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Topological quantum computation provides an elegant way around decoherence, as one encodes quantum
information in a non-local fashion that the environment finds difficult to corrupt. Here we introduce a surpris-
ing new topological quantum computation platform: one-dimensional semiconductor wire networks. Previous
work1,2 provided a recipe for driving semiconducting wires into a topological phase supporting long-sought
particles known as Majorana fermions that can store topologically protected quantum information. Majorana
fermions in this setting can be transported, created, and fused by applying locally tunable gates to the wire. More
importantly, we show that networks of such wires allow Majorana fermions to be meaningfully braided and that
they exhibit non-Abelian statistics like vortices in a p + ip superconductor. We propose simple experimental
setups that allow for the Majorana fusion rules to be probed, along with more complex networks that allow for
efficient exchange of arbitrary numbers of Majorana fermions. This work paves a new path forward in the field
of topological quantum computation that benefits from physical transparency and experimental realism.

PACS numbers:

The experimental realization of a quantum computer ranks
among the foremost outstanding problems in condensed mat-
ter physics, particularly in light of the revolutionary rewards
the achievement of this goal promises. Typically, decoher-
ence presents the primary obstacle to fabricating a scalable
quantum computer. In this regard topological quantum com-
puting holds considerable promise, as here one embeds quan-
tum information in a non-local, intrinsically decoherence-free
fashion3–5. The core ideas can be illustrated with a toy model
of a spinless, two-dimensional p + ip superconductor. Vor-
tices in such a state bind exotic particles known as Majo-
rana fermions, which cost no energy and therefore generate
a ground state degeneracy. Because of the Majoranas, vor-
tices exhibit non-Abelian braiding statistics6,7: adiabatically
exchanging vortices noncommutatively transforms the system
from one ground state to another. Quantum information en-
coded in this ground state space can be controllably manip-
ulated by braiding operations—something the environment
finds difficult to achieve.

Despite this scheme’s elegance, realizing suitable topologi-
cal phases poses a serious challenge. Most effort has focused
on the quantum Hall state at filling fraction6,8 ν = 5/2, though
this route appears daunting due to the plateau’s fragility9. For-
tunately, we are in the midst of a paradigm shift wherein such
topological phases of matter need no longer be found in solid
state systems—rather, they can be engineered. Indeed, topo-
logical insulators10,11, semiconductor heterostructures12,13,
non-centrosymmetric superconductors14–16, and quantum Hall
systems at integer plateau transitions17 can all be engineered
into non-Abelian topological phases similar to a spinless p+ip
superconductor.

More recently, two groups1,2 recognized that topological
superconductivity can be perhaps most easily engineered in
one-dimensional semiconducting wires deposited on an s-
wave superconductor. These proposals provide the first realis-
tic experimental setting for Kitaev’s18 one-dimensional topo-

logical superconducting state. Remarkably, the ends of such
wires support a localized, zero-energy Majorana fermion1,2,18.
Motivated by the exciting possibility of experimentally realiz-
ing this phase, we examine the prospect of exploiting one-
dimensional semiconducting wires for topological quantum
computation.

The suitability of one-dimensional wires for this purpose
is by no means obvious. Topological quantum computation
requires Majorana fermions to be transported, created, and
fused, and also relies on their non-Abelian exchange statis-
tics. The first three criteria can be implemented in a physi-
cally transparent fashion by applying independently tunable
gates to the wire. Satisfying the last criterion, however, poses
a more serious puzzle. Indeed, conventional wisdom holds
that braiding statistics is ill-defined in one dimension, since
particles must pass through one another at some point during
the exchange. This problem can be surmounted by consider-
ing networks of one-dimensional wires, the simplest being the
T-junction of Fig. 3. Even in such networks, however, non-
Abelian statistics does not immediately follow as recognized
by Wimmer et al.19 For example, in a two-dimensional p+ ip
superconductor, vortices binding the Majoranas play an inte-
gral role in establishing non-Abelian statistics6,7. We demon-
strate that despite the absence of vortices in the wires, Ma-
jorana fermions in semiconducting wires exhibit non-Abelian
statistics and transform under exchange exactly like vortices
in a p+ ip superconductor.

We further propose experimental setups ranging from min-
imal circuits (involving one wire and a few gates) that can
probe the Majorana fusion rules, to scalable networks that en-
able efficient exchange of many Majoranas. The ‘fractional
Josephson effect’1,2,10,18,20, along with Hassler et al.’s recent
proposal21 enable readout of the topological qubits in this set-
ting. The relative ease with which one-dimensional wires can
be driven into a topological superconducting state, combined
with the physical transparency of the manipulations, render
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the setups discussed here extremely promising topological
quantum computation platforms.

I. MAJORANA FERMIONS IN ‘SPINLESS’ p-WAVE
SUPERCONDUCTING WIRES

We begin by discussing the physics of a single wire. Valu-
able intuition can be garnered from Kitaev’s toy model for a
spinless, p-wave superconducting N -site chain18:

H = −µ
N∑
x=1

c†xcx −
N−1∑
x=1

(tc†xcx+1 + |∆|eiφcxcx+1 + h.c.)

