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Experimental evidence for Majorana bound states largely relies on measurements of the tunneling
conductance. While the conductance into a Majorana state is in principle quantized to 2e2=h, observation of
this quantization has been elusive, presumably due to temperature broadening in the normal-metal lead.
Here, we propose to use a superconducting lead instead, whose gap strongly suppresses thermal
excitations. For a wide range of tunneling strengths and temperatures, a Majorana state is then signaled
by symmetric conductance peaks at eV ¼ �Δ of a universal height G ¼ ð4 − πÞ2e2=h. For a super-
conducting scanning tunneling microscope tip, Majorana states appear as spatial conductance plateaus
while the conductance varies with the local wave function for trivial Andreev bound states. We discuss
effects of nonresonant (bulk) Andreev reflections and quasiparticle poisoning.
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Introduction.—Motivated by possible applications in
quantum information processing [1,2], topological super-
conductors hosting Majorana bound states are currently
under intense investigation [3–5]. Based on the super-
conducting proximity effect, various realistic platforms
have been proposed to support Majorana states including
topological insulators [6,7], semiconductor nanowires
[8,9], and atomic chains [10–16]. Although these systems
are available in the laboratory, the experimental observation
of unique Majorana signatures remains challenging.
A widely employed diagnostic tool is the tunneling

conductance of normal metal-superconductor junctions,
in which Majorana bound states manifest themselves as
characteristic zero-bias peaks [17,18]. Experimental sig-
natures consistent with theoretical predictions have been
observed in quantum wires [19–21] and atomic chains
[22,23]. However, it is a major challenge in these experi-
ments to uniquely distinguish Majorana bound states from
conventional fermionic subgap states. Spin-polarized
subgap states such as Shiba states bound to magnetic
impurities [24–27] or Andreev bound states in a magnetic
field can exhibit a zero-energy crossing as a function of
exchange interaction or Zeeman energy [28–30]. Thus,
such fermionic states may accidentally occur at zero energy
and give rise to similar conductance features. As magnetic
impurities or external magnetic fields are also required for
the most relevant realizations of topological superconduc-
tors, such trivial conductance peaks can generally not be
disregarded.
In contrast to fermionic subgap states, Majorana states

exhibit a celebrated quantized zero-bias conductance of
2e2=h [17,18,31]. Unfortunately, this has, so far, proved
difficult to observe in experiment. The Fermi distribution in
the metal lead is smooth on the scale of the temperature T,
which strongly limits the experimental energy resolution.
When temperature is larger than the tunnel coupling, the

Majorana peak is broadened and the zero-bias conductance
is reduced. Even at low temperatures (e.g., T ¼ 60 mK in
Ref. [19]), it may be difficult to observe the quantized peak
height, as multichannel effects limit the relevant tunneling
strength [32]. Quasiparticle (qp) poisoning may also lead to
deviations from quantization. A fermion-parity breaking
rate exceeding the tunnel coupling broadens the peak and
reduces its height. This requires one to work at temper-
atures below the lowest fermionic excitations in the
topological superconductor.
In this Letter, we show how a robust conductance signature

of Majorana bound states can be obtained by employing
superconducting leads. In striking contrast to normal-state
contacts, effects of thermal broadening are strongly sup-
pressed for a superconducting lead because quasiparticle
excitations are exponentially suppressed∼ expð−Δ=TÞ by its
superconducting gap Δ. Majorana bound states no longer
appear as zero-bias anomalies but rather as two symmetric
peaks in the differential conductance G ¼ dI=dV which
occur when the BCS singularity of the superconducting
gap lines up with the Majorana bound state, i.e., at the
thresholds eV ¼ �Δ. These peaks have a universal height

