
PHYSICAL REVIEW B 102, 045413 (2020)

Photon-assisted resonant Andreev reflections: Yu-Shiba-Rusinov and Majorana states

Sergio Acero González,1 Larissa Melischek,1 Olof Peters ,2 Karsten Flensberg ,3,1

Katharina J. Franke ,2 and Felix von Oppen 1

1Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
2Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany

3Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

(Received 25 April 2020; accepted 30 June 2020; published 10 July 2020)

Photon-assisted tunneling frequently provides detailed information on the underlying charge-transfer process.
In particular, the Tien-Gordon approach and its extensions predict that the sideband spacing in bias voltage
is a direct fingerprint of the number of electrons transferred in a single tunneling event. Here, we analyze
photon-assisted tunneling into subgap states in superconductors in the limit of small temperatures and bias
voltages where tunneling is dominated by resonant Andreev processes and does not conform to the predictions
of simple Tien-Gordon theory. Our analysis is based on a systematic Keldysh calculation of the subgap
conductance and provides a detailed analytical understanding of photon-assisted tunneling into subgap states,
in excellent agreement with a recent experiment. We focus on tunneling from superconducting electrodes and
into Yu-Shiba-Rusinov states associated with magnetic impurities or adatoms, but we also explicitly extend our
results to include normal-metal electrodes or other types of subgap states in superconductors. In particular, we
argue that photon-assisted Andreev reflections provide a high-accuracy method to measure small but nonzero
energies of subgap states which can be important for distinguishing conventional subgap states from Majorana
bound states.
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I. INTRODUCTION

At subgap temperatures and voltages, charge transfer be-
tween conventional superconductors typically occurs by mul-
tielectron processes. Transfer of Cooper pairs is responsible
for Josephson currents flowing between superconductors [1]
and leaves the superconductors in their ground state. Cooper
pairs can also be extracted from, injected into, or transferred
between superconductors with the simultaneous generation
of quasiparticles [2,3]. In these processes—termed multi-
ple Andreev reflections—electrons impinging on one of the
superconducting electrodes are reflected as holes, while a
Cooper pair is transmitted into the superconductor. As a result,
one or several Cooper pairs are transferred between the super-
conductors while generating a pair of quasiparticles [2,4–6].

At subgap voltages, single-electron transmission is pos-
sible only due to thermally excited quasiparticles. In tunnel
junctions, these processes can compete with two-electron
tunneling since the latter are of higher order in the tunneling
amplitude and hence exponentially suppressed. The interplay
of single-electron and two-electron tunneling can be eluci-
dated in scanning-tunneling-spectroscopy experiments where
the junction resistance is readily changed by orders of mag-
nitude, thereby tuning the relative importance of these two
tunneling processes. In a recent experiment [7], this was done
for a system in which tunneling was resonantly enhanced by
in-gap Yu-Shiba-Rusinov (YSR) states associated with a mag-
netic adatom. Single-electron tunneling dominated for large
tip-substrate distances, where tunneling processes are slow
compared to inelastic processes coupling the YSR state to the
quasiparticle continuum. In contrast, the tunnel current was

predominantly carried by two-electron processes at smaller
tip-substrate distances where the tunneling processes are fast.
These resonant two-electron processes—which we term reso-
nant Andreev reflections; see Fig. 1—transfer a Cooper pair
into the substrate while generating a pair of quasiparticles in
the tip. The nature of these processes was further elucidated
by a subsequent experiment [8] which aimed at distinguish-
ing single-electron and two-electron tunneling through YSR
states by means of photon-assisted tunneling in the presence
of high-frequency (HF) radiation [9]. Here, we develop a
comprehensive theory of the tunneling processes as well as the
resulting intriguing and nontrivial patterns of photon-assisted
sidebands.

Photon-assisted tunneling constitutes a powerful method
to probe the nature of charge transfer. The absorption and
emission of photons leads to the appearance of sidebands in
the conductance both in the absence [10,11] and in the pres-
ence [12–17] of Coulomb blockade. Frequently, the spacing
of the sidebands in bias voltage as well as their modulation as
a function of the amplitude of the HF radiation directly reveal
the amount of charge that is transferred in an elementary
tunneling event [18]. The theory of such processes goes back
to the classic work of Tien and Gordon [19], and their early
results on single-electron transfer between superconductors
has been extended in multiple directions. In many situations,
one finds Tien-Gordon-like relations

G(V ) =
∑

n

J2
n

(
keVHF

h̄�

)
G(0)(V + nh̄�/ke), (1)
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which express the junction conductance G(V ) = dI/dV in
the presence of HF irradiation in terms of the junction con-
ductance G(0)(V ) without HF radiation. Here, k denotes the
number of electrons transferred in an elementary tunneling
event, � is the frequency of the HF radiation, and VHF its
amplitude. The conductance is a sum over sidebands spaced
in bias voltage by h̄�/ke, whose strength is controlled by the
Bessel functions Jn. The oscillations of the Bessel functions as
a function of their argument imply a characteristic modulation
of the sideband intensity as a function of VHF.

Such relations have been shown to describe not only
photon-assisted sidebands of the coherence peaks [19], but
also incoherent Josephson tunneling near zero bias [20]
or multiple Andreev reflections [21]. In the context of
scanning-tunneling-microscopy (STM) experiments, these
Tien-Gordon expressions were found to describe the side-
bands of the coherence peaks [8,22], the Josephson
peak [8,11,22], as well as multiple Andreev peaks [8,22].
To understand these relations, it is convenient to measure
energies in both source and drain from the respective chemical
potentials. In this representation, the Hamiltonian HT describ-
ing tunneling from source to drain involves a time-dependent
phase factor (see Sec. III for details)

e−iφ(τ ) = e−i{ eV
h̄ τ+ eVHF

h̄�
sin �τ }, (2)

which accounts for the change in energy of the tunneling
electrons due to the voltage bias across the junction. The
amplitude for transferring multiple electrons can be obtained
from higher-order terms in the Born series for the T matrix,
T = HT + HT G0HT + · · · . While in general, the unperturbed
Green’s function G0 is nonlocal in time, it is effectively local
on the scale of �−1 when the energy of the virtual intermedi-
ate states is large compared to the energy transfer from the HF
radiation. In this case, the factors of e−iφ(τ ) from the various
tunneling terms simply combine into a single factor e−ikφ(τ ),
and a simple Fermi golden rule calculation leads to Eq. (1).
This argument applies to incoherent Cooper pair tunneling as
well as multiple Andreev reflections for plain superconducting
electrodes as long as h̄�, eVHF � �.

It is clear that this reasoning does not extend to resonant
Andreev reflections via YSR states where the amplitude for
tunneling is sharply peaked in energy due to the bound
state. Indeed, we find that photon-assisted resonant Andreev
reflections exhibit rich physics that is qualitatively different
from the Tien-Gordon-like expression (1). Moreover, while in
many cases, the tunneling between superconductors can be
described in low-order perturbation theory in the tunneling
Hamiltonian, this is generally not the case for resonant An-
dreev reflections [7]. This is because the broadening of the
bound-state resonance can be dominated by the tip-substrate
tunneling, thus requiring one to treat tunneling to all orders
in perturbation theory. We show that nevertheless, one can
develop an analytical theory for photon-assisted resonant An-
dreev reflections. Our theory is in excellent agreement with
a recent experiment [8] on tunnel junctions formed between
a superconducting substrate with a magnetic adatom and a
superconducting STM tip.

Resonant Andreev reflections are an important tunneling
process not only for YSR states, but also for other subgap

states in superconductors. In particular, they dominate tunnel-
ing into Majorana bound states, where they are predicted to
lead to a universal zero-bias conductance of 2e2/h for tunnel-
ing from a normal-metal lead [23,24]. This has been at the
focus of a large number of experiments [25] and a recent mea-
surement shows evidence for this quantized conductance [26].
Our theory for photon-assisted resonant Andreev reflections
is readily adapted to include tunneling into Majorana bound
states [17,27], and we find that photon-assisted tunneling can
be an important tool to differentiate Majorana bound states
from other subgap states. This is particularly true for tunneling
from superconducting tips which were repeatedly used for im-
proved resolution in Majorana experiments on chains of mag-
netic adatoms [28–31]. Since tunneling into a Majorana bound
state leaves behind an unpaired electron in the superconduct-
ing tip, it leads to two symmetric Majorana peaks at bias
voltages eV = ±�, where � denotes the superconducting gap
of the tip [32]. This should be contrasted with tunneling into
a conventional subgap state with a small but nonzero energy
ε0, which appears as differential-conductance peaks at eV =
±(� + ε0). Thus, the small energy of the subgap state can
only be extracted from experiment as a difference of two much
larger energies, the position of the resonance peak in dI/dV
and the superconducting gap of the tip. This is inherently
prone to errors and requires an accurate determination of the
tip gap. We find that in photon-assisted tunneling, the subgap
energy appears directly as a spacing between resonant peaks
in the spectrum, even for a superconducting tip. Moreover,
these splittings appear in differential-conductance maps with
high multiplicity, which effectively enhances the ability to
resolve closely spaced peaks.

Building on a brief review of subgap tunneling processes
between pristine superconductors in Sec. II A, we begin in
Sec. II B with a summary of our central results and the
basic physical picture for photon-assisted resonant Andreev
reflections via YSR states in superconductor-superconductor
junctions. The model and some basic formalism for tunneling
between superconductors are set up in Sec. III. Our central
analytical results for photon-assisted resonant Andreev reflec-
tions are then derived in Sec. IV. We first discuss a diagonal
approximation in Sec. IV A which is in excellent agreement
with experiment and exact theoretical results, and apply this
approach to photon-assisted resonant Andreev reflections in
junctions of normal metals and superconductors with YSR
state (Sec. IV A 2) as well as superconductor-superconductor
junctions (Sec. IV A 3), giving a firm theoretical basis to the
physical discussion in Sec. II. We then derive and discuss the
exact solution in Sec. IV B. While the bulk of the paper is
concerned with YSR states, many results carry over rather
directly to Majorana bound states, as discussed in Sec. V. We
conclude in Sec. VI.

