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A recent experiment [Nadj-Perge et al, Science 346, 602 (2014)] gives possible evidence for Majorana
bound states in chains of magnetic adatoms placed on a superconductor. While many features of the
observed end states are naturally interpreted in terms of Majorana states, their strong localization remained
puzzling. We consider a linear chain of Anderson impurities on a superconductor as a minimal model and
treat it largely analytically within mean-field theory. We explore the phase diagram, the subgap excitation
spectrum, and theMajoranawave functions. Owing to a strong velocity renormalization, the latter are localized
on a scale which is parametrically small compared to the coherence length of the host superconductor.
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Introduction.—There is currently great interest in
Majorana bound states in condensed-matter systems which
realize non-Abelian quantum statistics [1,2] and which
may have applications in topological quantum information
processing [3]. Several platforms allow one to engineer
topological superconducting phases supporting Majorana
bound states, based on proximity coupling to s-wave super-
conductors (SCs). These include topological insulators [4,5],
semiconductor quantum wires [6–8], and chains of magnetic
adatoms [9–14] (see also Refs. [15–17]). All of these pro-
posals are being actively pursued in the laboratory [18–26].
A recent experiment [26] exhibits signatures of Majorana

bound states in chains of Fe atoms placed on a Pb surface.
The experiment suggests that the Fe chain orders ferromag-
netically. The subgap spectrum is probed by scanning
tunneling spectroscopy with both spatial and spectral reso-
lution, which shows zero-energy states near the ends of the
chains. It is tempting to interpret these as Majorana bound
states [26,27], as the system combines the three essential
ingredients: (i) Proximity-induced superconductivity, (ii) a
finite Zeeman splitting due to the exchange field of the
ferromagnetic Fe chains, and (iii) Rashba spin-orbit (SO)
coupling (presumably from the surface of the Pb substrate).
However, the observed localization of the end states on

the scale of a few adatom sites is puzzling [28,29]. The
Majorana localization length is typically estimated as
ξM ¼ ℏvF=Δtop, while the coherence length ξ0 of the
proximity-providing SC is given by ξ0 ¼ ℏvF=Δ. Here,
we assume comparable Fermi velocities vF in the one-
dimensional electron system (“wire”) and the host SC. At
the same time, the induced topological gap Δtop is smaller
than the host gap Δ. Thus, one may expect ξM ≳ ξ0. This
contrasts with the observation that the localization length of
the end states is orders of magnitude smaller than the
coherence length of Pb. Here we address this puzzle by
modeling the adatoms as a chain of Anderson impurities
hybridized with a SC and show that it predicts Majorana

localization lengths which are parametrically smaller than
ξ0 over wide regions of parameter space.
The physics underlying the topological phase in chains of

magnetic adatoms has been discussed using two approaches.
One approach [9,10,30–33] starts with the subgap Shiba
states [34–37] induced by the individual magnetic adatoms.
The adatom is described as a classical magnetic moment
which is exchange coupled to the electrons in the substrate,
but otherwise electronically inert. Such Shiba chains exhibit
topological superconducting phases and hence Majorana
end states. An alternative approach [26,27] starts with
exchange-split adatom states. While they are far from the
Fermi energy for individual adatoms, hopping between the
adatoms of the chain broadens these states into bands. For
sufficiently strong hopping, these bands cross the Fermi
energy and effectively realize a one-dimensional spin-
polarized electron system. In this band limit, topological
superconductivity is induced by proximity, in combination
with SO coupling for ferromagnetic chains or helical
magnetic order along the chain. As an additional benefit,
our model unifies both of these approaches.
Heuristic considerations.—We start by discussing

conventional proximity coupling of a free-electron wire
to a bulk s-wave SC. The wire electrons are described by
their Green function Gðk; EÞ ¼ ½E − vFkτz − Σðk; EÞ�−1,
where τi denote Pauli matrices in particle-hole space. The
self-energy Σ accounts for the coupling to the SC and takes
the familiar form [38,39]