GM ¼ ð4 − πÞ 2e
2

h
; ð1Þ

which persists over a wide range of tunnel couplings.
This yields particularly striking evidence when employ-

ing a scanning tunneling microscope (STM) with a super-
conducting tip which allows for spatially resolved
measurements. This has previously been used to map
out bound state wave functions in conventional and
unconventional superconductors [22,23,33–36]. Here, we
propose that such maps can clearly distinguish between
Majorana bound states and trivial zero-energy bound states.
Indeed, the peak conductance is uniform in the vicinity of
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Majorana states and a conductance map exhibits a char-
acteristic mesa or plateau structure. In contrast, the con-
ductance of trivial subgap states exhibits a spatial pattern
which is governed by the bound-state wave function.
In addition, STM measurements allow for systematic

studies as a function of tunneling strength by varying the tip
height. It was recently demonstrated [37] that this can be
exploited to probe quasiparticle relaxation processes. In the
present context, varying the tunneling strength may help to
identify Majorana signatures despite competing effects
such as nonresonant Andreev reflections or quasiparticle
poisoning.
Subgap conductance for Majorana bound state.—At

subgap voltages eV < Δþ Δs and zero temperature, the
tunneling current between superconducting tip or lead and
substrate (with gap Δs) flows by multiple Andreev reflec-
tions. Near the threshold ejVj ¼ Δ, the differential con-
ductance dI=dV is dominated by single Andreev reflections
from the sample. For tip locations far from the zero-energy
bound state in the sample, this yields the familiar peak in
dI=dV due to the singular densities of states of incoming
electrons and outgoing holes. In the vicinity of the bound
state, tunneling is further enhanced by the zero-energy
resonance [37–39].
Formally, the subgap current due to single Andreev

reflections from the sample can be expressed as [40–42]

IðVÞ ¼ 4eπ2t4
Z

dω
2πℏ

Tr½Gehðr;ωÞG†
ehðr;ωÞ�

× ρðω−ÞρðωþÞ½nFðω−Þ − nFðωþÞ�; ð2Þ
where t is the amplitude for tip-substrate tunneling,
ω� ¼ ω� eV, nFðωÞ denotes the Fermi function, and
the superconducting tip enters through its BCS density
of states ρðωÞ ¼ ν0θðjωj − ΔÞjωj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − Δ2

p
with ν0 the

normal density of states at the Fermi energy. Spin or
subband degrees of freedom are accounted for by a possible
matrix structure of the anomalous retarded Green function
Gehðr;ωÞ of the substrate at the tip position r. In terms of its
Lehmann representation, Gehðr;ωÞ has contributions from
both the bound state and the above-gap continuum. In the
following, we first consider the resonantly enhanced
Andreev current from a Majorana bound state and sub-
sequently discuss the contribution of the quasiparticle
continuum.
For ejVj≃ Δ, we can approximate nFðω−Þ − nFðωþÞ≃

sgnV in Eq. (2), up to corrections of order expð−Δ=TÞ. This
insensitivity to temperature is a key advantage of super-
conducting leads. The bound-state contribution to the
substrate Green function is

Gðr;ωÞ ¼ hrjψihψ jri
ωþ iΓ=2

: ð3Þ

Here, hrjψi¼½ζðrÞ;�ΘζðrÞ�T denotes the local
Bogoliubov–de Gennes wave function of the Majorana

bound state with Θ the time-reversal operator. The broad-
ening Γ ¼ 2ihψ jΣjψi of the bound state is induced by the
tunnel coupling to the lead. The corresponding self energy
Σ ¼ −iπt2diag½ρðω−Þ; ρðωþÞ� is diagonal as Andreev
reflections in the lead can be neglected near ejVj ¼ Δ.
Inserting Eq. (3) into (2) yields (for V > 0) [37,43]

I ¼ e
h

Z
dω

ΓeðωÞΓhðωÞ
ω2 þ ½ΓeðωÞ þ ΓhðωÞ�2=4

; ð4Þ

in terms of the electron and hole tunneling rates
Γe=hðωÞ ¼ 2πt2jζj2ρðω∓Þ. While the integrand in Eq. (4)
has a resonance denominator, its behavior is peculiar due to
the strong energy dependence of the tunneling rates.
Specifically, the square-root singularity of the BCS density
of states implies that the integrand involves a characteristic
energy scale ωt ¼ ½πt2ν0jζðrÞj2

ffiffiffiffiffiffiffiffiffi
Δ=2

p �2=3 which depends
on a fractional power of the tunneling rate from a normal tip
γn ¼ 2πt2ν0jζðrÞj2. In the weak-tunneling regime ωt ≪ Δ,
we can write