II. PHYSICAL DISCUSSION

Before embarking on the detailed technical derivation
of the photon-assisted tunneling current, we begin with a
physical discussion. We include a review of standard results
for tunnel junctions between superconductors to provide a
backdrop for resonant Andreev reflections in junctions with
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YSR states. A corresponding discussion of resonant Andreev
reflections via Majorana bound states can be found in Sec. V.

A. Review of photon-assisted tunneling processes between
pristine superconductors

Single-electron tunneling between superconductors leaves
behind an unpaired electron in the source and injects an un-
paired electron into the drain. Each of these electrons requires
a minimal excitation energy equal to the superconducting gap
� (assumed equal for source and drain superconductors for
simplicity). Thus, single-electron tunneling becomes possible
at voltages e|V | > 2�. The BCS singularity of the super-
conducting density of states leads to coherence peaks in the
differential conductance at the threshold voltages eV = ±2�.
In the presence of an ac field with frequency �, the tunneling
electrons not only gain energy eV due to the bias voltage,
but also emit or absorb photons [33]. Then, the threshold
condition for single-electron tunneling becomes eV + nh̄� =
±2�, where the integer n is positive for photon absorption
and negative for photon emission, and one obtains a set of
coherence peaks displaced in voltage by multiples of the pho-
ton energy h̄�/e [10,19]. The number of emitted or absorbed
photons per tunneling event is bounded by the maximal energy
eVHF that the tunneling electrons can exchange with the ac
field, where VHF denotes the amplitude of the ac bias across
the junction. This implies that coherence-peak sidebands are
limited to |n| � nmax = eVHF/h̄� and thus observable in the
voltage range 2� − eVHF � e|V | � 2� + eVHF.

Current can also flow at subgap voltages due to multiple
Andreev reflections. Electrons with subgap energies imping-
ing on the source or drain superconductor are reflected as
holes, with a Cooper pair transferred into the superconductor
(or vice versa). Then, the required excitation energy of 2� for
the two generated quasiparticles can be acquired in the course
of multiple traversals across the junction, and the threshold
condition becomes meV = 2�, where the (positive) integer m
denotes the number of junction traversals and thus the number
of electrons transmitted into the drain superconductor. In the
presence of the ac field, photons can be emitted or absorbed
in the tunneling process, and the threshold condition becomes
meV + nh̄� = 2�. The spacing of the photon sidebands in
voltage is then given by h̄�/me and directly reflects the
number of transferred electrons per tunneling process. Specif-
ically, the lowest multiple Andreev process with m = 2 has
a threshold voltage of eV = � without ac field, transmits a
Cooper pair into the drain, and has sidebands with a voltage
spacing of h̄�/2e [8,22,34].

In the vicinity of zero bias, current flow between super-
conductors occurs via Cooper pair tunneling. This leads to a
zero-bias peak in the differential conductance, reflecting that
Cooper pair tunneling does not excite either of the supercon-
ducting electrodes [35]. The ac field splits this Josephson peak
into sidebands. The Cooper pairs gain an energy 2eV due to
the applied bias and nh̄� due to the photon field. Thus, these
sidebands occur at eV = nh̄�/2, exhibiting half the spacing
in bias voltage compared to single-electron processes and
the same spacing as the m = 2 Andreev processes [36]. The
tunneling Cooper pairs change their energy at most by 2eVHF

due to the ac field. Consequently, the Josephson peaks are

FIG. 1. Resonant Andreev reflections via YSR bound states in
superconductor-superconductor junctions at threshold (schematic, no
high-frequency radiation). (a) For positive bias voltages, an electron
(blue) tunnels from the coherence peak of the source (tip) into the
positive-energy YSR state, which then forms a Cooper pair with an-
other electron while creating a hole (red) in the negative-energy YSR
state. Finally, the hole tunnels back into the source. (b) For negative
bias voltages, a hole tunnels from the coherence peak of the drain
(tip) into the negative-energy YSR state. A Cooper pair breaking up
in the source (substrate) will then compensate the hole and occupy
the positive-energy YSR state, followed by electron tunneling into
the drain (tip). The processes at positive and negative bias both create
a pair of quasiparticles in the tip (left superconductor) and generate
or break up a Cooper pair in the substrate (right superconductor).

limited to |n| � nmax = 2eVHF/h̄� and visible in the voltage
range −eVHF � eV � eVHF [8,11,14,22,37].

At nonzero temperatures, there are additional single-
electron processes even at subgap voltages which originate
from thermally excited quasiparticles. The latter lead to a peak
in the differential conductance when the coherence peaks of
the two superconductors align. This causes a zero-bias peak
when source and drain have gaps of the same magnitude,
and more generally a peak at eV = ±|�1 − �2|, when the
superconductors have different gaps [38,39].

B. Resonant Andreev processes via YSR states

Magnetic adatoms induce bound states—known as YSR
states [40–43]—within the superconducting gap which
can be individually probed by scanning tunneling spec-
troscopy [39,43–47]. The YSR states induce additional res-
onances in the tunneling conductance at subgap voltages
e|V | < 2�. At zero temperature, the subgap current can-
not be carried by single electrons. Due to the absence of
bulk states at these energies, single electrons cannot leave
the junction region. Instead, the dominant current-carrying
process is an Andreev process closely related to the lowest
multiple Andreev process discussed above with m = 2 [7,48–
52]. This process—termed resonant Andreev reflection—is
best viewed as a (coherent) multistep process. First consider
the situation when electrons are tunneling from the tip into the
substrate [positive bias voltage; see Fig. 1(a) for a schematic
representation]. In this case, the tunneling amplitude involves
the following steps. An electron from the tip initially tunnels
into the positive-energy YSR state. Subsequently, the electron
combines with an electron in the substrate to form a Cooper
pair, allowing the charge to exit the junction region and leav-
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FIG. 2. Photon-assisted resonant Andreev reflections via
YSR bound states in superconductor-superconductor junctions
(schematic). Panel (a) shows the process for positive bias voltages,
panel (b) for negative biases. The basic process is as in Fig. 1. The
high-frequency radiation (frequency �) allows electrons and holes
to change their energy by multiples of h̄�. The number of relevant
sidebands is limited by the maximal energy eVHF that the tunneling
electrons and holes can gain or lose due to the high-frequency field
and therefore grows linearly in VHF.

ing behind a hole in the negative-energy YSR state. Finally,
this hole tunnels back into the tip.

This process must satisfy two conditions to be energetically
allowed, one each for electron and hole [7,8]. The electron
tunneling process virtually occupies the YSR state of energy
ε0 and leaves an unpaired electron behind in the tip, and is
thus allowed when eV > � + ε0. The hole tunneling pro-
cess injects a hole into the quasiparticle continuum and thus
requires eV > � − ε0. Since ε0 > 0, the condition for hole
tunneling is automatically satisfied whenever the condition for
electron tunneling is met. Thus, resonant Andreev reflection
induces a peak in the differential conductance at the threshold
bias voltage eV = � + ε0 of electron tunneling. In contrast,
there is no peak at the hole threshold eV = � − ε0 since the
electron process is not yet energetically allowed.

In the presence of an ac field, both the electron and the
hole can emit or absorb photons during tunneling, cf. Fig. 2,
and the energetic conditions become eV > � + ε0 + nh̄� for
the electron and eV > � − ε0 + mh̄� for the hole. Corre-
spondingly, there are two sets of sidebands in the differential
conductance, one at eV = � + ε0 + nh̄� due to the condition
for electron tunneling and another at eV = � − ε0 + mh̄�

due to the condition for hole tunneling. Electron and hole
can both gain or lose a maximal energy of eVHF due to the ac
field. Thus, the electron sidebands are restricted to the voltage

FIG. 3. Differential conductance (color scale) as a function of bias voltage eV and amplitude eVHF of the high-frequency radiation for
tunneling from a superconducting tip into a YSR state via resonant Andreev reflections. The panels differ in the ratio between electron and
hole wave functions u and v (left to right) and in the ratio between YSR state energy ε0 and photon energy h̄� (top to bottom). Numerical
values are indicated in the figure. These results are obtained for u2 + v2 fixed to the same value for all panels. The regions with electron and
hole sidebands [see Eqs. (3) and (6) as well as (4) and (5), respectively] are indicated by white dashed and dotted V shapes, respectively,
centered at e|V | = �± = � ± ε0. Notice the appearance of V- and Y-shaped regions, as highlighted in panel (c1). For a detailed discussion,
see Sec. II B. Parameters: �/� = 0.05, ν0|t | = 0.04.
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region

� + ε0 − eVHF � eV � � + ε0 + eVHF, (3)

and the hole sidebands to

� − ε0 − eVHF � eV � � − ε0 + eVHF. (4)

These V-shaped regions are indicated in Fig. 3 as dashed
(electrons) and dotted (holes) lines. The sidebands are ob-
servable only as long as both electron and hole tunneling
are allowed. For positive bias, this limits them to the voltage
range (3) for electron sidebands. Within this region, only
electron sidebands are observed for eV > � − ε0 + eVHF, i.e.,
outside the dotted V shape for hole sidebands. Both elec-
tron and hole sidebands contribute for eV < � − ε0 + eVHF,
which corresponds to the region lying within both dashed and
dotted V shapes.

