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Strain disorder and gapless intervalley coherent phase in twisted bilayer graphene
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Correlated insulators are frequently observed in magic-angle twisted bilayer graphene at even fillings of
electrons or holes per moiré unit cell. Whereas theory predicts these insulators to be intervalley coherent
excitonic phases, the measured gaps are routinely much smaller than theoretical estimates. We explore the
effects of random strain variations on the intervalley coherent phase, which have a pair-breaking effect analogous
to magnetic disorder in superconductors. We find that the spectral gap may be strongly suppressed by strain
disorder, or vanish altogether, even as intervalley coherence is maintained. We discuss predicted features of the
tunneling density of states, show that the activation gap measured in transport experiments corresponds to the
diminished gap, and thus offer a solution for the apparent discrepancy between the theoretical and experimental
gaps.
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Introduction. In recent years, magic-angle twisted bilayer
graphene (MATBG) [1] has emerged as an exciting and ver-
satile platform for strong-correlation physics. Its rich phase
diagram prominently features correlated insulators, Chern in-
sulators, superconductivity, and strange metallicity [2–12].

Correlated insulators consistently found at fillings ν = ±2
electrons per moiré unit cell relative to charge neutrality (CN),
and more rarely at CN, have been suggested to originate from
Kramers intervalley-coherent order (K-IVC) [13–16]. The K-
IVC phase is in some sense analogous to a superconductor,
with the condensate made up of intervalley electron-hole
pairs. Interestingly, theoretical predictions of the K-IVC gap
energy, by both Hartree-Fock and numerically exact meth-
ods, overestimate the measured activation gap of ∼O(1 meV)
[2,4–6,9] by more than an order of magnitude.

It has been experimentally well established that the moiré
lattice formed in realistic MATBG devices is not pristine, pre-
sumably due to substantial relaxation effects of the underlying
graphene lattice [17]. Disorder in the local twist angle be-
tween the graphene layers has been observed [7,18], leading to
domains with slightly different effective moiré unit-cell sizes.
Local measurements have also shown significant strain ef-
fects, consistent with a moiré lattice distortion of 0.1%–0.7%
[19–21].

As the two graphene layers may be subjected to dif-
ferent strain fields, the strain tensor applied to the bilayer
is composed of a layer-symmetric part (homostrain) and
a layer-antisymmetric contribution (heterostrain). Uniform
heterostrain was suggested to have an important role in weak-
ening the even-filling correlated insulator states in MATBG
[13,22]. This is mainly due to a large increase of the flat-band
bandwidth [23,24], leading to diminished effective interac-
tions.

Whereas heterostrain shifts the two Dirac points within
each valley with respect to each other, homostrain subjects

both layers to identical distortions and mainly acts as a
pseudo-gauge-field. This field acts oppositely in the two val-
leys [as illustrated in Fig. 1(a)], thus maintaining time-reversal
symmetry (TRS). In this paper, we explore the effects of
spatially random homostrain [Fig. 1(b)] on the properties of
the K-IVC phase. We show that this perturbation induces
“pair-breaking” effects in striking resemblance to magnetic
impurities in spin-singlet superconductors. Effects of other
types of strain on the K-IVC phase are discussed in the
Supplemental Material (SM) [25], and various disorder pertur-
bations are classified by their impact on this phase in Ref. [26].

We find that modest strain fluctuations reduces both the K-
IVC order parameter (OP) and the spectral gap, but enable the
two to be dramatically different from one another. We propose
that this effect may be responsible for the surprisingly small
activation gap observed in transport experiments. Moreover,
we show that intervalley coherence can persist even when the
system becomes gapless to single-particle excitations, a phase
that we dub “gapless K-IVC.” This phase could explain the
haphazard appearance of a correlated insulator at CN.