I ¼ 4e
h

Z
η

−η

dωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ω2

p ω3
t

ω2 þ ω3
t ð 1ffiffiffiffiffiffiffi

η−ωp þ 1ffiffiffiffiffiffiffi
ηþω

p Þ2 ; ð5Þ

for 0 < η ≪ Δ, where η ¼ eV − Δ measures the voltage
from the threshold Δ. In the vicinity of the threshold,
η ≪ ωt, the resonance denominator is dominated by
the second term, and we obtain IðVÞ ¼ ð4 − πÞð2e=hÞ×
ðeV − ΔÞθðeV − ΔÞ and, thus, Eq. (1). The entire peak line
shape

dI
dV

¼ ð4 − πÞ 2e
h
Λ

�
eV − Δ

ωt

�
; ð6Þ

involves the function ΛðxÞwhich vanishes for x < 0, jumps
to Λð0þÞ ¼ 1, and falls off with a small negative differ-
ential conductance tail at large x, cf. Fig. 1.
Thus, the differential conductance between a conven-

tional superconductor and a Majorana state exhibits a peak
which is independent of tunneling strength and Majorana
wave function. While the peak height is close to the
quantized Majorana peak height 2e2=h for a normal-metal
lead, there are several differences: (a) There are two
symmetric, finite-bias Majorana peaks at eV ¼ �Δ rather
than a single zero-bias peak. (b) The conductance peak is
strongly asymmetric with a discontinuous step at the
threshold. (c) The width of the peak is set by ωt with its
sublinear dependence on junction transparency.
The threshold discontinuity in the conductance persists

even when including the contributions of the quasiparticle
continuum in the substrate Green function. To see this,
we model the substrate superconductor by a 2 × 2 Nambu
Green function gðω; rÞ. For a topological substrate, this is
appropriate for perfect spin polarization (spinless p-wave
superconductor). Including the tunnel coupling to the tip
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through the self energyΣ as given above, the substrateGreen
function becomes G ¼ g½1 − Σg�−1. We first focus on the
vicinity of the bound state where the conductance is
dominated by Andreev reflections from the bound state.
By straightforward calculation and expansion of g inω [40],
we find

Gðr;ωÞ ¼ hrjψihψ jri
ω − λðωÞ þ iΓ=2

: ð7Þ

This differs from the pure bound-state contribution by the
additional term λðωÞ ¼ π2t4ω det gðω; rÞρðω−ÞρðωþÞ in the
denominator which involves the determinant (in particle-
hole space) of the bare substrate Green function. While the
determinant of the bound-state contribution to the Green
function vanishes, this is no longer the case when including
the quasiparticle continuum. At subgap energies away from
bound states, theGreen function gðω; rÞ is a Hermitian 2 × 2
matrix, so that det gðω; rÞ and, hence, λðωÞ are real. Thus,we
find

IMðVÞ ¼
4e
h

Z
η

−η

dωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ω2

p ω3
t

ðω − λÞ2 þ
�

ω3=2
tffiffiffiffiffiffiffi
η−ωp þ ω3=2

tffiffiffiffiffiffiffi
ηþω

p
�
2
:

ð8Þ

For a Majorana state, the real part of the resonance
denominator must vanish exactly at ω ¼ 0. Indeed, par-
ticle-hole symmetry further constrains det gðω; rÞ to be an
even function ofωwhich can be approximated as a constant
at small ω (see [40], where this conclusion is confirmed by
model calculations). Then, we find λðωÞ ∝ t4ω=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ω2

p
near the threshold. Even with this term, the denominator in
Eq. (8) remains dominated by the divergent tunnel broad-
enings ∼ω3=2

t =
ffiffiffiffiffiffiffiffiffiffiffiffi
η� ω

p
and the discontinuous conductance

step as well as the universal value of the threshold conduct-
ance in Eq. (1) persist.
In experiment, the square-root singularity of the BCS

density of states of the tip may be broadened intrinsically
due to higher-order processes or effectively due to exper-
imental resolution. The universal threshold conductance
persists as long as ωt exceeds this broadening. This
condition also determines the spatial extent of the con-
ductance plateau, r≲ 4ξ ln½ωtð0Þ=δΔ�=3, where ξ is the
Majorana localization length, ωtð0Þ denotes the value of ωt
at the center of the Majorana bound state, and δΔ is the
broadening of the tip density of state, cf. Fig. 1(b). Of
course, a well-resolved Majorana peak also requires
ωt ≪ Δs; i.e., the tunnel broadening needs to be small
compared to the induced gap. If the peak is not fully
resolved, it is suppressed below the universal value and its
height may vary as a function of space.
For tip locations far from the bound state, the tunneling