At negative bias voltages, there is a corresponding process
in which a hole tunnels from the tip into the negative-energy
YSR state, a Cooper pair breaks up and occupies both YSR
states at positive and negative energies, and finally, an electron
tunnels back from the positive-energy YSR state into the tip;
see Fig. 1(b). In this process, the hole sidebands are limited to
the region

−(� + ε0 + eVHF) � eV � −(� + ε0 − eVHF), (5)

while electron sidebands can appear in the region

−(� − ε0 + eVHF) � eV � −(� − ε0 − eVHF). (6)

In the absence of high-frequency radiation, it is now the
electron process that is above threshold whenever the hole
process is, and sidebands can only be observed within the hole
region given by Eq. (5).

Based on our full theoretical results (see Sec. IV), Fig. 3
exhibits the differential conductance as a function of both
bias voltage V and amplitude VHF of the ac field. From top
to bottom, the panels differ in the ratio between YSR energy
ε0 and photon energy h̄�. From left to right, the panels differ
in the ratio between electron and hole wave functions u and
v, respectively, evaluated at the tip position. First consider the
column of central panels for equal amplitudes of electron and
hole wave functions, |u|2 = |v|2. The differential conductance
exhibits pronounced V shapes centered at eV = ±(� + ε0).
At positive bias, this V shape reflects the region with electron
sidebands given in Eq. (3), at negative biases the region with
hole sidebands given in Eq. (5).

These panels also show clear evidence for the importance
of both the electron and the hole condition. The panels in
Fig. 3 delineate the V-shaped regions both for electron tun-
neling (dashed white lines) and for hole tunneling (dotted
white lines). The sideband structure within the outer V-shaped
regions differs markedly between the overlap region of the
two V shapes and the region outside the inner V shape.
Generically, one observes a larger number of sidebands within
the overlap region where both electron and hole thresholds
contribute. Only when 2ε0 is commensurate with h̄�, electron
and hole thresholds coincide and the sidebands in the overlap
region appear brighter, but not more numerous.

Strikingly, the inner arms of the V shapes appear more
pronounced than the outer ones. This can be understood as

follows. The sidebands appear brighter in the differential con-
ductance, if the YSR resonance is sharp. The width of the YSR
resonance is controlled by the electron and hole tunneling
rates. Along the inner arm, one of the tunneling processes
is just barely setting in, so that the width is considerably
smaller than along the outer arm, where both electron and hole
tunneling are fully allowed.

The patterns depend strongly on the ratio between electron
and hole wave functions. Consider now the leftmost column of
panels in Fig. 3, for which the hole wave function is consid-
erably larger than the electron wave function, |u|2 = |v|2/9.
While one still observes a V-shaped region of sidebands for
positive bias voltages, the region takes on a Y shape for
negative biases. Since the hole wave function is much larger,
hole tunneling rates are intrinsically larger than electron tun-
neling rates. In this case, electron tunneling is effectively the
rate-limiting process (see Sec. IV A 3 for a careful discussion
of this statement) and electron thresholds are considerably
more pronounced than hole thresholds. Thus, sidebands are
only observed within the overlap region. The only exception is
the “stem” of the Y shape along which hole tunneling just sets
in and is still comparable in magnitude to electron tunneling.
The situation is analogous in the rightmost column in Fig. 3,
for which the electron tunneling rate is typically much larger
than the hole tunneling rate and a (reflected) Y-like shape now
appears at positive bias voltages.

Since one set of sidebands dominates for strongly asym-
metric electron and hole wave functions, the sidebands no
longer depend sensitively on the commensurability between
2ε0 and h̄�, but appear with a regular voltage spacing of
h̄�. In view of the simple Tien-Gordon relation in Eq. (1),
this seemingly suggests that the underlying tunneling process
is a single-electron process. Nevertheless, resonant Andreev
reflections transfer electron pairs into the substrate supercon-
ductor and should be viewed as a single coherent process. This
emphasizes that photon-assisted resonant Andreev reflections
do not conform to the predictions of a simple Tien-Gordon
approach.

III. MODEL

We consider a junction involving a superconducting tip
and substrate (or other kinds of superconducting electrodes)
with Hamiltonians H̃L and H̃R, respectively. Electrons can
tunnel between tip and substrate as described by the tunneling
Hamiltonian

H̃T =
∑

σ

[tc†
L,σ (R)cR,σ (R) + H.c.], (7)

where c†
α,σ (r) creates an electron at position r and spin σ in

the tip (α = L) or the substrate (α = R) and R denotes the
position of the tip. The Hamiltonian

H̃ = H̃L + H̃R + H̃T (8)

measures energy on an absolute scale and conserves the total
particle number N = NL + NR. The time-dependent bias V (τ )
between tip and substrate is included by holding tip and
substrate at different chemical potentials μL and μR,

eV (τ ) = μL − μR, (9)
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FIG. 4. Alternative representations of electron and hole tunnel-
ing in the presence of a bias voltage: (a) Left and right superconduc-
tors have chemical potentials which are shifted relative to one another
by the applied bias voltage eV . In this representation, tunneling is
horizontal, leaving the energy unchanged. (b) Alternatively, a time-
dependent unitary transformation, see Eq. (11), shifts the chemical
potentials of left and right superconductor such that they become
equal, and tunneling of electrons and holes is associated with an
energy transfer equal to eV . We use the representation in panel (a) for
figures, but the calculations (and their description) are systematically
performed using the representation in panel (b).

and is the sum of an applied dc voltage V and an ac voltage

Vac(τ ) = VHF cos(�τ ) (10)

generated by the radiation field of frequency � [19].
To apply the usual BCS mean-field description of the su-

perconducting tip and substrate, we perform a time-dependent
canonical transformation (setting h̄ = 1)

U (τ ) = exp

{
i
∫ τ

0
dτ ′[μL(τ ′)NL + μR(τ ′)NR]

}
, (11)

so that single-particle energies in tip and substrate are mea-
sured from the respective chemical potentials μL and μR.
The transformed Hamiltonian H = UH̃U † − iU∂τU † takes
the form

H = (H̃L − μLNL ) + (H̃R − μRNR) + UH̃T U †. (12)

Here, we used that H̃L and H̃R conserve NL and NR, so that
UH̃αU † = H̃α . Then, the time dependence enters only through
the transformed tunneling Hamiltonian HT = UH̃T U † with

HT =
∑

σ

[
teiφ(τ )c†

L,σ (R)cR,σ (R) + H.c.
]
, (13)

where the tunneling amplitude t acquires a time-dependent
phase

φ(τ ) = eV τ + eVHF

�
sin(�τ ) (14)

as a result of the canonical transformation. While the time-
independent H̃T conserves the energy of the tunneling electron
or hole, the time-dependent HT changes the energy due to both
the applied dc and ac biases. This corresponds to different
representations of the same tunneling process as illustrated in
Fig. 4.

In the transformed Hamiltonian, we can now make the
usual BCS mean field approximation for both HL = H̃L −

μLNL and HR = H̃R − μRNR. The unperturbed Hamiltonian
H0 = HL + HR can then be written as

H0 =
∑
k,α

∑
σ

[ξk,αc†
α,kσ cα,kσ + (�c†

α,k↑c†
α,−k↓ + H.c.)]

+
∑
k,k′

∑
σ

(K − JSσ )c†
R,kσ cR,k′σ , (15)

where ξk,α = εk − μα denotes the normal-state dispersion for
lead α = L, R and c†

α,kσ creates an electron with momentum
k. The superconducting gap � is taken to be identical for tip
and substrate. A magnetic adatom with spin S is located at the
origin and modeled as a classical impurity which couples to
the substrate electrons via potential scattering of strength K
and exchange coupling J . The spin quantization axis of the
electrons is chosen parallel to the impurity spin.

The current operator I = −eṄL takes the form

I = −ie[HT , NL]

= ie
∑

σ

[teiφ(τ )c†
L,σ (R)cR,σ (R) − H.c.] (16)

and the current becomes

I (τ ) = eTr{τz[t̂ (τ )G<
RL(τ, τ ) − G<

LR(τ, τ )t̂∗(τ )]}. (17)

Here, we have expressed the expectation values in terms of the
lesser Green’s function in Nambu space,

G<
αβ (τ1, τ2) = i

(〈c†
β↑(τ2)cα↑(τ1)〉 〈cβ↓(τ2)cα↑(τ1)〉

〈c†
β↑(τ2)c†

α↓(τ1)〉 〈cβ↓(τ2)c†
α↓(τ1)〉

)
,

(18)
introduced the hopping matrix

t̂ (τ ) =
(

teiφ(τ ) 0

0 −t∗e−iφ(τ )

)
, (19)

and used the Pauli matrix τz in Nambu space. Here and in
the following, electron operators (as well as Green’s functions
and self-energies) without momentum or position labels refer
to the tip position R.

Writing Dyson equations for the Keldysh Green’s function
and using the Langreth rules, the lesser Green’s functions can
be written as

G<
LR = (gLt̂GR)< = g<

L t̂Ga
R + gr

Lt̂G<
R ,

G<
RL = (GRt̂∗gL )< = G<

R t̂∗ga
L + Gr

Rt̂∗g<
L . (20)

The superscripts r and a denote retarded and advanced
Green’s functions. The bare Green’s function (in Nambu
space) of tip or substrate in the absence of tunneling is denoted
as gα (α = L, R), while the Green’s function of the substrate
which accounts for the tip-substrate tunneling through a self-
energy

R(τ, τ ′) = t̂∗(τ )gL(τ, τ ′)t̂ (τ ′) (21)

takes the form GR = [g−1
R − R]−1.

