,

gðnÞαβ ¼
X
mð≠nÞ

hnjHαjmihmjHβjni
ðEn − EmÞ2

ð4Þ

with α; β ∈ fx; yg.
For orientation, we first consider the distribution func-

tion of individual matrix elements of the quantum geo-
metric tensor for an N × N matrix Hamiltonian H0 of an
integrable system whose energy eigenvalues are sta-
tistically independent. In this case, the matrix elements
of the quantum geometric tensor in Eq. (4) are sums over

N − 1 statistically independent terms, gðnÞαβ ¼ P
mð≠nÞ xm,

and one expects their probability distributions PintðgÞ to
converge to a stable distribution in the limit N → ∞. In the
absence of correlations between the eigenvalues and thus of
level repulsion, the distribution of the individual terms in
the sum is readily seen to fall off as 1=jxj3=2 at large jxj [30],
with large values of jxj originating from near degeneracies
in the spectrum of H0. Importantly, both the average and
the variance diverge for this distribution. As a result, the
sum (4) does not constitute a standard random walk, for
which the central limit theorem predicts a normal distri-

bution. Instead, the matrix elements gðnÞαβ can be viewed as
Levy flights and their probability distributions are Levy
stable distributions. The terms in the sum have random

signs for the real and imaginary parts of off-diagonal matrix
elements, but are strictly positive for diagonal elements,
leading to different stable distributions. For an asymptotic
1=jxj3=2 decay at large jxj, one finds distributions PintðgÞ ¼R ðdξ=2πÞeiξgP̃intðξÞ with characteristic functions [30,31]

P̃intðξÞ ¼
(
e−

ffiffiffiffiffiffiffi
1
2
γjξj

p
ð1þisgnξÞ diagonal;

e−
ffiffiffiffiffi
γjξj

p
off diagonal;

ð5Þ

where γ controls the scale. Because of the
ffiffiffiffiffijξjp

singularity of
the characteristic function, the distributionsPintðgÞ fall off as
1=jgj3=2 at large jgj, indicating that they are dominated by
individual terms in the sum (4). Physically, this broad
distribution is a direct consequence of the fact that the level
spacing distributionof integrable systems remains nonzero in
the limit of zero spacing.
Joint distribution function for the GUE.—In generic

systems, level repulsion suppresses the likelihood of small
energy denominators and the distribution ofmatrix elements
of the quantum geometric tensor decays faster. If we
continue to assume that the matrix elements are dominated
by individual terms in the sum (4), the tail of the distribution
can be predicted on the basis of random 2 × 2GUEmatrices,
yielding a faster asymptotic decay, ∼1=jgj5=2 [10]. In
addition to suppressing the probability with which near
degeneracies occur, level repulsion introduces correlations
between the terms in the sum in Eq. (4). As a result, the
distribution of the quantum geometric tensor no longer
belongs to the family of Levy stable distributions.
Remarkably, however, it can still be computed exactly.
We now focus on large random matrices drawn from the

Gaussian unitary ensemble, which neither obeys time-
reversal symmetry nor imposes any other (anti)symmetry
(symmetry class A in the Altland-Zirnbauer classification
[32,33]). The (Hermitian) matrices H0, Hx, and Hy are
drawn from three statistically independent GUEs,

PðH0;Hx;HyÞdH0dHxdHy

∝ e−ð1=2ÞNtrðH2
0
þH2

xþH2
yÞ
Y
i;j

dðH0ÞijdðHxÞijdðHyÞij; ð6Þ

where the averages over Hx and Hy are introduced for
convenience. We comment below on the case when the
average is over H0 only. Exploiting Hermiticity, we para-
metrize the quantum geometric tensor gðnÞ as gðnÞ ¼
gðnÞ0 þ gðnÞ · τ, where τ denotes the vector of Pauli matrices

and gðnÞ0 ¼ 1
2
trgðnÞ, gðnÞ1 ¼ RegðnÞyx , gðnÞ2 ¼ ImgðnÞyx , and

gðnÞ3 ¼ 1
2
trðτ3gðnÞÞ. Notice that gðnÞ2 measures the Berry

curvature and gðnÞ0 , gðnÞ1 , gðnÞ3 parametrize the quantum metric
tensor.We can then define the joint probability distribution of
the quantum geometric tensor through
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PðgÞ ∝
�X

n
δðEnÞδðg0 − gðnÞ0 Þδðg − gðnÞÞ

�
H0;Hx;Hy

: ð7Þ

Here, the brackets denote the randommatrix average and the
first δ function ensures that we consider the quantum geo-
metric tensor for states which are at the center of the
spectrum [34].
The corresponding characteristic function defined via