Model. We consider the following simplified spinless
model of MATBG,

H0 =
∑

k

�
†
k[ukxσxτz + ukyσy]�k, (1)

where �
†
k is an 8-spinor of fermionic annihilation operators at

momentum k relative to their respective origin in momentum
space, and with sublattice, valley, and “minivalley” degrees
of freedom, described by Pauli matrices σi, τi, and ρi, re-
spectively. This model features four Dirac cones with linear
dispersion εk = ±u|k|. H0 preserves the TRS T = τxρxK (K
implements complex conjugation), with T 2 = 1.

The spinless model effectively describes the fillings ν =
±2, where two electronic flavors of opposite valleys are en-
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FIG. 1. Schematic description of our model. (a) The band struc-
ture in each valley (K, K ′) is approximated by two Dirac cones, one
in each “minivalley.” The momentum separating the valleys, Q, is
modified by random homostrain fluctuations acting on the graphene
layers, as represented by colored dotted arrows. (b) Schematic of
a possible random strain configuration. Color indicates the strain
strength |A|, whereas arrows indicate the directions of the local
distortions of the graphene lattice.

tirely filled or empty, while the remaining pair is “active” and
forms intervalley coherence. Conversely, two copies of our
spinless model may be used describe the K-IVC phase at CN
[13–16].

We introduce local density-density repulsive interactions,

Hint = U

2�

∑
k,k′,q

�
†
k+q�k�

†
k′−q�k′ , (2)

which induce spontaneous symmetry-breaking in our model
on a mean-field level. (� is the system area.) This simplified
form of Hint suffices to illustrate the phenomenon we are inter-
ested in. Specifically, we examine the K-IVC phase, which has
been argued to be the likely ground state of MATBG at even
fillings. The K-IVC state is characterized by intervalley coher-
ence, i.e., formation of an exciton condensate with intervalley
electron-hole pairs, a finite gap to charge excitations, and
TRS breaking. The corresponding mean-field Hamiltonian at
a given k has the form

hMF(k) = u(kxσxτz + kyσy) + 	ivcσxτxρz. (3)

hMF preserves a Kramers-like TRS, T ′ = τyρxK, which con-
catenates T with a valley rotation. It also preserves chiral
and particle-hole symmetries, represented by S = σz and C =
ST ′, respectively[27] .

We now introduce random homostrain variations, which
enter the model as a random gauge field acting in opposite
directions in opposite valleys; see Fig. 1(b). Concretely, the
strain Hamiltonian may be written as

Hstr = u
∫

dr�†(r)[Ax(r)σx + Ay(r)σyτz]�(r), (4)

where A is the strain-induced perturbation, and �(r) =
1√
�

∑
k eik·r�k. In Eq. (4) we have implicitly assumed that the

strain potential is smooth on the moiré length scale. Otherwise
one should replace the renormalized velocity u by the much
larger bare graphene Fermi velocity vF . Notice that uniform
strain constitutes a shift of k in H0 [28] and redefines the mo-
mentum connecting the two valleys Q = K − K′. This only
changes the momentum carried by the condensed electron-
hole K-IVC pairs, so that we can assume Ai has zero spatial
mean.

The perturbation in Eq. (4) does not break any of the
symmetries of hMF. However, as we will show below (see also
Ref. [26]), the fact that it commutes with the K-IVC operator
σxτxρz enables a drastic reduction of the gap which opens in
the K-IVC spectrum due to the random strain disorder. For
this reason, we have also neglected inter-minivalley scattering,
which has additional ρx, ρy factors, and thus anticommutes
with the OP.

Considering a simple pointlike perturbation, A(r) =
A0δ(r), one may employ a T -matrix formalism to find
the bound-state spectrum inside the mean-field gap [25], in
analogy to Yu-Shiba-Rusinov states induced by magnetic im-
purities in a superconductor [29–31]. We find that as the
perturbation strength increases, the in-gap-state energy is re-
duced and the two bound-state energies cross at zero when
the impurity strength becomes an appreciable fraction of the
bandwidth W .

