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THEORETICAL BACKGROUND

The Manganese (Mn) adatoms are presumably in a 6S5/2 configuration. When placed in an isotropic environment,
this implies that the exchange interaction is with the l = 2 conduction electrons and conserves angular momentum
[1]. Lifting the degeneracy between the d-levels is the result of crystal-field splittings reflecting the anisotropy of the
host, and the resulting multiplicities are largely determined by symmetry considerations. The splittings as well as the
orbital dependence of the hybridization imply that the exchange and potential couplings between magnetic impurity
and conduction electrons become orbital dependent.

When the magnetic impurity is placed in an isotropic superconductor, one thus expects five pairs of degenerate YSR
states. Similar to the d-levels, the YSR states will split due to the symmetry reduction by crystal fields. One way
of thinking about this splitting is as a result of the modification of the d-level energies and hybridizations mentioned
above. Alternatively, we can first compute the Shiba states for a completely isotropic environment and then consider
their splitting resulting from the symmetry reduction. As the results are controlled by group theory, both approaches
give identical results as long as we do not attempt to compute specific values of energy levels. In the following, we
briefly sketch the second approach.

Yu-Shiba-Rusinov states

Let us consider a homogeneous s-wave superconductor whose Hamiltonian in real space can be written as

Hs =

∫
dr

{∑
σ

ψ†σ(r)

[
−∇2

2m
− µ

]
ψσ(r) + ∆∗ψ↑(r)ψ↓(r) + ∆ψ†↓(r)ψ†↑(r).

}
(S1)

Here ψσ(r) annihilates an electron with spin σ at position r, ∆ is the superconducting order parameter and µ is the
chemical potential. It is convenient to represent the electron field operators in the basis of spherical waves centered
at the position of the impurity atom, namely

ψσ(r) =
∑
klm

cklmσφklm(r), (S2)

where

φklm(r) = jl(kr)Y
m
l (r̂), m = −l,−l + 1, . . . l (S3)

with l ∈ N0, jl the spherical Bessel function of order l, and Y ml the spherical harmonics of degree l and order m.
Thus, we decompose the electrons in the superconductor into different angular-momentum channels,

Hs =
∑
klm

c†klmσcklmσξk + (−)m
[
∆cklm↑ckl−m↓ + ∆c†kl−m↓c

†
klm↑

]
(S4)

ξk =
k2

2m
− µ. (S5)

In the situation we are considering here, the impurity atom is Mn++, whose ground state is 6S5/2 with a half-filled
3d shell. It was shown [1, 2] that, to lowest order, only the l = 2 channel electrons get scattered due to the impurity.
Hence, in the following, we will only include the l = 2 conduction electrons in the Hamiltonian, and suppress this
index. The full Hamiltonian including the impurity becomes

H =

2∑
m=−2

{∑
kσ

c†kmσckmσξk + (−)m
∑
k

(
∆ckm↑ck−m↓ + ∆c†k−m↓c

†
km↑

)}
+
∑
σσ′

∑
kk′

(JS · σσσ′ + V δσσ′) c†kmσckmσ′ ,

(S6)
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where J and V are the strengths of the exchange the potential coupling between the impurity atom and the conduction
electrons. If we assume the impurity spin S to be aligned along z direction, the last term in the Hamiltonian can be
written as

JS(c†km↑ckm↑ − c
†
km↓ckm↓).

Introducing Nambu spinor Ckm = (ckm↑, c
†
k−m↓)

T , we have the Bogoliubov–de Gennes Hamiltonian

H =

2∑
m=−2

{∑
k

C†kmHsCkm +
∑
kk′

(JS + V τz)C
†
kmCk′m

}
(S7)

Hs = ξkτz + (−)m∆τx. (S8)

Here, τα denotes Pauli matrices in particle-hole space.
The Green function corresponding to the above Hamiltonian fulfills the Dyson equation

Gkk′m(E) = gkm(E)δkk′ + gkm(E) (JS + V τz)
∑
k1

Gk1k′m(E), (S9)

where gkm is the Green function of the homogeneous superconductor without the impurity,

gkm(E) = (E − ξkτz − (−)m∆τx)−1 =
E + ξkτz + (−)m∆τx

E2 − ξ2k −∆2
. (S10)