PðgÞ ¼ R ðdξ0=2πÞ½ðdξÞ=ð2πÞ3�ei½ξ0g0þξ·g�P̃ðξ0; ξÞ takes the
form

P̃ðξ0; ξÞ ∝
�X

n
δðEnÞe−i½ξ0g

ðnÞ
0

þξ·gðnÞ�
�

H0;Hx;Hy

: ð8Þ

In the limit of N → ∞, the random matrix averages can be
performed explicitly. We defer technical details to further
below and the Supplemental Material [30], and focus first
on discussing our results.
Results.—We find that the characteristic function for the

quantum geometric tensor takes the exact form

P̃ðξ0; ξÞ ¼ rðXþ; X−Þe−ðXþþX−Þ; ð9Þ

where we defined X� ¼ 1
2
ð1þ isgnξ�Þ

ffiffiffiffiffiffiffiffiffiffi
γjξ�j

p
in terms of

ξ� ¼ ξ0 � jξj and the rational function

rða; bÞ ¼ 1þ ðaþ bÞ þ 1

3
ða2 þ 3abþ b2Þ

þ 1

24

a4 þ 9a3bþ 17a2b2 þ 9ab3 þ b4

aþ b

þ 1

120
abð5a2 þ 16abþ 5b2Þ

þ 1

720

a2b2ð13a2 þ 29abþ 13b2Þ
aþ b

þ 1

240
a3b3

þ 1

1920

a4b4

aþ b
þ 1

34560

a5b5

ðaþ bÞ2 : ð10Þ

For the specific scalings of the GUE matrices in Eq. (6), we
find γGUE ¼ 4N. Notice that P̃ð0; 0Þ ¼ 1, so that PðgÞ is
normalized. Equations (9) and (10) give the exact character-
istic function of the distribution of the quantum geometric
tensor for large GUE matrices, and are the central results of
this Letter.
The characteristic functions of the distribution of the

diagonal elements gxx and gyy are obtained from Eqs. (9)
and (10) by setting ξ0 ¼ �ξ3 ¼ ξ and ξ1 ¼ ξ2 ¼ 0 (see
[30] for an explicit evaluation). Interestingly, the resulting
exponential factor in Eq. (9) has just the same form as in
Eq. (5). This also happens for the distributions of Regxy and
the Berry curvature Imgxy, obtained by setting ξ1 ¼ ξ or
ξ2 ¼ ξ, respectively, with all other ξj ¼ 0. Thus, it is the
rational prefactor in Eq. (9) that accounts for the spectral
correlations introduced by the GUE. Expanding the

exponential in Eq. (9), we observe that the leading non-
analyticity of P̃ðξ0; ξÞ is of the form jξj3=2, which contrasts
with the leading jξj1=2 singularity of the characteristic
function P̃intðξÞ in Eq. (5). This implies that the GUE
distribution function of the quantum geometric tensor
indeed falls off as PðgÞ ∝ 1=jgj5=2 for large jgj and thus
faster than the corresponding distribution PintðgÞ ∝ 1=jgj3=2
for integrable systems, corroborating the expectation
in Ref. [10].
Our analytical distribution functions of the quantum

geometric tensor are in excellent agreement with numerical
results for GUE random matrices. Figures 1(a) and 1(b)
illustrate this for the distributions of trg and Regxy. We find
that the off-diagonal element of the quantum metric tensor
has the same distribution as the Berry curvature [11]. For a
more detailed comparison to numerical simulations, we
note that PðgÞ obtained by Fourier transforming Eq. (9)
depends on the quantum geometric tensor only through its
eigenvalues g� ¼ g0 � jgj. Writing g ¼ Udiag½gþ; g−�U†,
the distribution function is independent of the diagonaliz-
ing unitary matrix U, and employing a convenient

(a) (b)

(c) (d)

FIG. 1. Distribution functions of (a) the trace G ¼ trg and
(b) the off-diagonal matrix element (real part) of the quantum
geometric tensor. Numerical data for random matrices (blue lines;
H0, Hx, and Hy drawn independently from the GUE with
N ¼ 100, 106 realizations) are compared to the Fourier transform
of the analytical result obtained from Eq. (9) (orange dots). (c) 3D
plot of the distribution function pðgþ; g−Þ based on the analytical
result in Eq. (12). (d) Corresponding 3D plot obtained numeri-
cally for random matrices (N ¼ 100, 106 realizations). Insets in
(a) and (b): Log-log plots emphasizing the asymptotic 1=jgj5=2
decays (black line).
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redundancy of parametrization, we define the correspond-
ing joint eigenvalue distribution pðgþ; g−Þ through

PðgÞdg ¼ pðgþ; g−Þdgþdg−dμðUÞ; ð11Þ

where dμðUÞ is the invariant measure of the unitary group,
with the group volume normalized to unity. We find

pðgþ; g−Þ ¼ −
iðgþ − g−Þ

32π2

Z
dξþdξ−ðξþ − ξ−Þ

× P̃ðξ0; ξÞeði=2Þðgþξþþg−ξ−Þ: ð12Þ

A 3D plot of this distribution in Fig. 1(c) shows excellent
agreement with a numerical histogram for GUE matrices in
Fig. 1(d).
Our results can also be used to compute exact and explicit

distribution functions of the trace of the quantum geometric
tensor for one [14] and two parameters (see Supplemental
Material [30]). For larger numbers of parameters, we obtain
the asymptotics at small trg in [30], which was previously
considered in [10]. We also note that the GUE averages over
the perturbations Hx and Hy are actually redundant in the
limit of N → ∞ considered above [30].
Random flux model.—The distribution function of the

quantum geometric tensor is thus not very sensitive to the
particular nature of the perturbation. This suggests that it
applies to the large class of physical models which have
been shown to display GUE random matrix correlations.
Here, we illustrate this broad applicability by simulations
for an appropriate Anderson model. Specifically, we con-
sider a tight-binding model