Σðk; EÞ ¼ −Γ
Eþ Δτxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p : ð1Þ

Here, Γ measures the strength of hybridization between
wire and SC. Far above the gap, E ≫ Δ, the SC behaves as
a normal metal and the escape of electrons into the bulk SC
is described by Σ≃ iΓ. For subgap energies, electrons enter
the SC only virtually and Σ becomes real.
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For definiteness, consider energies far below the bulk
gap, E ≪ Δ. Then, we can approximate Σ≃ −ðΓ=ΔÞE−
Γτx, and Gðk;EÞ≃Z½E−ZvFkτz−ZΓτx�−1 with a renor-
malized quasiparticle weight Z ¼ ½1þ Γ=Δ�−1, which des-
cribes the shift of the electrons’ spectral weight from the
wire into the SC. The quasiparticle weight ensures [1] that
the induced s-wave gap (described by the pairing term ∝ τx)
interpolates between the hybridization strength Γ at weak
hybridization, Γ ≪ Δ, and the host gap Δ at strong
hybridization, Γ ≫ Δ. It also renormalizes the Fermi veloc-
ity vF → ~vF ¼ ZvF which controls the coherence length of
the induced superconductivity in the wire. Physically, the
fraction of time an excitation spends in thewire is suppressed
by Z, which reduces the effective velocity to ZvF.
In adatom chains, the SO coupling in the SC allows for

an induced p-wave pairing while the strong on-site
repulsion and resulting spin polarization suppress s-wave
correlations. Thus, the induced gap Δtop ¼ αΔ is now p
wave and controlled by the (dimensionless) SO strength α.
At the same time, it is natural to assume that the
hybridization Γ modifies single-particle properties as
before and the renormalization of vF remains operative.
This predicts a Majorana localization length

ξM ¼ ℏ ~vF=Δtop ¼ ZℏvF=Δtop: ð2Þ
For Fe adatoms in Pb, the hybridization is controlled by
atomic scales so that Γ ∼ 1 eV [26]. When compared to the
host gap Δ ∼ 10 K, we find Z ∼ 10−3. This can dramati-
cally suppress ξM relative to the host coherence length ξ0 ∼
ℏvF=Δ (≃100 nm for Pb). In fact, ξM ∼ ξ0ðΔ=ΓÞðΔ=ΔtopÞ,
so that for α ¼ Δtop=Δ ∼ 0.1, the Majorana localization
length ξM becomes of the order of the spacing between
adatoms, as observed in Ref. [26].
Model.—We now show that these heuristic arguments are

borne out in a microsopic model. We model the system as a
linear chain of Anderson impurities placed in an s-wave
SC. Each adatom hosts a spin-degenerate level of energy ϵd
with on-site Hubbard repulsion U, representing the Fe d
levels. We include nearest-neighbor hopping of strength w
between these d levels as well as hybridization of strength t
between the d levels and the SC. The model Hamiltonian

H ¼ Hd þHs þHT ð3Þ
contains the BCS HamiltonianHs of the SC [40], the chain
of d levels

Hd ¼
X
j;σ

ðϵd − μÞd†j;σdj;σ þU
X
j

n†j↑nj↓

− w
X
j;σ

½d†jþ1;σdj;σ þ d†j;σdjþ1;σ�; ð4Þ

and their hybridization with the SC,

HT ¼ −t
X
j;σ

½ψ†
σðRjÞdj;σ þ d†j;σψσðRjÞ�: ð5Þ

Here, dj;σ annihilates a spin-σ electron in the d level at site
Rj ¼ jax̂ of the chain, nj;σ ¼ d†j;σdj;σ , and ψσðrÞ annihi-
lates electrons at position r (taken as continuous) in the SC.
The model in Eq. (3) generalizes the Shiba chain model

considered in Refs. [9,10]. It reduces to the Shiba chain in
the limit of negligible spin fluctuations and weak intersite
hopping w. Here, we include the hopping and the ensuing
electronic dynamics of the magnetic adatoms within a
mean-field treatment of the Hubbard term [41,42],