Inserting Eqs. (20) into the expression (17) for the current,
we find

I (τ ) = e
∫

dτ ′ Tr
{
τz

[
G<

R (τ, τ ′)a
R(τ ′, τ )

+ Gr
R(τ, τ ′)<

R (τ ′, τ ) − <
R (τ, τ ′)Ga

R(τ ′, τ )

−r
R(τ, τ ′)G<

R (τ ′, τ )
]}

. (22)
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Here, we used that the hopping matrix t̂ commutes
with τz.

IV. RESONANT ANDREEV REFLECTIONS

While the YSR states resonantly enhance Andreev pro-
cesses in the substrate, no such enhancement occurs for
Andreev reflections in the tip. For this reason, we effectively
neglect the latter. In this approximation, there are no multiple
Andreev reflections, and the dominant processes contributing
to the subgap conductance involve a single resonant Andreev
reflection in the substrate. We can implement this approxima-
tion by neglecting the off-diagonal contributions to the Nambu
Green’s function gL of the tip when computing the self-energy
R. In this approximation, gL is proportional to the unit matrix
(see Appendix A for details).

To compute the self-energy R within this approximation,
we note that

eiφ(τ ) =
∞∑

n=−∞
Jn

(
eVHF

�

)
ei(eV +n�)τ , (23)

where Jn(x) denotes a Bessel function. Inserting this into
Eq. (21), we obtain

R(τ, τ ′) = |t |2
∑
n,m

Jn

(
eVHF

�

)
Jm

(
eVHF

�

)
e−i(eV +n�)ττz

× gL(τ − τ ′)ei(eV +m�)τ ′τz . (24)

This expression can be viewed as a sum of a diagonal (n = m)
and an off-diagonal (n 
= m) contribution,

R = 0
R + 1

R (25)

with

0
R(τ, τ ′) = |t |2

∑
n

J2
n (eVHF/�)e−i(eV +n�)ττz

× gL(τ − τ ′)ei(eV +n�)τ ′τz . (26)

The calculation simplifies significantly when retaining only
the diagonal self-energy 0

R. We find that this is frequently an
excellent approximation. For this reason, we first discuss this
simplified situation (referred to below as diagonal approxima-
tion) before presenting the more general case.

A. Diagonal approximation

1. Derivation

Within the diagonal approximation, the self-energy is only
a function of the difference τ − τ ′ of its time arguments and
thus diagonal in frequency representation. Then, the exponen-
tial factors in Eq. (26) effectively act as translation operators

and we obtain

0
R(ω) = |t |2

∑
n

J2
n (eVHF/�)gL(ω − (eV + n�)τz ). (27)

Here, the frequency argument of the Green’s function gL

reflects that due to bias voltage and ac field, electrons (holes)
propagating in the substrate lose (gain) an energy eV + n�

when tunneling into the tip.
As we are considering subgap energies in the substrate, we

only retain the contribution to the substrate Green’s function
which originates from the YSR state with energy ε0. Then,
the retarded and advanced Green’s functions become (see
Appendix B for details)

Gr/a
R (ω) = ψ

1

ω − ε0 − �(ω) ± i
2�(ω)

ψ†. (28)

Here, ψT = (u, v) denotes the Bogoliubov–de Gennes wave
function of the positive-energy YSR state at the tip position
R and we separated the retarded and advanced self-energy
projected onto the YSR state

̃
0,r/a
R (ω) = ψ†0

R(ω)ψ = �(ω) ∓ i

2
�(ω) (29)

into real and imaginary parts.
The projected self-energy takes the explicit form

̃0
R(ω) = |t |2

∑
n

J2
n (eVHF/�){|u|2gL(ω − (eV + n�))

+|v|2gL(ω + (eV + n�))}. (30)

Using Eq. (A8) in Appendix A, the imaginary part �(ω) is
given by

�(ω) =
∑

n

J2
n (eVHF/�)[�e(ω − (eV + n�))

+�h(ω + (eV + n�))], (31)

which combines contributions to the broadening of the YSR
state due to photon-assisted tunneling of electrons and holes
into the tip. Here, we defined the electron and hole tunneling
rates

�e(ω) = 2π |u|2|t |2ν(ω) = γeν(ω)/ν0, (32)

�h(ω) = 2π |v|2|t |2ν(ω) = γhν(ω)/ν0 (33)

with the BCS density of states

ν(ω) = ν0
|ω|√

ω2 − �2
θ (|ω| − �) (34)

of the tip. Here, ν0 is the normal-state density of states per
spin direction and we introduced the tunneling rates γe =
2π |u|2|t |2ν0 and γh = 2π |v|2|t |2ν0 for a normal-state tip.
Similarly, the real part of the self-energy becomes

�(ω) = −πν0|t |2
∑

n

J2
n (eVHF/�)

{
|u|2[ω − (eV + n�)]√
�2 − [ω − (eV + n�)]2

θ (� − |ω − (eV + n�)|)

+ |v|2[ω + (eV + n�)]√
�2 − [ω + (eV + n�)]2

θ (� − |ω + (eV + n�)|)
}

, (35)
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describing a (frequency-dependent) renormalization of the
energy of the YSR state.

The lesser self-energy can be expressed by inserting
Eq. (A9) into Eq. (30). This yields

̃<
R (ω) = i

∑
n

J2
n (eVHF/�)

× [�e(ω − (eV + n�))nF (ω − (eV + n�))

+�h(ω + (eV + n�))]nF (ω + (eV + n�))].

(36)

This also yields the lesser Green’s function

G<
R (ω) = ψ

̃<
R (ω)

[ω − ε0 − �(ω)]2 + 1
4�2(ω)

ψ† (37)

of the substrate using the relation (B9) in Appendix B.
Within the diagonal approximation, we can then express

Eq. (22) for the current in frequency representation,

I (τ ) = e
∫

dω

2π
Tr

{
τz

[
G<

R (ω)a
R(ω) + Gr

R(ω)<
R (ω)

−<
R (ω)Ga

R(ω) − r
R(ω)G<

R (ω)
]}

. (38)

This can be written in the alternative form

I = e
∫

dω

2π
Tr

{
τz

[
Gr

R(ω)(r
R(ω) − a

R(ω))Ga
R(ω)<

R (ω

− Gr
R(ω)<

R (ω)Ga
R(ω)(r

R(ω) − a
R(ω))

]}
(39)

using that the self-energy R is also diagonal in Nambu space
and commutes with τz as well as the identities Gr

R − Ga
R =

Gr
R(r

R − a
r )Ga

R and G<
R = Gr

R<
R Ga

R (see Appendix B).
With this, we are now in a position to evaluate the current

in Eq. (39) and obtain

I = 2e
∫

dω

2π

∑
n,m

J2
n (eVHF/�)J2

m(eVHF/�)

× �e(ω − (eV + n�))�h(ω + (eV + m�))

[ω − ε0 − �(ω)]2 + 1
4�2(ω)

× [nF (ω − (eV + n�)) − nF (ω + (eV + m�))] (40)

after some straightforward algebra. This expression general-
izes the results of Ref. [7] to include photon-assisted processes
and is a main result of this paper. While the current does
not obey the simple Tien-Gordon relations (1), the electron
and hole tunneling rates by themselves behave in a Tien-
Gordon-like manner. Equation (40) is not only in excellent
agreement with the more complete treatment shown below,
but also with recent experimental results [8]. We note that we
have approximated the substrate Green’s function by retaining
the contribution of the subgap state only. As a result, Eq. (40)
describes only those sidebands which fall within the super-
conducting gap. In effect, this imposes upper cutoffs on the
frequency and amplitude of the HF radiation. Except for these
cutoffs, the results are independent of the substrate gap.

2. Normal-metal tip

As a first application of Eq. (40), consider a normal-
metal tip (temporarily setting � = 0 in the self-energy) in

FIG. 5. Resonant Andreev reflections from a YSR state with a
normal-state electrode for (a) positive and (b) negative polarity of
the bias voltage V (schematic, no high-frequency radiation).

the absence of the ac field. The basic resonant Andreev
reflection process in this case is illustrated in Fig. 5. For
a normal-metal tip, the self-energy is purely imaginary and
frequency independent, so that the bias voltage enters only
into the Fermi functions. This allows one to readily evaluate
the zero-temperature differential conductance,

dI

dV
= 2e2

h

∑
±

γeγh

(eV ± ε0)2 + (γe + γh)2/4
, (41)

where we have reinstated Planck’s constant. This yields two
symmetric resonances at eV = ±ε0 with peak height

dI

dV

∣∣∣∣
peak

= 2e2

h

4|u|2|v|2
(|u|2 + |v|2)2

. (42)

Thus, the peak height depends on the relative magnitudes of
the electron and hole wave functions of the YSR state and
has a maximal value of 2e2/h, as long as the positive- and
negative-energy peaks are well separated. Specifically, the
peak height becomes maximal when the electron and hole
wave functions at the tip position are equal, |u|2 = |v|2. For
a YSR state with zero energy, the two peaks coalesce and the
maximal peak height equals 4e2/h. The latter result should
be compared to analogous results for Majorana bound states
which give a peak conductance of 2e2/h [23,24], reflecting the
fact that unlike YSR states, Majorana bound states effectively
correspond to only half a conventional fermionic excitation;
see also Sec. V.

In the presence of the ac field, the zero-temperature differ-
ential conductance becomes

dI

dV
= 2e2

h

∑
n

∑
±

J2
n (eVHF/h̄�)γeγh

(eV + nh̄� ± ε0)2 + (γe+γh )2

4

, (43)

using the Bessel-function identity
∑

n J2
n (x) = 1. Thus, the

conductance peaks at eV = ±ε0 develop sidebands whose
spacings are given by the photon frequency h̄� and whose
amplitudes are controlled by Bessel functions.