Moreover, we find that when approximating the density of
states (DOS) as a constant around the Fermi level (rather than
linear as appropriate in our case), one recovers—apart from
additional degeneracies—precisely the bound-state spectrum
of a magnetic impurity inside a singlet superconductor. This
outcome may be traced to the analogous algebraic structure of
the two problems, i.e., the impurity operator commuting with
the OP. This analogy enables the treatment of random strain
fluctuations in MATBG by tools similar to those employed in
superconductors with magnetic impurities.

Abrikosov-Gor’kov approach. We therefore treat the ran-
dom strain fluctuations within the self-consistent Born
approximation (SCBA), inspired by the Abrikosov-Gor’kov
theory of superconductivity in magnetically disordered alloys
[32]. A similar method was also used to study exciton conden-
sates in the presence of potential impurities [33,34].

The main object of interest is the Green’s function,

G(k, ω) = (iω − hMF − �̂SCBA)−1. (5)

Within the SCBA, the self-energy matrix �̂SCBA can be writ-
ten as

�̂SCBA(k, ω) =
〈∑

p

Uk−pG(p, ω)Up−k

〉
dis

, (6)

where the matrix U represents the random strain perturba-
tion in momentum space, Hstr = ∑

kq �
†
k+qUq�k, and 〈...〉dis

stands for disorder averaging.
Manipulating the Green’s function, it can be written as

G = − iω̃ + u(kxσxτz + kyσy) + 	̃σxτxρz

ε2
k + 	̃2 + ω̃2

. (7)

The parameters ω̃, 	̃ are related to ω,	ivc by the self-
consistency equations(

ω̃

	̃

)
=

(
ω

	ivc

)
+ 
F

(
ω̃, 	̃

)( ω̃

−	̃

)
, (8)

where F (ω̃, 	̃) = W
2

∫
dε N (ε)

ε2+	̃2+ω̃2 , N (ε) is the DOS per unit
cell of area �u.c., and W is the bandwidth. The disorder energy
scale 
 is


 = 2�

W �u.c.

〈∫
dθu2A†

θ · Aθ

〉
dis

, (9)
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FIG. 2. (a) The OP 	ivc as a function of temperature and disorder
energy scale 
. For a given temperature, there is a critical 
 at
which the OP vanishes. (b) The ratio between the gap in the TDOS,
ωg, and 	ivc. As 
 increases, ωg deviates from 	ivc appreciably.
There exists a gapless K-IVC region bounded by the vanishing of the
single-particle gap (black dashed line) and of the OP (blue dashed
line). We used U = 0.7W and a linear DOS Nlin.. (c) Linecuts for
different values of 
 showing 	ivc (solid) and ωg (dash-dotted).

where Aq is the Fourier transform of A(r), and we have
used the standard approximation that the scattering mostly de-
pends on the angle between incoming and outgoing momenta
θ [33,34]. As for magnetic impurities in superconductors
and potential scatterers in excitonic condensates, the form of
Eq. (8) is due to the K-IVC OP commuting with the random
perturbation. Thus, the equations we find are identical to the
Abrikosov-Gor’kov equations for superconductors with mag-
netic impurities, with one important difference. In MATBG,
we cannot assume a constant DOS near the Fermi energy, but
should account for the fact that the DOS vanishes linearly at
the Dirac point. This leads to important qualitative differences
in the results.

By relating the local strain to the effective gauge field A,
one may obtain an order-of-magnitude estimate of 
. For root-
mean-square strains of E ∼ 0.1% and disorder correlation
lengths of few unit cells, we find 
/W values of 0.1–0.3 [25].
As will be shown, such values are sufficient to dramatically
reduce the spectral gap or even close it completely.

The strength of K-IVC order in the presence of disorder is
obtained by combining Eq. (8) with the gap equation

	ivc = −2
U

β�

∑
ωk

Tr{σxτxρzG}, (10)

which we solve numerically. (Here, β is inverse temperature.)
Figure 2(a) shows results for the OP 	ivc as a function of
temperature and disorder. We find that both the OP and the
critical temperature deteriorate with increasing disorder.