Un†j↑nj↓ →
U
2

X
σ

½hnjinj;σ þ hmjiσnj;σ�; ð6Þ

where we defined the occupation nj ¼
P

σnj;σ and the site
polarization mj ¼ nj;↑ − nj;↓. The first term merely
renormalizes ϵd and will be absorbed in the following.
The second term introduces a local exchange coupling in
the adatom orbitals.
As we are predominantly interested in the localization of

the Majorana modes, we do not aim at a self-consistent
solution of the mean-field theory. Instead, we accept the
formation of a spontaneous moment as experimental fact
and explore its consequences. In the experiment, the
moments order ferromagnetically along the chain. In this
case, topological superconductivity requires Rashba SO
coupling in the substrate SC [26,27,43,44]. For analytical
tractability, we assume instead that the moments develop
helical order Sj ¼ ðsin θ cosϕj; sin θ sinϕj; cos θÞ with
ϕj ¼ 2khja and θ ¼ π=2. We emphasize that the model
with helical order can be mapped to a ferromagnetic model
with SO coupling in both the adatom d band and the
substrate SC. Strictly speaking, the substrate SO coupling
generated by the mapping differs from conventional
Rashba coupling, but it does include the specific term that
allows for proximity-induced p-wave pairing. The mapping
is effected by the unitary transformation dj → e−ikhjaσzdj
and ψðrÞ → e−ikhxσzψðrÞ, which rotates the spin basis along
the direction of the local impurity moments [45,46].
Excitation spectrum and phase diagram.—In mean-

field theory, we can describe the system equivalently by
the corresponding Bogoliubov–de Gennes Hamiltonian
H ¼ Hd þHs þHT (after the above-mentioned unitary
transformation) and consider the Green function G ¼
ðE −HÞ−1. In view of the local nature of the hybridization
HT , we can write a closed set of equations for the restricted
Green function gij ¼ GðRi;RjÞ defined at the sites of the
adatoms,

� ðgss0 Þ−1 tτz
tτz E −Hd

�
g ¼ 1: ð7Þ

We use the Pauli matrices τi (σi) in particle-hole (spin)
space. The bare Green function of the SC restricted to the
adatom sites and subgap energies is readily obtained within
BCS theory (see Ref. [46] for more details),
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gss0;ijðEÞ ¼ −πν0 expð−ikhxijσzÞ

×

�
Eþ Δτxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p ImfðrijÞ þ τzRefðrijÞ
�
; ð8Þ

where ν0 is the normal density of state at the Fermi
level, fðrÞ ¼ eikFr−r=ξE=kFr, and ξE ¼ ℏvF=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p
.

Equation (8) is valid for i ≠ j, but also applies to i ¼ j
when dropping the Ref term. Here, the factor
expð−ikhxijσzÞ is induced by the unitary transformation.
The subgap excitation spectrum may then be obtained

from the poles of gss ¼ gss0 ½1 − Σgss0 �−1 where we define the
self-energy Σ ¼ tgdd0 t ¼ tðE −HdÞ−1t. As gss0 has no
poles at subgap energies, this yields the condition
det½1 − Σgss0 � ¼ 0. In (lattice) momentum representation,
the determinant involves a 4 × 4 matrix with [46]

gss0 ðk; EÞ ¼ πν0

�
Eþ Δτxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p Lσz
i ðk; EÞ þ τzL

σz
r ðk; EÞ

�
:

ð9Þ

Here, Lσz
r and Lσz

i are real and imaginary parts of the
function Lσz ¼ Fðkþ khσzÞ − i, respectively, with
FðkÞ ¼ ð1=kFaÞ lnf1 − eiðkFþkÞa−a=ξEg þ ðk↔ − kÞ [48].
Computing the dispersions and identifying phase bounda-
ries by the closing of the gap, we first obtain representative
phase diagrams of the adatom chain, as shown in Fig. 1.
These phase diagrams plot the topological (BDI [49])

index and make the interpolation between the band and
Shiba limits explicit. The Shiba limit corresponds to weak
hopping w between d levels. Here, topological super-
conductivity requires deep Shiba states so that the Shiba
bands cross the chemical potential at the center of the
host gap [10]. The band limit corresponds to weak
hybridization Γ ¼ πν0t2 and thus Shiba states with energies
Es near Δ [42,46]. Then, topological superconductivity
requires that one spin-polarized d band crosses the Fermi
energy. The range over which this happens depends on
the asymmetry of the bare exchange-split adatom states
Ed;σ ¼ ϵd − σUhmi=2 around the chemical potential
(set to μ ¼ 0). Figure 1(a) shows the symmetric case
Ed;↑ ¼ −Ed;↓. There is only a narrow topological interval
in w for small Γ (Es ≃ Δ) because despite the large
exchange splitting of the d levels, the spin-split d bands
cross μ at the same hopping strength w. As the asymmetry
between Ed;↑ and Ed;↓ around μ increases, the d bands
cross μ at different values of w, and the adatom states are
perfectly spin polarized at the chemical potential over a
substantial region in w; cf. Fig. 1(b).
For fully analytical results, we consider the limit of strong

asymmetry with Ed;↑ → −∞ at a fixed Ed;↓. In this limit,
only the spin-down band Ed¼Ed;↓−w

