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(Received 2 August 2022; accepted 30 January 2023; published 16 February 2023)

The emergence of correlated insulating phases in magic-angle twisted bilayer graphene exhibits strong
sample dependence. Here, we derive an Anderson theorem governing the robustness against disorder of the
Kramers intervalley coherent (K-IVC) state, a prime candidate for describing the correlated insulators at
even fillings of the moiré flat bands. We find that the K-IVC gap is robust against local perturbations, which
are odd under PT , where P and T denote particle-hole conjugation and time reversal, respectively. In
contrast, PT -even perturbations will in general induce subgap states and reduce or even eliminate the gap.
We use this result to classify the stability of the K-IVC state against various experimentally relevant
perturbations. The existence of an Anderson theorem singles out the K-IVC state from other possible
insulating ground states.
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Introduction.—Twisted bilayer graphene (TBG) is
recently attracting much attention as a highly tunable
platform of strongly correlated electrons. Twisting two
graphene sheets introduces a moiré lattice, which supports
exceptionally flat bands for certain twist angles [1]. At
these magic angles, the kinetic energy of the electrons is
effectively suppressed and the system is prone to devel-
oping interaction-driven correlated phases. Corresponding
experiments exhibit signatures of correlated insulators,
superconductivity, nematicity, integer and fractional
Chern insulators, spontaneous flavor polarization, as well
as orbital ferromagnetism [2–17].
A prime candidate for understanding the correlated

insulating phases, which occur near even integer fillings
of the moiré flat bands are Kramers intervalley coherent (K-
IVC) states [18–24]. These states exhibit a pattern of
magnetization currents, which triple the graphene unit cell,
thereby breaking the lattice translation symmetry as well as
time reversal. The associated spontaneous coherence
between the two valleys of the TBG band structure gaps
out the moiré Dirac points and induces insulating behavior.
A recent work reports evidence for the K-IVC state by
measuring the magnetic-field dependence of the thermo-
dynamic gap [25]. In general, the appearance and strength
of insulating states tend to be device dependent [8,26].
A possible explanation for this sample-specific behavior
lies in residual disorder associated with random strain or
impurity potentials. Thus, it is important to study and
understand their effects.
Previous works [22,27–31] predominantly considered

smooth disorder and twist-angle variations, for which the
associated long-range domain patterns can be directly
mapped in experiment [6,7,9,10,15,32]. Here, we focus

on local impurities. We show that for the K-IVC state, one
can systematically classify impurities according to their
ability to induce subgap excitations (Fig. 1), which dimin-
ish or even eliminate the insulating gap. Our discussion is
strongly informed by a far-reaching analogy with the
familiar problem of classifying impurities in s-wave super-
conductors [33].
Physically, these analogies can be understood by noting

that K-IVC states can be thought of as binding holes in one
valley to electrons in the other, akin to excitonic insulators.
Evidently, this is similar to binding time-reversed electrons
into Cooper pairs. According to Anderson’s theorem [33],
the ability of impurities to induce subgap excitations in
s-wave superconductors is controlled by whether or not
they respect time-reversal symmetry. We find that particle-
hole symmetry plays a similar role for the K-IVC state as
time-reversal symmetry does for superconductors. This is
consistent with the picture of bound electron-hole pairs.
In contrast to the K-IVC state, we find that there are no

corresponding Anderson theorems for other possible insu-
lating ground states such as the valley polarized and valley
Hall states.