conductance is dominated by conventional (“nonresonant”)
Andreev reflections. These still yield a threshold peak due
to the singular tip density of states in Γe and Γh but are
not enhanced by a bound-state resonance. For a one-
dimensionalp-wave superconductor, this conductance peak
has height ≃1.3GM and width ∼ΔT 2 quadratic in the
junction transparency T ∝ t2 [40]. Observing the conven-
tional Andreev peak, thus, requires that the broadening of
the tip density of states is small compared to∼ΔT 2. This is a
much more stringent condition than for the resonant
Andreev peak as the width of the bound-state peak ωt ∝
t4=3 involves a lower power of t. We note that, in a typical
STM experiment [37], conventional Andreev peaks can be
resolved only for small tip-sample distances, while bound-
state signatures persist to much weaker tunnel couplings.
Subgap conductance for Andreev bound state.—These

results should be contrasted with those for trivial zero-
energy Andreev bound states. For concreteness, consider an
s-wave superconductor with conserved spin [44], whose
Bogoliubov–de Gennes description decomposes into two
independent spin sectors that interchange under particle-
hole transformations. A zero-energy Andreev state corre-
sponds to two Bogoliubov–de Gennes wave functions,
hrjψþi ¼ ½uðrÞ; vðrÞ�T and hrjψ−i ¼ ½ΘvðrÞ;−ΘuðrÞ�T,
one in each sector. An analogous calculation [40] yields
the threshold current

IAðVÞ ¼ 2IMðVÞf½juðrÞj2=jvðrÞj2�: ð9Þ
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FIG. 1 (color online). (a) Differential conductance vs bias
voltage near the threshold eV ¼ Δ for Majorana states (solid
line) and Andreev states with juj ¼ jvj (dashed line). For a
Majorana state, the conductance exhibits a step of height
ð4 − πÞ2e2=h at the threshold. For an Andreev state, the conduct-
ance has a smooth onset, cf. Eq. (10). Both peaks have a negative-
differential conductance dip at high voltages. Inset: Graph of fðxÞ
as defined in the main text. (b) Spatial conductance maps for
Majorana states (left) and Andreev (right) states forωtð0Þ=δΔ ¼ 5.
The Majorana state gives rise to a conductance plateau, whereas
the Andreev state exhibits a pattern reflecting the spatial depend-
ence of the ratio ðu=vÞ2. TheMajorana conductance drops far from
the bound state when the broadening exceeds ωt.
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Reflecting the two zero-energy wave functions, the
maximal threshold conductance is twice that in the
Majorana case, GA ¼ 2GM, and realized for the particle-
hole symmetric case juj ¼ jvj. In general, the peak
conductance depends on the ratio of electron and
hole wave function at the tip position. This dependence
is captured by the dimensionless function fðxÞ¼
½2x=ð4−πÞ�R 1

−1dz
ffiffiffiffiffiffiffiffiffiffiffi
1−z2

p
=ðx ffiffiffiffiffiffiffiffiffi

1−z
p þ ffiffiffiffiffiffiffiffiffi

1þz
p Þ2 which takes

on values between 0 and 1 and is plotted in Fig. 1(a). The
function satisfies fðxÞ ¼ fð1=xÞ as the two spin sectors
contribute equally. In the limit of large particle-hole
asymmetry, GA ∼GM minðju=vj2; jv=uj2Þ ≪ GM. The line
shape of the conductance peak is similar to the Majorana
peak, with a width of order ωt upon replacing ζðrÞ
by maxfuðrÞ; vðrÞg.
Our results imply that the height of the conductance peak

allows for a clear distinction between a conventional
Andreev bound state and a Majorana state. Even when
fðu2=v2Þ ∼ 1=2 for one location of the STM tip, moving
the tip to another location modifies the conductance peak
height for a conventional bound state, tracking the ratio of
electron and hole wave functions. In contrast, the conduct-
ance map exhibits a characteristic mesa structure for a
Majorana state, see Fig. 1(b). In non-STM tunneling
experiments, changes of parameters (e.g., gate voltages)
which affect the Majorana wave function should leave the
peak height unchanged for a Majorana bound state but not
for a conventional Andreev bound state.
As there is no locking of the bound state to zero energy,