P
�cosðk�khÞa

of the d levels is relevant. A detailed but straight-
forward calculation [46] now shows that the condition
detð1 − Σgss0 Þ ¼ 0 can be reduced to the determinant of a
2 × 2 matrix and written in the form

ðΔ2 − E2Þ½Ed þ ΓLr�2

− E2½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p
− ΓLi�2 þ Γ2Δ2ðδLiÞ2 ¼ 0: ð10Þ

Here, we introduced the shorthand notations Lr=i ¼
ðLþ

r=i þ L−
r;iÞ=2 and δLi ¼ ðLþ

i − L−
i Þ=2. Equation (10)

is an implicit equation for the subgap excitation spectrum
Ek of the adatom chain in the strongly asymmetric limit.
[Note that we have suppressed all k labels in Eq. (10).]
In the limits Γ ≪ Δ and Γ ≫ Δ, Eq. (10) gives explicit

analytical expressions for the excitation spectrum throughout
the entire Brillouin zone. These are obtained by keeping only
the respective dominant term in the second square brackets on
the left-hand side, in excellent agreement with the full Green-
function solution in Figs. 2(a)–2(c). We note that there is a
single subgap state for every latticemomentum k; i.e., there is
one subgap state per adatom, as in the Shiba limit (small w).
Majorana wave function.—Equation (10) also encapsu-

lates the localization of the Majorana wave functions. In the
Shiba limit of small w, the Majorana localization was
addressed previously [50]. Here, we focus on the band limit
of large wwhere the spin-down d band Ed crosses the Fermi
energy of the SC, as is presumably the case in the experiment
[26,27]. Ed crosses μ ¼ 0 at momenta k0, so that Ed≃
vFðk − k0Þ, wherevF is the Fermivelocity of thed band at the
chemical potential of the SC. Similarly, Ed þ ΓLr≃
vFðk − k0Þ, wherewe simply absorb the parametrically small
shifts in vF and k0 due to ΓLr into their definitions.
The decay of the Majorana wave function is controlled

by the behavior of the dispersion near the minimal gap
at k0. Assuming that the pitch of the spin helix
(or, equivalently, the strength of SO coupling) is not too
large, this topological gap will be small compared to the
gap Δ of the superconducting host. Then, E is small
compared toΔ in the relevant region and Eq. (10) simplifies
significantly. Consider first the limit of weak hybridization
Γ ≪ Δ. In this limit, Eq. (10) reduces to

(a) (b)

FIG. 1 (color online). Representative phase diagrams for the
adatom chain as a function of the Shiba state energy Es of an
individual impurity and the hopping amplitude w between d
levels. The colors indicate the topological index (grey: topologi-
cally trivial; red or green: topological phase with index �1). We
chose Ed;↓ ¼ 100Δ, kFa ¼ 4.3π, kha ¼ 0.26π, and ξ0=a ¼ ∞.
The panels correspond to (a) symmetric adatom d bands
(Ed;↑ ¼ −100Δ) and (b) asymmetric adatom d bands
(Ed;↑ ¼ −300Δ). Here, Ed;σ ¼ ϵd − σUhmi=2.
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Ek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½vFðk − k0Þ�2 þ Γ2ðδLiÞ2

q
; ð11Þ

where δLi should be evaluated at k0. We identify the
topological gap Δtop ¼ ΓðδLiÞk¼k0 , which is small com-
pared to Δ. The Majorana wave function is expected
to decay on the characteristic length scale of this
dispersion; i.e., we find the Majorana localization length
ξM ¼ ℏvF=Δtop, consistent with the heuristic argument
above for Γ ≪ Δ. For the numerical parameters of
Fig. 2(c), ξM is larger than the length of the chain, making
a direct comparison impossible.
The experiment is in the limit of the large hybridization