(a) (b)

FIG. 1. Examples of impurities in twisted bilayer graphene
(schematically shown as black lines), which are (a) even (charged
impurity located between the layers; schematically shown in red)
and (b) odd (local change in interlayer tunneling) under PT (P
and T denote particle-hole and time-reversal conjugation, re-
spectively). PT -even impurities induce subgap states in the
K-IVC phase of TBG, while PT -odd impurities do not due to
Anderson’s theorem for the K-IVC state.
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Anderson’s theorem for s-wave superconductors.—To
clearly bring out the analogies, as well as differences,
between TBG and superconductors, we begin our discus-
sion with a review of Anderson’s theorem for s-wave
superconductors [33–36], using a formulation which
turns out to be adaptable to TBG. Starting from
the second-quantized BCS mean-field Hamiltonian H ¼
1
2

R
drΨ†ðrÞHΨðrÞ, we write the Bogoliubov–de Gennes

(BdG) Hamiltonian

H ¼
�
He Δ
Δ Hh

�
; ð1Þ

in a four-component Nambu formalism, using the basis
Ψ ¼ ½ψ↑;ψ↓;ψ

†
↓;−ψ

†
↑�. The normal-state Hamiltonians

He=h for electrons (e) and holes (h) as well as the pairing
Δ are matrices in spin space. For s-wave pairing, Δ is
proportional to the unit matrix. In the following, we assume
that Δ is spatially uniform and chosen to be real.
The BdG Hamiltonian is constrained by antisymmetry

under particle-hole conjugation, PHP−1 ¼ −H. As a
consequence, the normal-state Hamiltonians of electrons
and holes in Eq. (1) are related by time reversal T ,

Hh ¼ −T HeT −1: ð2Þ

This can be deduced by defining Pauli matrices τα and sα in
particle-hole and spin space, respectively. Then, particle-
hole conjugation is implemented by P ¼ −iτyT ¼ τysyK
and squares to unity, P2 ¼ 1, while time reversal takes the
form T ¼ isyK with T 2 ¼ −1 (K implements complex
conjugation).
We separate the normal-state HamiltonianHe ¼ H0 þ U

into a spatially homogeneous part H0 and a (local)
perturbation U. While we assume H0 ¼ T H0T −1 to be
time-reversal symmetric, a general perturbation U ¼ Uþ þ
U− can have components U� ¼ �T U�T −1, which are
even (þ) or odd (−) under time reversal. Combining these
symmetry properties under time reversal with Eq. (2), the
BdG Hamiltonian in Eq. (1) can be written compactly as

H ¼ H0τz þ Δτx þUþτz þU−τ0: ð3Þ

Importantly, one observes that time-reversal-symmetric
perturbations anticommute with the order-parameter term,
fΔτx; Uþτzg ¼ 0, while the time-reversal breaking term,
U−, commutes.
It can now be seen quite generally that time-reversal-

even perturbations do not reduce the BdG gap (Anderson’s
theorem). Given that antisymmetry under particle-hole
conjugation P enforces the eigenenergies to be symmetric
about zero energy, the spectrum can be deduced from the
square of H,

H2 ¼ ðH0 þUþÞ2 þ Δ2; ð4Þ

implying that the magnitude of the eigenvalues of H is
bounded from below by Δ. This argument uses the
assumption that the gap remains uniform in the presence
of the perturbation, but holds regardless of the particular
spatial structure of the impurity potential.
Conversely, perturbations, which are odd under time

reversal, generally reduce the gap. A uniform Zeeman field
described by U− ¼ B · s reduces the gap to Δ − jBj,
provided the normal-state Hamiltonian is spin-rotation in-
variant. Local magnetic impurities with U− ¼ JS · sδðrÞ
are well known to induce Yu-Shiba-Rusinov states at
subgap energies [37–40].
Twisted bilayer graphene.—We begin our discussion of

TBG by introducing its band Hamiltonian hðkÞ, after
projection to the eight flat bands. It is conveniently written
in the Chern basis spanned by the spin, valley (Pauli
matrices τα), and band (Pauli matrices σα) degrees of
freedom [18],

hðkÞ ¼ h0ðkÞτz þ hxðkÞσx þ hyðkÞσyτz: ð5Þ

Time-reversal symmetry enforces h0ðkÞ ¼ −h0ð−kÞ and
hx;yðkÞ ¼ hx;yð−kÞ. Because of the negligible spin-orbit
coupling of graphene, the Hamiltonian is a unit matrix in
spin space. The label σz is associated with the Chern
number C ¼ σzτz and (partial) sublattice polarization.
While the Pauli matrices τα refer to different degrees of
freedom in our descriptions of superconductors and
TBG, we shall see that they actually play rather analogous
roles.
In addition to spatial and spin rotation symmetries