FIG. 3. Evolution of the TDOS Ñ (ε) with 
. The gap ωg grad-
ually closes as the disorder strength increases. Blue line indicates
evolution of 	ivc/W with increasing 
. Notice its evolution differs
from that of the single-particle gap as it deteriorates more slowly. We
used U = 0.7W , T = 0.

Assuming a DOS which is linear in energy, Nlin =
4|ε|/W 2 with cutoff energy |ε| < W/2, we can also make ana-
lytical progress. In particular, we calculate the critical disorder
scale 
c, at which 	ivc vanishes for T = 0. In the regime

c � W/2, we find [25]


c = Uc

ln 8

(
1 − Uc

U

)
, (11)

where Uc = W/4 is the critical interaction U below which the
K-IVC order vanishes at 
, T = 0. The finite Uc as well as the
form of the critical “pair-breaking” parameter 
c originate in
the DOS vanishing linearly at zero. This suppresses the analog
of the Cooper instability for arbitrarily weak interactions,
which requires finite DOS at the Fermi level.

Having found the self-consistent Green’s function, we can
calculate the tunneling density of states (TDOS) Ñ (ε) =
1
π

Im 1
�

∑
k TrG(k, ω → iε). In clean systems, the gap ωg in

the TDOS is equal to the OP 	ivc. In the presence of finite
disorder, ωg is in general smaller than 	ivc.

In Fig. 2(b), we plot the ratio ωg/	ivc. As 
 increases, this
ratio gradually deviates from unity, eventually reaching zero,
before 	ivc vanishes. We dub the regime with finite 	ivc and
vanishing ωg as the gapless K-IVC phase. Similar to gapless
superconductivity, we interpret this regime as one where in-
tervalley coherence exists throughout a large fraction of the
system, yet strain-induced in-gap states form a low-energy
compressible continuum of states. For linear DOS, we find
that the disorder strength at which the gap closes is related to
	ivc [25] through 
g = W/ ln(1 + W 2

	2
ivc

)2.
In Fig. 2(c), we plot linecuts of Fig. 2(a) for several values

of 
. We find that even for modest (and realistic) disorder
strengths, the spectral-gap is significantly suppressed com-
pared to the naive gap as given by the OP. Thus, devices which
host appreciable strain fluctuations may exhibit an effective
gap as seen in a global transport measurement, which is about
an order of magnitude smaller than the expected condensation
OP.

In Fig. 3 we track the evolution of the TDOS with disorder
strength. At very low 
 we find two narrow K-IVC bands sep-
arated by roughly 2	ivc, as expected from previous theoretical
investigations of the pristine K-IVC phase. As the disorder
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FIG. 4. Calculated DC conductivity σxx . Dots: σxx as a func-
tion of temperature for different strengths of the strain fluctuations,

/W ∈ [0.02, 0.1], increasing from bottom (red) to top (blue) in
steps of 0.02. We used the same parameters as in Fig. 2. Solid lines:
Guides to the eye ∝ exp[−ωg(T → 0)/T ] for each 
 value. Whereas
ωg differs by a factor of ∼5 between the first and last plots, 	ivc

changes only modestly by <25%.

strength 
 increases, these bands spread out in energy, and
their separation diminishes. This is very different from the be-
havior of 	ivc. While ωg diminishes already for weak disorder,
	ivc remains mostly unaffected up to intermediate values of 
.

The TDOS depicted in Fig. 3 can be measured in pla-
nar tunneling junctions with a large tunneling area, similar
to the experimental verification of gapless superconductivity
[35]. The large tunneling area is required for effective av-
eraging over disorder configurations in a particular device.
Such measurements are expected to show two spread-out
TDOS lobes, with centers separated by ∼2	ivc and a
spectral gap of 2ωg < 2	ivc. In contrast, local scanning-
tunneling-microscopy (STM) measurements do not reveal
disorder-averaged quantities, yet we expect the tunneling gap
to vary as a function of position, in a manner correlated with
the homostrain variations. Such phenomenology would be a
clear indicator of the proposed disordered K-IVC phase.