At finite temperatures, the peaks become convolutions of
the Lorentzian with derivatives of the Fermi function in the
usual manner. While the peaks are Lorentzian with a width
controlled by the tunneling rates γe and γh at low tempera-
tures, they cross over to derivatives of the Fermi functions
at high temperatures. Here, we assume that the temperature
is still sufficiently small compared to the substrate gap so
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that we can neglect inelastic processes which couple the YSR
state to the quasiparticle continuum of the substrate. Once
the latter become relevant, there is an additional contribution
to the current originating from single-electron tunneling. (An
experimental fingerprint of the latter is that it generically leads
to asymmetric conductance peaks at eV = ±ε0 [7,43].)

3. Superconducting tip

We can now make contact with the physical discussion for
a superconducting tip in Sec. II. The advantages of supercon-
ducting tips are twofold. First, they enhance energy resolution
owing to the sharp peak in the BCS density of states at the gap
edge. Second, when the tip is superconducting, the YSR peaks
appear at eV = ±(� + ε0) and the Fermi-function factor in
Eq. (40) equals ±1 to exponential precision in T/�. Thus,
the current is insensitive to temperature as long as T � �,
a much weaker condition than for normal-state tips where
temperature should be compared to the intrinsic width of the
YSR resonance [53].

The expression (40) clearly exhibits the coherent nature of
the underlying tunneling process. Analogous to conventional
resonant tunneling through a bound state [54,55], the electron
and hole tunneling rates �e and �h enter not only in the
numerator, but also determine the broadening of the YSR
resonance denominator. The current is then nonperturbative
in the tip-substrate tunneling, and consequently sublinear in
the normal-state conductance of the tunnel junction [7].

An explicit evaluation of the differential conductance must
take into account that as a consequence of the BCS density of
states of the tip, the tunneling rates are themselves functions of
ω [7]. First consider the case without high-frequency radiation
for positive bias voltages near the threshold eV = � + ε0.
Due to the BCS density of states, the hole contribution to the
tunneling rate �(ω) in Eq. (31) becomes of order

�h,thres  γh

√
�

4ε0
. (44)

In contrast, the electron contribution becomes singular,

�e(ω − eV )  γe

√
�

2(ε0 − ω)
θ (ε0 − ω); (45)

cp. Fig. 1(a). Thus, the characteristic electron scattering rate
�e,thres depends on whether the broadening � is dominated
by electron or hole tunneling. If electron tunneling dominates
the broadening, we find the threshold electron tunneling rate
�e,thres by comparing �e(ω − eV ) to the ω − ε0 term in the
resonance denominator of Eq. (40). This yields �e,thres ∼
(γ 2

e �)1/3, and Eq. (40) gives the peak differential conductance

dI

dV

∣∣∣∣
peak,+

∼ 2e2

h

�h,thres

�e,thres
∼ 2e2

h

γh�
1/6

γ
2/3
e ε

1/2
0

. (46)

If on the other hand hole tunneling dominates the broadening,
�h,thres � �e,thres, the characteristic electron tunneling rate
becomes �e,thres ∼ γe(�/�h,thres)1/2, and we find

dI

dV

∣∣∣∣
peak,+

∼ 2e2

h

�e,thres

�h,thres
∼ 2e2

h

γeε
3/4
0

γ
3/2
h �1/4

. (47)

Details of this calculation can be found in Appendix C.

Analogous considerations apply to negative bias voltages
near the threshold eV = −(� + ε0), where the hole tun-
neling rate becomes singular at threshold while the elec-
tron tunneling rate �e,thres = γe(�/4ε0)1/2 remains regular;
cf. Fig. 1(b). When electron tunneling dominates, �e,thres �
�h,thres, we find the characteristic hole tunneling rate �h,thres ∼
γh(�/�e)1/2 and the peak differential conductance becomes

dI

dV

∣∣∣∣
peak,−

∼ 2e2

h

�h,thres

�e,thres
∼ 2e2

h

γhε
3/4
0

γ
3/2
e �1/4

. (48)

If on the other hand broadening is dominated by hole tunnel-
ing, �h,thres � �e,thres, we find �h,thres ∼ (γ 2

h �)1/3 and

dI

dV

∣∣∣∣
peak,−

∼ 2e2

h

�e,thres

�h,thres
∼ 2e2

h

γe�
1/6

γ
2/3
h ε

1/2
0

. (49)

In the presence of the high-frequency radiation, Eq. (40)
exhibits photon-assisted sidebands in the differential con-
ductance as reflected in the frequency arguments which are
shifted by multiples of h̄�. The strength of these sidebands
oscillates as a function of VHF due to the oscillatory nature of
the Bessel functions. Moreover, the Bessel functions rapidly
diminish as their argument becomes larger than the index, so
that the sums over n and m—and thus the photon-assisted
sidebands—are effectively restricted to the range |n|, |m| �
eVHF/h̄�. It is these limits that are indicated in Fig. 3 by white
(dashed and dotted) lines and reflect the fact that the tunneling
electrons and holes can gain or lose at most eVHF in energy due
to the HF field.

Equation (40) also makes the separate thresholds for elec-
tron and hole tunneling explicit, which were underlying much
of our discussion in Sec. II. The tunneling rates �e/h are
proportional to the BCS density of states with its onset of
density of states at ±�. Using the resonance denominator
in Eq. (40) to replace ω by the bound-state energy ε0 in
the electron and hole tunneling rates �e(ω − (eV + n�)) and
�h(ω + (eV + m�)), we read off thresholds at eV = ±� +
ε0 − n� for electron tunneling and at eV = ±� − ε0 − m�

for hole tunneling, in agreement with the results quoted in
Sec. II B (up to the irrelevant sign of the integers n, m).

We now use Eq. (40) to analyze the strength of the photon-
assisted sidebands more systematically. In the presence of the
high-frequency radiation, the electron and hole tunneling rates
split into photon-assisted sidebands; see Eq. (31). To under-
stand the pattern of sidebands in the differential conductance,
we assume that the broadening � is small compared to the
photon energy �. Then, we can write the total (electron and
hole) tunneling rate in Eq. (31) as �(ω) = [�e,0 + δ�e(ω)] +
[�h,0 + δ�h(ω)]. Here, �e,0 and �h,0 denote the contributions
of all nonresonant sidebands which are independent of ω to
leading order, while δ�e(ω) and δ�h(ω) are the ω-dependent
contributions of the resonant sidebands. The distribution of
weight over sidebands implies that with one exception dis-
cussed below, we can typically neglect the contribution of
δ�e(ω) and δ�h(ω) to the broadening in the denominator of
Eq. (40). Similarly, we need to retain the contribution of a
resonant sideband in the numerator to obtain a nonzero contri-
bution to the differential conductance. (Recall that the Fermi
functions as well as �e,0 and �h,0 are essentially independent
of bias voltage.) With these considerations, we obtain the
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estimate

dI

dV

∣∣∣∣
peak

∼ 2e2

h

�e,0δ�h,thres + �h,0δ�e,thres

(�e,0 + �h,0)2
, (50)

where δ�e/h,thres is given by evaluating δ�e/h(ω) within �e,0 +
�h,0 of the resonance.

When |u|2 = |v|2, we have, in magnitude, �e,0 ≈ �h,0

and δ�e,thres ≈ δ�h,thres. We then expect electron and hole
sidebands to have comparable strengths and we find a peak
conductance of order

dI

dV

∣∣∣∣
peak

∼ 2e2

h

δ�e/h,thres

�e,0 + �h,0
. (51)

Here, we assume for simplicity that the electron and hole
sidebands are not overlapping when writing the numerator.
Next consider asymmetric electron and hole wave functions,
say |u|2 � |v|2. Then, we have �e,0 � �h,0, and Eq. (50)
reduces to

dI

dV

∣∣∣∣
peak

∼ 2e2

h

[
�e,0δ�h,thres

�2
h,0

+ δ�e,thres

�h,0

]
. (52)

At first sight, the first term in the square brackets is sup-
pressed because of the additional factor �e,0/�h,0. However,
the asymmetry between the electron and hole wave functions
also implies δ�e,thres � δ�h,thres, so that the two terms in the
square brackets are of the same order as they stand. However,
the first term is indeed suppressed since it is here where
we should remember that the denominator also includes the
resonant contributions. For |u|2 � |v|2, these are dominated
by δ�h(ω). This contribution strongly counteracts and thus
suppresses the sidebands of the numerator due to δ�h. We can
then indeed neglect the first term in square brackets and obtain

dI

dV

∣∣∣∣
peak

∼ 2e2

h

δ�e,thres

�h,0
. (53)

This explains why hole sidebands are suppressed relative to
electron sidebands and thus the appearance of the Y -shaped
pattern at negative bias voltages as well as the appearance
of only a single (electron) set of sidebands at positive bias
voltages. Similarly, when |v|2 � |u|2, we have �h,0 � �e,0,
and we find

dI

dV

∣∣∣∣
peak

∼ 2e2

h

δ�h,thres

�e,0
, (54)

so that hole sidebands are dominant. We finally note that
these results imply that the sidebands reduce in strength as
electron and hole wave function become more asymmetric, in
agreement with Fig. 3.

Equation (40) also includes the effects of the real part � of
the self-energy. It is interesting to note that in the absence of
the ac field, the real part does not contribute. Indeed, without
ac field, the self-energy is either purely real or purely imagi-
nary. Current only flows when both imaginary parts �e and �h

are nonzero, and consequently, �(ω) does not contribute. The
situation is different in the presence of the ac field, since now
the imaginary parts must only be nonzero when absorbing
or emitting certain numbers of photons. Contributions to the
self-energy when absorbing or emitting a different number

of photons can still be real and contribute to the resonance
denominator in the expression for the current.