as well as charge conservation, the Hamiltonian hðkÞ
conserves valley charge, obeys spinless time-reversal sym-
metry, and has an (approximate) particle-hole antisymme-
try [18,41–43]. The latter three symmetries are central to
our discussion. The conservation of valley charge is
associated with invariance under Uð1Þ valley rotations
UV ¼ eiθτz , spinless time reversal is implemented by T ¼
τxK with T 2 ¼ 1, and particle-hole conjugation takes the
form P ¼ iσyτzK with P2 ¼ −1. The particle-hole anti-
symmetry of TBG emerges when neglecting the small
relative twist of the Dirac Hamiltonians of the two layers in
the Bistrizer-MacDonald model [1].
Within the mean-field approximation for the K-IVC state

[18], the band Hamiltonian hðkÞ is complemented by the
order parameter hIVC ¼ Δσyðτx cos θ þ τy sin θÞ, where θ
denotes an arbitrary phase. In view of the associated
magnetization currents, the K-IVC state breaks time rever-
sal spontaneously, T hIVCT −1 ¼ −hIVC. However, it pre-
serves a modified time-reversal symmetry [18]

T 0 ¼ iτyK; ð6Þ
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which concatenates T with a valley rotation, T 0 ¼ τzT .
Both T and valley rotations are symmetries of the single-
particle Hamiltonian, so that the mean-field Hamiltonian
HðkÞ ¼ hðkÞ þ hIVC conserves the Kramers time reversal
T 0 (with T 02 ¼ −1) as a whole.
The Hamiltonian HðkÞ can be thought of as the ana-

log of the BdG Hamiltonian for the K-IVC state. We will
now make the analogies yet more explicit by a change of
basis H → UHU† with

U ¼
�
1 0

0 iσy

�
: ð7Þ

In the new basis, which we refer to as the particle-hole
basis, the Chern number becomes C ¼ σz. Transforming
the Hamiltonian in this manner, we find

HðkÞ ¼ H0ðkÞτz þ Δðτx cos θ̃ þ τy sin θ̃Þ ð8Þ

(θ̃ ¼ θ þ ðπ=2Þ). Here, we make the dependence on the
valley Pauli matrices τα explicit, while H0 and Δ are still
matrices in sublattice space. We find H0ðkÞ ¼ h0ðkÞ þ
hxðkÞσx þ hyðkÞσy for the single-particle Hamiltonian of
the K valley, while Δ is simply proportional to the unit
matrix. The transformation (7) to the particle-hole basis
also changes the explicit forms of the time-reversal and
charge-conjugation operations, T → UT U† and P →
UPU†, which yields P ¼ iσyK and T 0 ¼ −τxP.
Equation (8) is closely analogous to the BdG

Hamiltonian of s-wave superconductors, with particle-hole
space replaced by the valley degree of freedom and spin
space replaced by sublattice space. In Eq. (8), the band
Hamiltonian H0ðkÞ is analogous to the normal-state
Hamiltonian. It multiplies τz as a consequence of the chiral
antisymmetry PT ¼ iτy of the TBG Hamiltonian.
Moreover, the term describing K-IVC order is analogous
to the pairing term in the BdG Hamiltonian, being off
diagonal in valley and proportional to the unit matrix in
sublattice space.
Beyond the structural similarities of the Hamiltonians,

there is also a correspondence of symmetries. Interestingly,
the roles of time reversal and particle-hole conjugation are
essentially reversed. For superconductors, time reversal
acts diagonally in particle-hole space, while particle-hole
conjugation is off diagonal. In contrast, in TBG it is time
reversal that maps between the two valleys, while particle-
hole conjugation acts separately within each valley.
We also note that gauge transformations for super-

conductors are structurally analogous to U(1) valley rota-
tions in TBG. For superconductors, the BdG Hamiltonian
becomes explicitly symmetric under the conventional time
reversal operator T ¼ isyK when choosing a gauge, in
which Δ is real. In TBG, we can similarly exploit the
valley rotation symmetry to choose θ̃ ¼ π=2, so that