Γ ≫ Δ, where Eq. (10) predicts a low-energy dispersion

Ek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðΔ=ΓLiÞvFðk − k0Þ�2 þ ½ΔðδLi=LiÞ�2

q
: ð12Þ

In this limit, the induced gap Δtop ¼ ΔðδLi=LiÞk¼k0 is
independent of Γ and saturates to a value which is smaller
than Δ by a factor measuring the effective strength of the
SO coupling. The strong hybridization with the SC also
induces a dramatic downward renormalization of the Fermi
velocity of the excitations, vF → ~vF ¼ ðΔ=ΓLiÞvF. These

features are in excellent agreement with the numerical
subgap spectra shown in Figs. 2(a) and 2(b) and vindicate
our introductory heuristic arguments. Indeed, Eq. (12)
predicts a Majorana localization length ξM¼ℏvF=ðΓδLiÞ,
which coincides with Eq. (2) from heuristic consideration.
We see that ξM is independent of the host gap Δ and
controlled instead by the hybridization Γ. This result is
in excellent agreement with numerical Majorana wave
functions for Γ ≫ Δ; see Figs. 2(d) and 2(e).
The topological gaps in Eqs. (11) and (12) are both

enabled explicitly by the SO coupling in the substrate
which enters via the L factors in gss0 . In contrast, the SO
coupling in the d band is fully ineffective due to the strong
spin polarization. Parametrically, one finds δLi ≃ δLi=Li≃
kh=kF in the limit kFa ≫ 1.
Notice that Eqs. (12) and (2) require the condition

Γ ≪ vF=a. This condition ensures that the in-band propa-
gation between adjacent sites, taking time τ ∼ a= ~vF, is
faster than hopping via the host SC, taking time ðΔLrÞ−1
[10]. Then, the k ¼ k0 minimum described by Eq. (12)
dominates over the additional features of the quasiparticle
spectrum associated with logarithmic divergencies in Lr.
They induce power-law tails in the Majorana wave func-
tions [cf. Fig. 2(d)] which become correspondingly more
pronounced as Γ increases.
Local density of states.—We have also numerically

computed [46] the local density of states of the adatom
chain; see Fig. 3. The zero-bias peak grows more pro-
nounced with increasing Γ, reflecting the stronger locali-
zation of the Majorana wave function. In addition to the
zero-energyMajorana peak, one discerns additional peaks at
finite energieswhich arise from vanHove singularities in the
subgap Shiba band andwhich approach the center of the gap
as the hybridization Γ increases. The zero-energy features
and their strong localization as well as the van Hove peaks
are consistent with the experimental observations [26].
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FIG. 2 (color online). Excitation spectra Ek for ka=π ∈ ½0; 1�
and (a) Γ ¼ 64Δ, (b) Γ ¼ 16Δ, and (c) Γ ¼ 0.16Δ. We choose
kFa ¼ 4.3π, kha ¼ 0.26π, Ed;↓ ¼ 100Δ, Ed;↑ ¼ −19900Δ,
w ¼ 90Δ, and ξ0=a ¼ ∞. The dashed lines are subgap disper-
sions of the impurity chain without coupling to the SC. The blue
curves are exact dispersions. The red curves are calculated using
Eq. (12) for Γ ≫ Δ and Eq. (11) for Γ ≪ Δ. Notice that the
horizontal axis in (c) is restricted to a very narrow range and that
the deviation between the red and blue curves is indeed small.
Panels (d), (e), and (f) show Majorana wave functions jψMðiÞj2
(blue lines) obtained for a finite chain of length L ¼ 1500a. Only
the first 120 sites i are shown. (d) and (e) are plotted on a
logarithmic scale and the red dashed lines are fits using Eq. (2) for
the Majorana localization length. (f) is plotted on a linear scale.
(Inset) Decay over the first 600 sites.

(a) (b)

FIG. 3 (color online). Local density of states of particle
excitations, computed in the center (blue lines) and at the end
(red lines), for a chain of length L ¼ 300a and hybridizations
(a) Γ ¼ 64Δ and (b) Γ ¼ 16Δ. Other parameters are as in Fig. 2.
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