Our calculation assumes that we can retain only the con-
tribution of the YSR bound state to the substrate Green’s
function. This requires that the tip-induced broadening of the
YSR state remains small compared to the superconducting
gap. The characteristic magnitude of the tip density of states
is given by the normal-state density of states ν0 and the
YSR wave function at the tip position is of order |u|2, |v|2 ∼
ν0� [56]. This yields the estimate |t |2ν2

0� for the broadening
of the YSR state. Our approximation for the substrate Green’s
function is thus accurate as long as ν0|t | � 1. In view of
the normal-state tunneling conductance of the junction, GT =
(2e2/h)4π2(ν0|t |)2, this is equivalent to the condition GT �
2e2/h.

B. Exact treatment

1. Derivation

We now consider the exact self-energy

R(τ, τ ′) = |t |2
∑
n,m

Jn(eVHF/�)Jm(eVHF/�)

× e−i(eV +n�)ττz gL(τ − τ ′)ei(eV +m�)τ ′τz , (55)

including the nondiagonal contribution. In frequency repre-
sentation defined through

R(τ, τ ′) =
∫

dω

2π

dω′

2π
e−iωτ+iω′τ ′

R(ω,ω′), (56)

this becomes

R(ω,ω′) = |t |2
∑
n,m

Jn(eVHF/�)Jm(eVHF/�)

× 2πδ(ω − ω′ − (n − m)�τz )

× gL(ω − (eV + n�)τz ). (57)

As this is nonzero only when the frequency arguments ω and
ω′ differ by multiples of �, we can write

R(ω,ω′) =
∑

m

2πδ(ω − ω′ − m�)m(ω′) (58)

with

m(ω) =
∑

n

Jn

[
Jn+mgL(ω−,n) 0

0 Jn−mgL(ω+,n)

]
. (59)

Here, we temporarily suppressed the arguments of the Bessel
functions and introduced ω±,n = ω ± (eV + n�) for com-
pactness. We also note that the self-energy satisfies the rela-
tion

−m(ω + m�) = m(ω), (60)

which is readily confirmed using the explicit expression (59).
Iteration of the Dyson equation GR = gR + gRRGR im-

plies that the Green’s function GR(ω,ω′) is also nonzero only
when its frequency arguments ω and ω′ differ by multiples of
�. Thus, we define

GR(ω,ω′) =
∑

m

2πδ(ω − ω′ − m�)Gm(ω′) (61)
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with

GR(τ, τ ′) =
∑

n

∫
dω

2π
e−iω(τ−τ ′ )−in�τ Gn(ω). (62)

Inserting Eqs. (58) and (61) into the Dyson equation, we find

Gn(ω) = gR(ω)δn,0

+
∑

m

gR(ω + n�)n−m(ω + m�)Gm(ω), (63)

which provides a set of linear equations to compute the Gn(ω).
Writing the current in Eq. (22) using Eqs. (58) and (61) and

focusing on the dc contribution, we find

Idc = e
∫

dω

2π

∑
n

Tr
{
τz

[
G<

n (ω)a
−n(ω + n�)

+Gr
n(ω)<

−n(ω + n�) − <
n (ω)Ga

−n(ω + n�)

−r
n(ω)G<

−n(ω + n�)
]}

. (64)

This can be made more compact by using Eq. (60),

Idc = e
∫

dω

2π

∑
n

Tr
{
τz

[
G<

n (ω)a
n (ω) + Gr

n(ω)<
n (ω)

−<
n (ω)Ga

n(ω) − r
n(ω)G<

n (ω)
]}

. (65)

Together with the expressions (59) and (63) for the self-energy
and the Green’s function, respectively, this constitutes our
final result.

2. Results

We solve Eq. (63) numerically by truncating the system
of equations at a sufficiently high |n| � VHF/� and compute
the current from Eq. (65). Due to the terms of the self-energy
which are off-diagonal in frequency, the exact solution is
sensitive to Green’s functions which are evaluated at frequen-
cies shifted by integer multiples of the photon energy. This
suggests that the exact solution deviates from the diagonal
approximation when the tunneling-induced broadening of the
Green’s functions becomes of the order of or larger than
the photon energy. Conversely, the diagonal approximation is
expected to be accurate in the limit of small broadening and
well-resolved photon sidebands.

Figure 6 compares representative numerical results ob-
tained in the diagonal approximation and the numerically
exact solution. The results consider the parameter regime u2 =
v2/9 where the Y shape appears at negative voltages. The
choice of eVHF/� = 2 implies that the resonances at negative
voltages are associated with the lower part (stem) of the Y
shape. Panel (a) shows both negative and positive voltages
for strong tunneling-induced broadening. At positive biases,
we find that the sidebands are no longer well resolved due
to the broadening and the differences between the diagonal
approximation and exact result are largely quantitative. The
self-energy already present in the diagonal approximation,
including the hole contribution to the broadening, dominates
over additional contributions in the exact solution. In contrast,
we find distinct differences at negative voltages. Here, the
hole contribution to the broadening is still suppressed around
the threshold voltage along the stem of the Y shape and the
resonances remain well resolved. One then observes that the

FIG. 6. Comparison between diagonal approximation (different
colors) and the exact solution (green) for ε0/� = 0.4, �/� = 0.025,
eVHF = 2�, and u2 = v2/9. (a) dI/dV at negative and positive volt-
ages at strong tip-sample tunneling (�h,thres = 2�). The resonances
at negative bias voltages are shifted relative to the diagonal approx-
imation, while the differences are merely quantitative at positive
biases. (b) Close-up of threshold region at negative bias voltages
for increasing tip-sample tunneling �h,thres as indicated in the figure
(from bottom to top; offset for clarity). The differences between exact
solution (green) and diagonal approximation become substantial
once �h,thres becomes comparable to the photon energy �. Dashed
lines indicate multiples of the photon energy �.

sidebands are distinctly shifted to higher bias voltages in the
exact solution, while the width of the resonances remains
essentially unchanged; i.e., the dominant effect is associated
with the real part of the self-energy.

Panel (b) explores the dependence on the strength of tip-
substrate tunneling, focusing on the region of negative volt-
ages. We quantify the four different strengths of tip-substrate
tunneling by the threshold value for the hole tunneling rate

�h,thres = 1
2

(
γ 2

h �
)1/3

, (66)

as evaluated for the regime of dominant hole tunnel-
ing. For weak tip-substrate tunneling, �h,thres/� = 1/8, the
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FIG. 7. Differential conductance (color scale) as a function of
bias voltage eV and amplitude eVHF of the high-frequency radiation
for tunneling into a YSR state with equal electron and hole wave
functions, |u|2 = |v|2, and small YSR energies ε0 increasing from
zero to h̄�/2 from top to bottom as indicated in the panels. The
regions with electron and hole sidebands are indicated by white
dashed and dotted lines, respectively. The five panels show clearly
that a nonzero energy of the YSR state generates a splitting of
the photon-assisted sidebands which appears with high multiplicity
throughout the V-shaped region. This provides the basis for a high-
resolution measurement of the energy of the subgap state, which can
be used to identify YSR (or Andreev) bound states with near-zero
energy ε0 with high resolution, and thereby distinguish them from
Majorana bound states. Parameters: �/� = 0.05, ν0|t | = 0.04.

broadening is small compared to the photon energy, and in
agreement with expectations, the diagonal approximation is
essentially identical to the exact solution. For �h,thres/� =

1/2, quantitative differences such as modified peak heights
begin to appear, but the peak positions still remain identical.
The differences become more pronounced for �h,thres/� = 1
and �h,thres/� = 2, where we observe substantial shifts of the
peaks to higher bias voltages. Also note that the resonance
width grows with increasing �h,thres/� as expected. These
results show that the diagonal approximation is accurate in
the regime of well-resolved sidebands.

We finally point out that the diagonal approximation is
exact for a normal-state tip with a constant density of states
ν0. In this case, the retarded and advanced self-energies in
Eq. (21) are purely imaginary,

r,a
R (τ, τ ′) = ∓iπ |t |2ν0δ(τ − τ ′), (67)

and independent of the ac field. This makes also the retarded
and advanced substrate Green’s functions independent of the
ac field, so that r,a

n is nonzero for n = 0 only,

r,a
n=0(ω) = ∓iπ |t |2ν0. (68)

Then, Gr,a
n is nonzero for n = 0 only and only the n = 0

term contributes to the dc current in Eq. (65). Moreover,
one readily ascertains from the Dyson equation (63) and the
Langreth rules that the n = 0 components satisfy a closed set
of equations which is just the set of equations which leads to
the diagonal approximation.

V. MAJORANA BOUND STATES

A. Basic results

Our considerations for YSR states apply to photon-assisted
tunneling into Majorana bound states with only minor modi-
fications. First, Majorana bound states have zero energy so
that we set ε0 = 0. Second, their electron and hole wave func-
tions are equal in magnitude, satisfying u = v∗ for spinless
fermions (and corresponding expressions for spinful electrons
in a four-component Nambu formalism). Finally, an isolated
Majorana bound state is a solution of the particle-hole-
symmetric Bogoliubov–de Gennes equation which doubles
the degrees of freedom. Due to this doubling of degrees of
freedom, the expression for the current must be multiplied by
a factor of 1/2 relative to the case of a YSR state. We note
that here, we focus on tunneling into Majorana bound states
in a grounded superconductor. A recent experiment [17] has
studied the effects of photon-assisted tunneling on the charge
stability diagram of two coupled Majorana nanowires with
floating superconductors subject to charging energies.