HðkÞ ¼ H0ðkÞτz þ Δτy. With this choice, the mean-field
K-IVC order is also odd under particle-hole conjugation, so
that PHðkÞP−1 ¼ −Hð−kÞ. In the following, we make
this choice for definiteness. However, just as Anderson’s
theorem for s-wave superconductors is not specific to a
particular gauge, Anderson’s theorem for TBG is not
limited to this choice.
Impurities and K-IVC states.—Armed with this far-

reaching correspondence between the BdG Hamiltonian
of s-wave superconductors and the K-IVC state of TBG, we
now turn to discussing the effects of impurities on the
K-IVC state. We consider impurity potentials which are
sufficiently smooth on the scale of the atomic lattice, so that
they preserve the Uð1Þ valley symmetry. Intervalley scat-
tering can then be neglected and the impurity potential is
diagonal in valley space. With this assumption, the low-
energy Hamiltonian in the presence of an impurity potential
becomes

H ¼ H0τz þ Δτy þU−τz þUþτ0: ð9Þ

Just as for superconductors, the impurity potentials U�
(which are matrices in sublattice and spin space) are
distinguished by their symmetry properties. For super-
conductors, antisymmetry under particle-hole conjugation
is built into the BdG formalism. For this reason, it was
sufficient to classify perturbations according to their
behavior under time reversal. In contrast, for TBG, both
Kramers time reversal and particle-hole conjugation are
physical symmetries of the Hamiltonian. Consequently, we
now classify perturbations according to their transforma-
tion properties under the combined chiral symmetry oper-
ation PT ¼ iτy, namely, ðPT ÞUþτ0ðPT Þ−1 ¼ Uþτ0 and
ðPT ÞU−τzðPT Þ−1 ¼ −U−τz. (Notice that due to valley
rotation symmetry, the impurity terms transform in the
same way under PT and PT 0.) By comparing with the
discussion of Eq. (3), we can now formulate an Anderson’s
theorem for TBG, our central result: The gap of K-IVC
states is robust against valley-preserving perturbations,
which are odd under the combined chiral symmetry
operation PT . In fact, perturbations which are odd under
PT anticommute with the K-IVC order Δτy and cannot
reduce the gap. In contrast, similar to time-reversal-break-
ing impurities in superconductors, perturbations which are
even under PT can induce subgap states in TBG. For
perturbations that are local on the moiré scale, this follows
as for time-reversal-breaking impurities in s-wave super-
conductors. A finite density of PT -even impurities can
thus suppress or even destroy the K-IVC gap.
So far, our discussion relied on a close structural analogy

between the BdG Hamiltonian of s-wave superconductors
and the low-energy Hamiltonian of TBG with K-IVC order.
More fundamentally, the appearance of an Anderson’s
theorem in both theories is rooted in the fact that up to
Uð1Þ rotations which leave the normal-state Hamiltonian
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invariant, their order parameters are proportional to a
natural antisymmetry of the model, namely PT . For both
superconductors and the K-IVC state of TBG, we have
Δτy ¼ −iΔPT . Up to a gauge transformation (supercon-
ductors) or a Uð1Þ valley rotation (TBG), this is equivalent
to the general order-parameter term Δðτx cos θ þ τy sin θÞ.
This form of the order parameter has two important
consequences. First, the order-parameter and single-particle
terms in the Hamiltonian anticommute, so that the single-
particle energies and the order parameter add in quadrature
in the mean-field excitation spectrum. Second, this property
persists in the presence of disorder, as long as the latter is
odd under PT , which is Anderson’s theorem.
One should remember that the derivation of Anderson’s