In particular, we have

∑
k

Gkk′m(E) = gk′m(E) +

[∑
k

gkm(E)

]
(JS + V τz)

[∑
k1

Gk1k′m(E)

]
, (S11)

which gives

Gkk′m(E) = gkm(E)δkk′ + (JS + V τz)gkm(E)

[
1−

∑
k

gkm(E)(JS + V τz)

]−1
gk′m(E). (S12)

One can identify the T matrix as

T (E) = (JS + V τz)

[
1−

∑
k

gkm(E) (JS + V τz)

]−1
. (S13)

Since ∑
k

gkm(E) '
∫
dξ ν0

E + (−)m∆τx
E2 − ξ2 −∆2

=
−πν0(E + (−)m∆τx)√

∆2 − E2
, (S14)

with ν0 a one-channel density of states at the Fermi level (∝ 1/(πvF )) for the conduction electrons, we find that

T (E) =
1

πν0

(α2 − β2)E + (α+ βτz)
√

∆2 − E2 + (−)m(α2 − β2)∆τx

(1− α2 + β2)
√

∆2 − E2 + 2αE
, (S15)

whose poles give the Shiba state energies1

Em = −∆
1− α2 + β2√

(1− α2 + β)2 + 4α2
, (S16)

where α = JSπν0 > 0, β = V πν0. This expression is the same as the one for the Shiba states induced by an exchange
potential of the form of a δ-function. The difference is that the Shiba states obtained here are fivefold degenerate.

1 J as defined here differs from the J in the real-space representation (for s-wave scatterers) Jψ†(0)σψ(0) · S by a normalization factor;
however, the value of the dimensionless quantity α remains unaffected.
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Table I. Character table for the irreducible representations for group C4v and reducible representation D+

E 2C4 C2 2σv 2σd linear, rotations quadratic

A1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 −1 −1 Rz

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 xy

E 2 0 −2 0 0 (x, y) (Rx, Ry) (xz, yz)

D+ 5 −1 1 1 1

Table II. Character table for the irreducible representations for group C3v and reducible representation D+

E 2C3 3σv linear, rotations quadratic

A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 Rz

E 2 −1 0 (x, y) (Rx, Ry) (x2 − y2, xy) (xz, yz)

D+ 5 -1 1

Crystal field splitting

Above, the Shiba states were obtained from scattering electrons of an isotropic superconductor off an impurity
potential with a certain angular momentum component with l = 2. Thus, the Shiba states are 5-fold degenerate, and
their wave functions resemble the shape of d atomic orbitals. The degeneracy is (partially) removed by the crystal
field describing the local environment of the magnetic impurity. The nature of the splitting is essentially determined
by symmetry. We briefly summarize the standard results of group theory which govern these splittings for the surfaces
of interest in the main text.

The point group symmetries for the Pb(001) and Pb(111) surfaces are C4v and C3v with the corresponding character
tables in Tables I and II, respectively [3]. As long as the adsorption sites respect this symmetry, we can then read off
the generic multiplicities of the Shiba states. In our experiments, we find this to be the case for the Pb(001) surface as
well as the for Mnup

Pb(111) site on the Pb(111) surface. If the adsorption site further reduces the symmetry, the Shiba

states will split even further. In our experiments, we conclude that this is the case for the Mndown
Pb(111) adsorption site.

For the case that the absorption sites respect the symmetry of the surface, we thus find from the character tables:

• Pb(001):

D+ = A1 ⊕B1 ⊕B2 ⊕ E. (S17)

dxz and dyz orbitals are doubly degenerate, and dxy , dx2−y2 and dz2 are nondegenerate.

• Pb(111):

D+ = A1 ⊕ 2E. (S18)

dx2−y2 and dxy are degenerate. dxz and dyz are degenerate. dz2 is non degenerate.