the continuum contribution is also distinctly different for
conventional Andreev states. The two spin sectors are
described by separate 2 × 2 Nambu Green functions which
map into one another under particle-hole transformations.
This is quite unlike the Majorana Green function which
maps onto itself. For each sector, det gðω; rÞ is, therefore,
no longer an even function of ω and will generally have a
singular contribution ∝ 1=ω at the threshold so that
λðωÞ ∼ T 2ΔsΔ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ω2

p
. These general arguments can

be confirmed explicitly for Shiba states in s-wave super-
conductors [40]. Near the threshold, the resonance
denominator in the expression for the current is now
dominated by λðωÞ. As illustrated in Fig. 1 by a numerical
evaluation of the current, this suppresses the conductance
step. Analytically, we find that just above the threshold, the
conductance increases linearly,

GAðVÞ ∼
2e2

h
1

T 2

eV − Δ
Δ

θðeV − ΔÞ; ð10Þ

and matches with the conductance obtained from Eq. (9)
for eV − Δ ≫ T 2Δ. We note that this suppression of the
conductance step depends on T and can, thus, be probed by
varying the tip-sample distance in an STM experiment.
This may serve as an additional signature for distinguishing

between Majorana bound states and conventional Andreev
bound states.
Effects of quasiparticle poisoning.—So far, we only

included bound-state broadening by the tunneling contact.
At finite temperatures, the bound-state occupation also
changes by inelastic transitions to other subgap states or the
quasiparticle continuum in the sample [45]. We account for
these processes by an additional contribution iΓqp=2 to the
self energy of the bound-state Green function Eq. (7). This
does not affect the Andreev current at the threshold, where
the denominator is dominated by the diverging tunnel
coupling. However, the overall weight of the peak is
reduced by a narrowing of the linewidth by a factor
ðωt=ΓqpÞ2 once Γqp > ωt, see Fig. 2 (inset).
In addition, quasiparticle poisoning generates a single-

electron current Is which involves tunneling of single
particles followed by inelastic transitions from the zero-
energy bound state to other bound states or the quasiparticle
continuum [37]. For a Majorana state, we find near the
threshold eV ¼ Δ (with analogous results applying for
Andreev bound states) [40]

IsM ¼ e
4h

Z
dω

Γqp½ΓeðωÞ þ ΓhðωÞ�
ω2 þ ½Γqp þ ΓeðωÞ þ ΓhðωÞ�2=4

: ð11Þ

For weak and strong tunneling, this yields [40]

Gs
M ∼

2e2

h

(
ðωt=ΓqpÞ3=2 ωt ≪ Γqp;

Γqp=ωt ωt ≫ Γqp:
ð12Þ

Figure 2 shows that this single-particle contribution
assumes a maximum of ∼0.2GM when ωt ∼ Γqp.
However, it can be easily made negligible by tuning the
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FIG. 2 (color online). Total threshold conductance for aMajorana
state (tot) along with the single-particle contribution (sp) as a
function ofωt. The single-particle contribution affects the conduct-
ance only in a window of transmission values, where ωt ∼ Γqp.
While themaximum isoforder0.2GM, the positionof themaximum
in tunneling strength depends sensitively on temperature (through
Γqp). Inset: Line shape of the total conductance as a function of
voltage away from the threshold, for different ratios of ωt=Γqp.
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system away from this maximum through varying temper-
ature or tunneling strength.
Conclusions.—We show that conductance measurements

with superconducting leads constitute a promising tech-
nique for identifying Majorana states. The presence of
Majorana states is signaled by conductance peaks of
universal height which are largely unaffected by thermal
broadening, a key obstacle in previous experiments with
normal-metal contacts. We discuss strategies to systemati-
cally rule out parasitic effects such as quasiparticle poison-
ing or trivial subgap states. The proposed setup is readily
available in the laboratory and, in fact, has already been
realized in previous experiments [22,23,46,47]. (Notice,
however, that temperature was comparable to the induced
gap in the STM experiments performed to date, precluding
observation of the universal conductance, and that the
nanowire experiments focused on zero-bias peaks.) Our
results also imply that quasiparticle poisoning rates can be
extracted from systematic measurements as a function of tip
height and temperature.
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