theorem relies on several assumptions. In particular, one
assumes that the order parameter remains spatially uniform
and is momentum independent. Similar to anisotropic
superconductors, the order parameter of TBG exhibits
some momentum dependence [18]. In the presence of
momentum dependence, there will be no systematic anti-
commutation behavior between the order-parameter term
and the impurity potential. Then, Anderson’s theorem no
longer applies in the strict sense, and implies only
enhanced, but not full protection of the gap.
Classifying physical perturbations.—So far, we have

phrased our discussion in rather general terms, largely
relying on symmetry properties of the TBG flat bands. We
now classify perturbations according to their symmetry and
tabulate the presence or absence of Anderson’s theorem in
Table I. For a given behavior under time reversal, it is
sufficient to consider their transformation properties under
P, which acts separately within each valley.
Usually, we do not know the form of perturbations

in the flat-band (i.e., Chern or particle hole) bases, but
rather in the microscopic graphene basis. Within the

Bistrizer-MacDonald model [1], the Hamiltonian H0 is
valley diagonal and takes the form

H ¼

0
B@

vDσ ·
�
1
i ∇þAt

�
þ ϕt TðrÞ

T†ðrÞ vDσ ·
�
1
i ∇þAb

�
þ ϕb

1
CA

ð10Þ

for the K valley. Here, the diagonal and off-diagonal blocks
are intra- and interlayer terms, respectively, and the σα refer
explicitly to the graphene sublattice. Potential disorder
introduces layer- and sublattice-dependent potentials
ϕt=bðrÞ. Modulations in the interlayer distance cause
variations of the interlayer tunneling terms TðrÞ. Strain
introduces vector potentialsAt=bðrÞ and modifies TðrÞ [44–
46]. In terms of the strain-induced displacements ulðrÞ
relative to the uniformly twisted bilayer, the compo-
nents of the vector potential take the form [45,46] ðAlÞμ ¼
K · ∂μul þ ð½β ffiffiffi

3
p �=½2a�Þðul;xx − ul;yy;−2ul;xyÞ. Here, β

characterizes the sensitivity of the hopping amplitude to
strain-induced displacements and ul;ij is the strain tensor of
layer l. Time-reversal symmetry implies that strain-induced
vector potentials are odd in valley space, while the scalar
potentials are even.
In the microscopic graphene basis of the Bistritzer-

MacDonald Hamiltonian in Eq. (10), particle-hole con-
jugation takes the form [18]

P ¼ iσxμyK; ð11Þ

where the μα are Pauli matrices in layer space
(PT ¼ iτxσxμy). The validity of Anderson’s theorem for
various perturbations is now readily established and tabu-
lated in Table I for time-reversal symmetric perturbations
(also including their structure in the microscopic basis). A
sublattice-symmetric potential will commute with P, if it is
layer symmetric, and anticommute with P, if it is odd under
layer exchange. According to our considerations, we find
that layer-symmetric potentials induce subgap states within
the K-IVC gap, but layer-odd potentials leave the K-IVC
gap intact. These conclusions are reversed for sublattice-
odd potentials. Tunneling disorder corresponds to a local
variation in the strength of the interlayer tunneling ampli-
tudes and thus in the parameters entering TðrÞ.
Consequently, tunneling disorder inherits the P transfor-
mation properties of H0 and Anderson’s theorem applies.
Finally, a layer-even vector potential (homostrain) is even
under P, while a layer-odd vector potential (heterostrain) is
odd. We therefore find that Anderson’s theorem applies to
local heterostrain only. We note that due to a self-con-
sistency effect, uniform heterostrain decreases the gap [45].
We neglect self-consistency effects since for local pertur-
bations, spatial variations of the order parameter are sup-
pressed by its stiffness on the scale of the correlation length.