First consider photon-assisted resonant Andreev processes
into Majorana bound states from a normal-metal tip. Using
these translation rules, we obtain corresponding results di-
rectly from the results for YSR states given in Sec. IV A 2.
The equal magnitude of electron and hole wave functions
makes the peak conductance universal and equal to 2e2/h for
Majorana bound states [23,24]. This corresponds to half of
the maximal peak conductance of a zero-energy YSR state,
reflecting that Majorana bound states are effectively only half
of an ordinary subgap state.

In the presence of high-frequency radiation, there are
photon-assisted sidebands and one readily obtains from
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FIG. 8. Differential conductance (color scale) as a function of bias voltage eV and amplitude eVHF of the high-frequency radiation for
tunneling into a YSR state with various ratios of electron and hole wave functions and small YSR energies ε0 increasing from zero to h̄�/2
from top to bottom, as indicated in the panels. The regions with electron and hole sidebands are outlined by white dashed and dotted lines,
respectively. The splitting of the sidebands due to a small nonzero energy ε0 appearing for equal electron and hole wave functions (central
column of panels) are less pronounced for asymmetric electron and hole wave functions. For YSR states, the ratio of electron and hole wave
functions typically varies as a function of position. In STM experiments, one can therefore generically choose a tip position for which electron
and hole wave functions have similar magnitude. Parameters: �/� = 0.05, ν0|t | = 0.04.

Eq. (43) that

dI

dV
= 2e2

h

∑
n

J2
n (eVHF/h̄�)

γ 2

(eV + nh̄�)2 + γ 2
, (69)

where we introduced γ = γe = γh. Thus, the familiar Ma-
jorana zero-bias peak of height 2e2/h splits into photon
sidebands with a sideband spacing in bias voltage of h̄�/e.
As for YSR states, this can be traced back to the existence
of separate threshold conditions for electrons and holes. For
Majorana bound states, these two sets of conditions coincide
by particle-hole symmetry, leading to a sideband spacing of
h̄�/e seemingly indicating single-electron tunneling despite
the underlying resonant Andreev process.

For a superconducting tip, we focus on the limit of well-
resolved sidebands where the diagonal approximation (40) is
accurate and obtain

I = e sgn(V )
∫

dω

2π

∑
n,m

J2
n (eVHF/�)J2

m(eVHF/�)

× �e(ω − (eV + n�))�h(ω + (eV + m�))

[ω − ε0 − �(ω)]2 + 1
4�2(ω)

, (70)

where �e(ω) and �h(ω) are now evaluated with |u|2 = |v|2
and thus equal. Up to an overall scale factor of 1/2, the
result is identical to that for a YSR state with ε0 = 0 and
|u|2 = |v|2 as shown in the top panel in Fig. 7. For ε0 = 0,
the V shapes for the electron and hole conditions coincide and
are centered on eV = ±�. This also implies that similarly
to the case of a normal-state tip, there is only one set of
sidebands with spacing h̄� which is enhanced by the fact that
electron and hole resonances coincide. While the pattern of
resonances at eV = ±� is necessarily symmetric with respect
to a change of sign of the bias voltage, the individual V shapes
are asymmetric about eV = � (or, analogously, eV = −�).
This is a consequence of the fact that the broadening is smaller
on the small-bias side of the V shape, leading to sharper
features and a larger differential conductance (see Fig. 7; this
is not properly reflected by the color scale in Fig. 8 due to
saturation effects).

B. Majorana vs YSR states

It is frequently a challenge to distinguish zero-energy
Majorana bound states from other low-energy subgap
states. Moreover, in many experiments, putative Majo-
rana states might be accompanied by close-lying YSR
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states [28–30,57,58]. Our results on YSR and Majorana bound
states imply that photon-assisted tunneling provides a high-
resolution method to determine the energy of subgap states.
In principle, superconducting tips are preferable over normal-
metal tips because the gap suppresses thermal excitations and
the strongly peaked BCS density of states allows for high
energy resolution. At the same time, dI/dV peaks due to
subgap states with a zero or small energy ε0 no longer appear
as (near) zero-bias peaks, but rather at eV = � + ε0 (since
the tunneling electron leaves behind a quasiparticle in the
tip) [28–30]. Thus, the small energy ε0 of the bound states
is effectively extracted as a difference of two much larger
energies. In particular, this implies that inaccuracies in the
determination of the tip gap carry over fully into the accuracy
with which the bound state energy can be determined.

The existence of independent thresholds for electron and
hole tunneling in photon-assisted resonant Andreev reflec-
tions provides a method to extract the bound-state energy from
a line splitting which appears directly in the measured tun-
neling spectra [8]. Moreover, this line splitting appears with
a high multiplicity throughout the V-shaped region within
which one observes thresholds for photon-assisted tunneling.
To illustrate this, consider first resonant Andreev reflections
into a YSR state with equal electron and hole wave functions
and a small energy ε0, as shown in Fig. 7. Up to an overall
prefactor of 1/2, the panel for ε0 = 0 is identical to the
result for a Majorana bound state. One observes that even
a small ε0 which is just a fraction of the photon energy
h̄� leads to a splitting of the sidebands and can thus be
accurately detected. This is most evident for ε0 = h̄�/4, mak-
ing experiments with variable photon energies particularly
advantageous.

In addition to the line splitting, there is also a characteristic
change in the dependence of the sideband strengths as a
function of the amplitude VHF of the high-frequency radiation.
As seen in Fig. 7 and Fig. 8, the sideband strengths exhibit
repeated zeros as a function of VHF. The zeros originate
from the oscillations of the Bessel functions in Eq. (40) [see
also Eq. (23)]. Physically, these can be considered a result
of interference between various sequences of emissions and
absorptions of “photons” contributing to a sideband. (Notice
that the sideband strength is nonperturbative in VHF and
emerges from processes of all orders when viewed from the
point of view of perturbation theory.) Different sidebands
are controlled by Bessel functions of different order, and the
corresponding phase shift leads to a shift in the locations of
the zeros between neighboring sidebands.

The behavior of the zeros in Fig. 7 then emerges as follows.
The separate thresholds for electron and hole tunneling coin-
cide for ε0 = 0, but move apart when ε0 becomes nonzero.
When ε0 = 0, a particular sideband “combines” electron and
hole sidebands described by Bessel functions of the same
order, and the zeros of the Bessel functions are preserved.
For 2ε0 = h̄�, the electron and hole sidebands are described
by Bessel functions of neighboring orders. Their zeros no
longer coincide and thus the zeros in the observed sideband
strengths disappear. This allows one to distinguish true zero-
energy states from situations with nonzero ε0 in which elec-
tron and hole sidebands coincide because 2ε0 and h̄� are
commensurate.

Corresponding results with unequal electron and hole wave
functions are shown in Fig. 8. Clearly, the splitting due to a
small ε0 is most pronounced for equal electron and hole wave
functions, for which sidebands emerging from electron and
hole sidebands are both equally prominent; cp. the discussion
in Sec. IV A 3. For a YSR state, the ratio of electron and
hole wave functions varies as a function of position. In STM
experiments, one should thus choose a tip position where elec-
tron and hole wave functions are equal to optimize sensitivity.
Finally, notice that the modulations of the sideband strength as
a function of VHF reemerge even for 2ε0 = h̄� once electron
and hole wave functions are sufficiently different. In this
case, the electron and hole thresholds contribute with different
strengths, and the sidebands are dominated by one or the other.

VI. CONCLUSIONS

We have developed a theory for photon-assisted resonant
Andreev tunneling into subgap states in superconductors. Our
results are in excellent agreement with recent STM mea-
surements on YSR states [8], fully reproducing the observed
patterns of sidebands which differ markedly from predictions
of a simple Tien-Gordon-like theory.

A central aspect of the theory is independent sideband
conditions for the electron and hole tunneling processes. This
leads to two sets of sidebands whose relative shift in bias
voltage depends on the ratio of the energy of the subgap
state and the photon energy. As an interesting consequence,
this provides a sensitive technique to measure near-zero en-
ergies of subgap states which can be instrumental in distin-
guishing conventional subgap states from Majorana bound
states. Simultaneous visibility of the two sets of sidebands
is optimal when electron and hole wave functions are of
similar magnitude. For YSR states, the ratio of electron and
hole wave functions typically varies widely with lateral posi-
tion [44,46,59,60]. This can be exploited in STM experiments
by choosing an appropriate lateral position of the STM tip
for optimal resolution. The absence of spatial resolution may
make this technique less flexible in transport experiments
using gate-defined tunnel junctions.

The observability of the photon-assisted sidebands of reso-
nant Andreev reflections is constrained by two requirements.
On the one hand, tunneling should be sufficiently weak for
the tunneling-induced broadening to be small compared to the
sideband spacing so that the sidebands are well resolved. At
the same time, the underlying resonant Andreev reflections
require tunneling to be fast compared to inelastic relaxation
processes. The latter provide competing channels which trans-
fer electrons into the quasiparticle continuum of the substrate
via the subgap state and which transfer only a single electron
between tip and substrate. A recent STM experiment [8] using
a photon frequency of 40 GHz shows that these conditions on
the junction conductance can be simultaneously satisfied at
a temperature of order 1 K. Since inelastic excitations have
an activated temperature dependence, their rate drops rapidly
as temperature is lowered. This implies that even though the
broadening of the sidebands is independent of temperature,
the attainable resolution of small subgap energies improves
rapidly at lower temperatures.
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In view of recent experiments, we have focused on YSR
states throughout the paper. However, we emphasize that our
theoretical approach is in no way specific to YSR states and
applies equally well to other subgap states. Consequently,
photon-assisted tunneling could also contribute to distinguish-
ing Andreev from Majorana bound states.