H ¼
X
hiji

tijc
†
i cj þ

X
j

ϵjc
†
jcj; ð13Þ

with random site energies ϵj drawn from the interval
½−W;W� and hopping amplitudes tij ¼ eiϕij for the
directed nearest-neighbor bonds hiji with random phases
ϕij ¼ −ϕji. The random phases break time-reversal sym-
metry, so that the model falls into the unitary symmetry
class. Placing the lattice on a torus, we thread the
independent loops of the torus by fluxes ϕx and ϕy. We
then compute the corresponding quantum geometric tensor
gαβ by explicitly constructing the current operators, Jx ¼
∂ϕx

H and Jy ¼ ∂ϕy
H and evaluating the expression in

Eq. (4). Figure (2) shows the distribution functions of gxx
and Regxy for a 3D cubic lattice, where we filter the
eigenstates at the center of the band and consider param-
eters well inside the metallic phase (moderate disorder),
such that states at the band center are extended and the
elastic mean free path is small compared to the system
size L. The results are indeed in good agreement with the
exact random matrix distribution. We observe numerically
that the off-diagonal elements converge faster to the

universal distribution than the diagonal elements. This
difference persists for simulations of the corresponding
Levy flights and is even more pronounced in simulations of
a 2D random flux model. We also confirmed that the Berry
curvature Imgxy has the same distribution as Regxy in the
random flux model.
Derivation.—We briefly sketch the derivation of our

central result in Eq. (9), with details relegated to [30]. The
averages over Hx and Hy in Eq. (8) reduce to Gaussian
integrals and can be readily performed,

P̃ðξ0; ξÞ ∝
�
δðENÞ

YN−1

m¼1

E4
m

ðE2
m þ iξ0

2NÞ2 þ jξj2
4N2

�
H0

: ð14Þ

We reinterpret this as an average over an ðN − 1Þ × ðN − 1Þ
random matrix H̃ with eigenvalues Em andm¼1;…;N−1,
using the joint eigenvalue distribution of the GUE [35] (see
also [36,37]). This yields

P̃ðξ0; ξÞ ∝
� ðdet H̃Þ6Q

4
j¼1 detðH̃ þ iajÞ

�
H̃

; ð15Þ

where the parameters aj with j ¼ 1;…; 4 solve a2j ¼
iðξ0 � jξjÞ=2N.
Equation (15) is now amenable to supersymmetry

methods (see also Refs. [38,39] for general discussions
of spectral determinants in random matrix theory). One
rewrites the determinants as Gaussian integrals over
(N − 1)-dimensional vectors of commuting and anticom-
muting variables, performs the random matrix average over
H̃, and employs superbosonization [40,41] to reduce the

(a) (b)

FIG. 2. Distribution functions of (a) the diagonal and (b) the
off-diagonal matrix element (real part) of the quantum geometric
tensor of the 3D random flux model. Numerical data [symbols;
see legend in panel (b)] are compared to the analytical result
obtained from Eq. (9) (full line). The inset in panel (a) shows
unscaled data for gxx. The data in the main panels were scaled to
collapse onto a universal curve using the same set of scaling
factors G0 for gxx in (a) and Re½gxy� in (b), namely G0 ¼ 3.0395
for W ¼ 3; L ¼ 12, G0 ¼ 3.8685 for W ¼ 2; L ¼ 12, G0 ¼
1.5760 for W ¼ 5; L ¼ 12, and G0 ¼ 1.7730 for W ¼ 4; L ¼ 9.
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integration over the vectors to a finite-dimensional integral.
Computing this integral exactly in the N → ∞ limit by the
saddle-point method yields Eqs. (9) and (10), see [30] for
further details.
Conclusion.—We have used supersymmetry techniques

to derive the exact distribution function of the quantum
geometric tensor for random matrices in the Gaussian
unitary ensemble and confirmed that it applies to physical
models of noninteracting electrons in the metallic regime.
The matrix elements of the quantum geometric tensor can
be thought of as Levy flights with correlations, and some
aspects of the resulting distribution resemble corresponding
Levy stable distributions. Because of the wide applicability
of random matrix theory, our results promise numerous
applications and extensions to specific physical systems. It
would also be highly interesting to extend them to other
ensembles of random matrix theory such as the Gaussian
orthogonal ensemble applicable to time-reversal-invariant
systems, extending earlier work [10,12–14], and beyond
the limits of delocalized dynamics, both in the localized
regime or at the Anderson transition, where the distribution
of the quantum geometric tensor has already been consid-
ered numerically [8].
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