TABLE I. Table of time-reversal symmetric perturbations (left
column) and their effect on the K-IVC gap. The central column
gives the matrix structure in the microscopic graphene basis of
TBG, where μα, σα, and τα are Pauli matrices in layer, sublattice,
and valley space, respectively. The right column indicates the
validity of Anderson’s theorem. The K-IVC gap is protected
against perturbations, for which Anderson’s theorem is valid.
Notice that in this table, we only consider strain-induced vector
potentials (pot.).

Perturbation Matrix structure Anderson

Layer-even pot. 1 ✗
Layer-odd pot. μz ✓
Layer-even sublattice pot. σz ✓
Layer-odd sublattice pot. σzμz ✗
Layer-even vector pot. σx; σyτz ✗

Layer-odd vector pot. σxμz; σyτzμz ✓

Tunneling disorder see text ✓
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Other insulating ground states.—While it has been
argued that the K-IVC is the most favorable ground state
at even integer fillings of the flat bands of TBG
[18,20,21,47], other competing symmetry-broken states
can also be considered [48–51]. We find that the K-IVC
is distinct from other possible ground states due to the
existence of Anderson’s theorem for PT -antisymmetric
disorder. It is thus conceivable that such kinds of disorder
stabilize the K-IVC state relative to competing states.
First, consider an alternative, time-reversal-preserving

intervalley coherent state, termed T-IVC. In the particle-
hole basis, this state has the order parameter
Δσzðτx cos θ þ τy sin θÞ. The T-IVC gap anticommutes
with only one of the three terms of the flat-band
Hamiltonian, precluding the derivation of an Anderson’s
theorem.
The valley-polarized state with order parameter Δτz

leads to the mean-field Hamiltonian

Hvp ¼ H0τz þ Δτz þ U−τz þ Uþτ0 ð12Þ

in the particle-hole basis. The order-parameter term com-
mutes with the band Hamiltonian, so that a gap emerges
only when Δ shifts the flat bands of the two valleys
sufficiently far apart in energy. The impurity problem can
be considered separately for the two valleys and regardless
of impurity type, there is no robustness due to an
Anderson’s theorem.
Finally, we consider the valley Hall state with mean field

Hamiltonian

Hvh ¼ H0τz þ Δσzτz þ U−τz þ Uþτ0 ð13Þ

in the particle-hole basis. The order-parameter term anti-
commutes with the flat-band Hamiltonian H0τz [see
Eq. (8)] only in the chiral limit, where h0ðkÞ ¼ 0 [52].
In this idealized (but experimentally remote) limit, the gap
is robust against perturbations, which are purely off-
diagonal in sublattice space, e.g., strain disorder.
Conclusions.—We have shown that an Anderson-type

theorem protects the gap of the K-IVC state, a prime
candidate for the observed robust correlated insulators of
TBG, from certain types of disorder. Similar to s-wave
superconductivity, which is robust against time-reversal
preserving disorder, we find that the K-IVC gap is robust
against disorder, which is odd under PT . The robustness
against some types of disorder distinguishes the K-IVC
state from other candidate ground states for the corre-
lated insulators and arises due to the special nature
of the order parameter, which has the same matrix structure,
up to a Uð1Þ valley rotation, as the PT chiral anti-
symmetry.
This special structure of the order-parameter term also

underlies the close analogy of KIVC states with s-wave
superconductors. In both cases, this structure guarantees

that the band Hamiltonian as well as PT -odd disorder
potentials anticommute with a uniform and momentum-
independent order-parameter term. For superconductors, P
is an inherent antisymmetry, so that Anderson’s theorem
applies to T -even perturbations. For TBG, both P and T
are physical symmetries, so that Anderson’s theorem
applies to all perturbations which are odd under PT ,
regardless of their behavior under P and T individually.
Our theoretical considerations can be tested by intro-

ducing impurity potentials with different behavior under
PT . Local PT -even perturbations will in general induce
subgap states, which can be probed directly using scanning
tunneling microscopy. One expects that a finite density of
impurities can reduce or even eliminate the K-IVC gap. We
leave a detailed study of this last situation to a separate
publication [53].
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