EXPERIMENTAL DATA

dI/dV maps with full contrast and at negative bias voltages

In Fig. 3 of the main text we provided dI/dV maps at positive bias voltages for a Mn adatom in the Mndown
Pb(111)

and in the Mnup
Pb(111) adsorption site. The contrast of some of the maps was stretched to emphasize the long-range

patterns of the YSR states. For completeness, we provide the same maps with a linear color scale in Fig. S1 (+α
to +ε and +ζ to +θ). We provide also dI/dV maps of the YSR resonances at negative bias voltages, which show
patterns similar to those at positive voltages.
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Figure S1. dI/dV maps of a Mn adatom on Pb(111) in the two adsorption sites denoted by Mndown
Pb(111) (±α, ±β, ±γ, ±δ, ±ε)

and Mnup
Pb(111) (±ζ, ±η ±θ), respectively. The corresponding topographies are shown. × denotes the same position in all maps.

The dI/dV maps are recorded with the tip-sample distance adjusted in each pixel to a setpoint of 400 pA at 5 mV. Lock-in
modulation: 20 µVrms. The maps of +α to +ε and +ζ to +θ reproduce the same data as in Fig. 3 (e,f) of the main text, but
with a linear color scale. The maps of the negative energy resonances −α to −ε and −ζ to −θ are shown with a linear (top)
and with a stretched (bottom) color scale, respectively. Note that the dark spot in the top right corner of the imaged area is a
subsurface neon inclusion [4].

Further arguments for the orbital assignment
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Figure S2. dI/dV spectrum recorded at a pair of adatoms, which lie at close distance. Splitting of the states reveals three
resonances close to the original energy of ±γ (marked by arrows). Setpoint: 4 mV at 200 pA. Lock-in modulation: 15 µVrms.

In the main text we deduced the symmetry of the scattering potential from the spatial pattern of the YSR-states
observed in the dI/dV maps of a Mn adatom on Pb(001). We assigned the distinct states α, β and γ to originate
from scattering of the Mn adatom’s d-orbitals. The assignment of resonances ±β to dz2 was unambiguous because
the intensity is strongest at the center of the adatom and only weak into the 〈110〉 directions. Resonances α and γ
originate either from scattering at dx2−y2 and/or from the orbitals dxz,yz and dxy. An assignment from the spatial
shape of the YSR state alone is ambiguous. At higher coverage, we also observe pairs of adatoms at close distance.
The interaction leads to a splitting of the resonances ±γ into three pairs of resonances [see Fig. S2]. This requires ±γ
to actually consist of (at least) two resonances. Thus, we assigned ±γ resonances to scattering at the orbitals dxz,yz
and dxy, which are degenerate in the single atom. Resonances ±α then originate from scattering at dx2−y2 .

Lateral decay of dI/dV intensity

In the main text we showed the lateral decay of spectral intensity of YSR states along the 〈110〉 high-symmetry
directions in the vicinity of a Mnup

Pb(111) adatom. The curves were extracted from high-resolution dI/dV maps at the

energies of the YSR states. To emphasize the oscillatory intensity variations, we subtracted a background b(r), which
is derived from the 1/r dependence of the YSR wavefunction ψ(r) at distances r < ξ (ξ is the coherence length of the
superconductor):
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Figure S3. Lateral decay of the spectral intensity at positive (black) and negative bias (blue) of the two YSR resonances
with lowest binding energy for an adatom on Pb(111) in the Mnup

Pb(111) adsorption site. Setpoint: 400 pA, 4 mV. Lock-in

modulation: 20 µV. The blue curves in (c,d) are offset for clarity by 0.02. (a,b) show the full profiles as extracted from
high-resolution dI/dV maps along the 〈110〉 crystal directions. (c,d) show a zoom of the gray shaded areas in (a,b). Removal
of the strongly decaying background, which is shown as orange line, leads to Fig. 3 of the main text. The z profiles show the
apparent height as a function of distance from the impurity center.

b(r) =

∣∣∣∣y0 +
1

k |r − r0|

∣∣∣∣2 . (S19)

Here, k and y0 are independent fit parameters, and r0 is set to the center of the adatom. Figure S3 shows the full
datasets of the spectral intensity at positive and negative bias in (a,b). The region of interest is shaded with a gray
background, and displayed in (c,d). Subtracting the decay function (orange) leads to Fig. 3 of the main text.
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