To make contact with transport experiments, we now turn
to calculating the DC conductivity. We use the Kubo-Bastin
formula [36], σxx ∝ ∫

dε(− df
dε

)S (ε), where f is the Fermi
function, and

S (ε) ≈ 1

�

∑
k

Tr{ jxImG(k, ω → iε) jxImG(k, ω → iε)}
(12)

is the conductivity kernel. The current operator is jx = uσxτz.
Equation (12) neglects vertex corrections to jx, which may
have quantitative significance, but are beyond the scope of this
work.

Figure 4 presents Arrhenius plots of the conductivity for
different 
 values. We can extract the activation energy Eact by
fitting the conductivity to σxx ∝ exp(−Eact/T ). Remarkably,
we observe that the low-T behavior is indeed temperature acti-
vated with Eact ≈ ωg, and not the potentially much larger 	ivc.
(In the topmost plot of Fig. 4 	ivc ≈ 5.4ωg.) This behavior
can be traced to the analytic structure of S (ε), which has a
gap ≈2ωg around ε = 0 [25], similar to the TDOS.

Conclusions. We have explored the consequences of ran-
dom homostrain fluctuations on the K-IVC state, believed to

describe the insulating phases of MATBG at even fillings.
Using a simplified model for MATBG, we have studied this
problem using the SCBA in conjunction with a mean-field
treatment of the K-IVC OP. Homostrain disorder has a pair-
breaking effect on the intervalley coherent condensate, since
it locally acts on the two valleys in opposite ways.

In contrast to similar pair-breaking disorder problems, ran-
dom homostrain does not break any symmetries of the K-IVC
state. However, it does lead to in-gap states, gap closing,
and OP deterioration due to its operator structure—it com-
mutes with the OP. Moreover, the DOS dependence on energy
had to be taken into account, since it vanishes at the Dirac
point. This led to the unique form of the solutions of the
Abrikosov-Gor’kov equations which we derive, and of the
critical pair-breaking parameter 
c.

One of our key results is the significant separation between
the energy scales of the K-IVC order (	ivc) and the spectral
gap for single-particle excitations (ωg), even for modest values
of disorder. Borrowing insights from superconductors, the
gap reduction stems from in-gap bound states, which become
stronger and more abundant with increasing 
, yet impact the
surrounding intervalley-coherent condensate only weakly.

We suggest that the order-of-magnitude discrepancy be-
tween the theorized K-IVC gap and the activation gap
measured in transport experiments can be resolved within
our model. We have demonstrated that the relevant activation
energy as measured via the DC conductivity is the spectral
gap, which may be considerably smaller than the OP due to
disorder. (Both scales coincide in the pristine case.) The rare
appearance of insulators at CN can also be understood by
considering two copies of our model with different spin labels.
Variations of the magnitude of strain disorder between devices
may tip the state at CN from a weakly insulating K-IVC state
to the gapless K-IVC regime. The relative weakness of the
insulating state at CN compared to fillings ν = ±2 has been
attributed to bandwidth renormalizations [37–39], rendering
the effective interactions stronger away from CN.

The interplay of strain fluctuations with other sources of
K-IVC suppression, such as twist-angle disorder and uniform
heterostrain, remains to be explored. Additionally, the fact that
the considered disorder couples only to intervalley-ordered
states may also be important. This may have ramifications for
the competition between the K-IVC state and other correlated
insulating phases, such as the valley-Hall phase, for which the
OP ∝ σz anticommutes with the strain fluctuations. Incorpo-
rating such complications, as well as including more intricate
aspects of the (particle-hole asymmetric) band structure,
will shed much-needed light on the nature of the insulat-
ing phases in MATBG and their variation between different
devices.
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