At present, our theory assumes a single subgap state. How-
ever, magnetic impurities frequently induce multiple subgap
states within the superconducting gap [45,59–61]. It would
thus be interesting to extend the theory to include several sub-
gap states where one would expect additional spectroscopic
features to arise when the photon energy becomes comparable
to the level spacing between subgap states.
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APPENDIX A: TIP GREEN’S FUNCTION

In this Appendix, we briefly review the derivation of the
tip Green’s function. The Nambu Green’s function g of a BCS
superconductor (in the absence of tunneling or a magnetic
impurity) takes the form

gL(k, ω) = [ω − ξkτz − �τx]−1, (A1)

where τx and τz denote Pauli matrices in Nambu space.
Performing the matrix inversion and computing the corre-
sponding local Green’s function at the tip position yields

gL(ω) = 1

V

∑
k

g(k, ω) = ν0

∫
dk

ω + ξk + �τx

ω2 − ξ 2
k − �2

. (A2)

Performing the integral gives the result

gL(ω) = −πν0(ω + �τx )√
�2 − ω2

. (A3)

This can be used to find the retarded and advanced as well as
lesser Green’s functions which are used throughout the main
text.

The retarded and advanced Green’s functions are purely
real at frequencies below the gap, |ω| < �, where one finds

gr/a
L (ω) = −πν0(ω + �τx )√

�2 − ω2
, (A4)

and purely imaginary at frequencies above the gap, |ω| > �,

gr/a
L (ω) = ∓ iπν0(ω + �τx )√

ω2 − �2
sgn(ω). (A5)

To derive the lesser Green’s function, we use the relation

g<
L (ω) = −nF (ω)

[
gr

L(ω) − ga
L(ω)

]
(A6)

and obtain

g<
L (ω) = 2π inF (ω)

ν0(ω + �τx )√
ω2 − �2

θ (|ω| − �)sgn(ω), (A7)

where θ (x) denotes the Heaviside function.
Within our calculation, neglecting Andreev reflections in

the tip is equivalent to dropping the off-diagonal contributions
to the tip Green’s function. In this approximation, gL(ω)
becomes proportional to the unit matrix in Nambu space and
we find

gr/a
L (ω) 

{−πν0
ω√

�2−ω2 , |ω| < �,

∓iπν0
|ω|√

ω2−�2 , |ω| > �,
(A8)

for the retarded and advanced Green’s functions, and

g<
L (ω)  2π inF (ω)

ν0|ω|√
ω2 − �2

θ (|ω| − �) (A9)

for the lesser Green’s function. The above-gap expressions
can be expressed compactly in terms of the BCS density of
states in Eq. (34).

APPENDIX B: SUBSTRATE GREEN’S FUNCTION

This Appendix discusses the Green’s function of the sub-
strate. We first consider the bare substrate Green’s function
at subgap energies. In keeping with our approximation of
neglecting the (nonresonant) Andreev reflections in the tip,
we retain only the bound-state contributions to the substrate
Green’s function which are responsible for the resonant An-
dreev reflections. For general (spinful) Hamiltonians, one
needs to work with Nambu operators which involve electrons
and holes of both spins. The resulting Bogoliubov–de Gennes
equation is particle-hole symmetric and subgap bound states
will appear in pairs with energies of opposite sign. Corre-
spondingly, in this approach, one finds pairs of YSR states
with energies ±ε0. Such spinful Nambu and Bogoliubov–
de Gennes descriptions are however redundant in that they
double the degrees of freedom.

In its spinful version, the Bogoliubov–de Gennes Hamil-
tonian of the present problem is block-diagonal, with one
subspace spanned by spin-up electrons and spin-down holes,
and the other subspace by spin-down electrons and spin-up
holes (with the spin-quantization axis taken parallel to the
impurity spin). The two subspaces are related by particle-hole
symmetry. This has two important consequences. First, the
doubling of degrees of freedom can be avoided by retaining
only one of the two subspaces. Second, each subspace hosts
one of the partners of each pair of YSR states. Consequently,
when retaining only one subspace, there is only one YSR state
with Bogoliubov–de Gennes wave function ψT = (u, v) at the
tip position R. Thus, we find

gR(ω) = ψ
1

ω − ε0
ψ† (B1)

for the approximate (bare) substrate Green’s function at sub-
gap energies. (We assume here for simplicity that there is only
one pair of YSR states in the spinful formulation.)
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Tunneling introduces a self-energy into the denominator of
the retarded and advanced Green’s functions,

Gr/a
R = ψ

1

ω − ε0 − ̃
0,r/a
R

ψ† (B2)

with

̃
0,r/a
R = ψ†

0,r/a
R ψ. (B3)

Note that we have written the last two expressions in general
operator notation since with ac field, the self-energy is gener-
ally no longer diagonal in frequency representation.

We also review a general relation for the lesser Green’s
function (including the tunneling to the tip). Using the Lan-
greth rules, the Dyson equation for GR gives

G<
R = g<

R + gr
Gr

RG<
R + gr

G<
R Ga

R + g<
Ga

RGa
R, (B4)

which can be readily shown to become

G<
R = 1

1 − gr
Rr

R

g<
R

1

1 − ga
Ra

R

+ Gr
R<

R Ga
R. (B5)

The first term on the right-hand side vanishes generally as long
as the system was noninteracting in the infinite past. Here, we
can also use the explicit expression (A6), with L replaced by
R, to write

1

1 − gr
Rr

R

g<
R

1

1 − ga
Ra

R

= −nF (ω)
1

1 − gr
Rr

R

[
gr

R − ga
R

] 1

1 − ga
Ra

R

. (B6)

Inserting the identity

gr
R − ga

R = −2iηgr
Rga

R (B7)

with a positive infinitesimal η yields

1

1 − gr
Rr

R

g<
R

1

1 − ga
Ra

R

= 2iηnF (ω)Gr
RGa

R = 0. (B8)

Thus, we find the identity

G<
R = Gr

R<
R Ga

R. (B9)

APPENDIX C: PEAK DIFFERENTIAL CONDUCTANCE

In this Appendix, we sketch the derivation of the expres-
sions for the differential conductance given in Sec. IV A 3. We
focus on the case of positive bias voltage eV = � + ε0. The
other cases can be obtained in an analogous manner. To start
with, the current (without high-frequency radiation) is given
by Eq. (40), where for T � δ we can set the Fermi functions
to zero and one, respectively,

I = 2e
∫

dω

2π

�e(ω − eV )�h(ω + eV )

[ω − ε0]2 + 1
4 [�e(ω − eV ) + �h(ω + eV )]2

.

(C1)
For eV  eV0 = � + ε0, �h(ω + eV ) is nonsingular, so that
we can neglect the bias dependence and set ω  ε0 due to
the resonance denominator. Assuming also that ε0 is small
compared to � and large compared to the broadening of

the resonance, this yields �h,thres as given in Eq. (44). (We
note that the assumption of ε0 � � is in no way essential
and can be easily lifted.) In contrast, the bias dependence
cannot be neglected in the electron tunneling rate, since the
latter becomes singular at the threshold. Thus, we write V =
V0 + δV and obtain

I  2e
∫

dω

2π

�e(ω− − eδV )�h,thres

[ω − ε0]2 + 1
4 [�e(ω− − eδV ) + �h,thres]2

.

(C2)
Here, we introduced the shorthand ω− = ω − eV0. Shifting
the integration variable, ω → ω + eδV , this becomes

I  2e
∫

dω

2π

�e(ω−)�h,thres

[ω − ε0 + eδV ]2 + 1
4 [�e(ω−) + �h,thres]2

.

(C3)
This yields

dI

dV

∣∣∣∣
peak,+


∫

dω

2π

4e2(ε0 − ω)�e(ω−)�h,thres

{[ω − ε0]2 + 1
4 [�e(ω−) + �h,thres]2}2

(C4)
for the differential conductance at V = V0. Using �e(ω) =
γe[ν(ω)/ν0], one readily finds the expression for �e(ω−) in
Eq. (45). Note that due to the θ function in this expression,
the integral in Eq. (C4) ranges effectively over ω from −∞ to
ε0.

First consider the situation that the broadening of the
resonance denominator is dominated by hole tunneling. Then,
the integral is dominated by ε0 − ω ∼ �h,thres. Using this in
the expression for the electron tunneling rate, we find that hole
tunneling dominates provided that �h,thres � (γ 2

e �)1/3. The
characteristic electron tunneling rate is then given by �e,thres =
γe[�/2�h,thres]1/2. Consequently neglecting the contribution
of electron tunneling to the broadening of the denominator,
we readily find

dI

dV

∣∣∣∣
peak,+

 4e2

h

�e,thres

�h,thres

∫ ∞

0

dx x1/2

(x2 + 1/4)2
. (C5)

Performing the integral yields the final expression

dI

dV

∣∣∣∣
peak,+

 4πe2

h

�e,thres

�h,thres
= 8πe2

h

γeε
3/4
0

γ
3/2
h �1/4

, (C6)

consistent with Eq. (47).
If the broadening of the resonance denominator is dom-

inated by electron tunneling, the characteristic range of ω

dominating the integral is determined by ε0 − ω ∼ �e(ω−),
which yields ε0 − ω ∼ (γe

√
�)2/3 and a threshold electron

tunneling rate of �e,thres = (γ 2
e �)1/3 � �h,thres. Keeping only

electron tunneling in the denominator of Eq. (C4), we obtain
the expression

dI

dV

∣∣∣∣
peak,+

 4e2

h

�h,thres

�e,thres

1√
2

∫ ∞

0

dx x5/2

(x3 + 1/8)2
. (C7)

Performing the integral, we find

dI

dV

∣∣∣∣
peak,+

 16πe2

9h

�h,thres

�e,thres
= 8πe2

9h

γh�
1/6

γ
2/3
e ε

1/2
0

, (C8)

consistent with Eq. (46).
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