(1)
where cx is a spinless fermion operator and µ, t > 0, and
|∆|eiφ respectively denote the chemical potential, tunneling
strength, and pairing potential. The bulk- and end-state struc-
ture becomes particularly transparent in the special case18

µ = 0, t = |∆|. Here it is useful to express

cx =
1

2
e−i

φ
2 (γB,x + iγA,x), (2)

with γα,x = γ†α,x Majorana fermion operators satisfying
{γα,x, γα′,x′} = 2δαα′δxx′ . These expressions expose the
defining characteristics of Majorana fermions—they are their
own antiparticle and constitute ‘half’ of an ordinary fermion.
In this limit the Hamiltonian can be written as

H = −it
N−1∑
x=1

γB,xγA,x+1. (3)

Consequently, γB,x and γA,x+1 ‘fuse’ to form an ordinary
fermion dx = (γA,x+1 + iγB,x)/2 which costs energy 2t,
reflecting the wire’s bulk gap. Conspicuously absent from H ,
however, are γA,1 and γB,N , which represent end-Majorana
modes. These can be combined into an ordinary zero-energy
fermion dend = (γA,1 + iγB,N )/2. Thus there are two degen-
erate ground states |0〉 and |1〉 = d†end|0〉, where dend|0〉 = 0,
which serve as topologically protected qubit states. Figure
1(a) illustrates this physics pictorially.

Away from this special limit the Majorana end states no
longer retain this simple form, but survive provided the bulk
gap remains finite18. This occurs when |µ| < 2t, where a
partially filled band pairs. The bulk gap closes when |µ| = 2t,
and for larger |µ| a topologically trivial superconducting state
without end Majoranas emerges. Here pairing occurs in either
a fully occupied or vacant band.

Realizing Kitaev’s topological superconducting state exper-
imentally requires a system which is effectively spinless—
i.e., exhibits one set of Fermi points—and p-wave pairs at the
Fermi energy. Both criteria can be satisfied in a spin-orbit-
coupled semiconducting wire deposited on an s-wave super-
conductor by applying a magnetic field1,2 [see Fig. 1(b)]. The
simplest Hamiltonian describing such a wire reads

H =

∫
dx

[
ψ†x

(
− ~2∂2

x

2m
− µ− i~uê · σ∂x

− gµBBz
2

σz
)
ψx + (|∆|eiϕψ↓xψ↑x + h.c.)

]
. (4)

(a)

(b)

s-wave superconductor

semiconducting wire

B

x

y
z

γA,1 γB,1 γB,2γA,2 γA,3 γB,3 γB,NγA,N

(c)
E

k

µ

FIG. 1: (a) Pictorial representation of the ground state of Eq. (1) in
the limit µ = 0, t = |∆|. Each spinless fermion in the chain is
decomposed in terms of two Majorana fermions γA,x and γB,x. Ma-
joranas γB,x and γA,x+1 pair up to form an ordinary, finite energy
fermion, leaving two zero-energy end Majoranas γA,1 and γB,N as
shown18. (b) A spin-orbit-coupled semiconducting wire deposited on
an s-wave superconductor can be driven into a topological supercon-
ducting state exhibiting such end Majorana modes by applying an
external magnetic field1,2. (c) Band structure of the semiconducting
wire when B = 0 (dashed lines) and B 6= 0 (solid lines). When µ
lies in the band gap generated by the field, pairing inherited from the
proximate superconductor drives the wire into the topological state.

The operator ψαx corresponds to electrons with spin α, effec-
tive mass m, and chemical potential µ. (We suppress the spin
indices except in the pairing term.) In the third term, u denotes
the (Dresselhaus22 and/or Rashba23) spin-orbit strength, and
σ = (σx, σy, σz) is a vector of Pauli matrices. This coupling
favors aligning spins along or against the unit vector ê, which
we assume lies in the (x, y) plane. The fourth term represents
the Zeeman coupling due to the magnetic field Bz < 0. Note
that spin-orbit enhancement can lead to24 g � 2. Finally, the
last term reflects the spin-singlet pairing inherited from the
s-wave superconductor via the proximity effect.

To understand the physics of Eq. (4), consider first Bz =
∆ = 0. The dashed lines in Fig. 1(c) illustrate the band
structure here—clearly no ‘spinless’ regime is possible. In-
troducing a magnetic field generates a band gap ∝ |Bz| at
zero momentum as the solid line in Fig. 1(c) depicts. When
µ lies inside of this gap the system exhibits only a single pair
of Fermi points as desired. Turning on ∆ which is weak com-
pared to the gap then effectively p-wave pairs fermions in the
lower band with momentum k and −k, driving the wire into
Kitaev’s topological phase1,2. [Singlet pairing in Eq. (4) gen-
erates p-wave pairing because spin-orbit coupling favors op-
posite spins for k and −k states in the lower band.] Quan-
titatively, realizing the topological phase requires1,2 |∆| <
gµB |Bz|/2, which we hereafter assume holds. The opposite
limit |∆| > gµB |Bz|/2 effectively violates the ‘spinless’ cri-
terion since pairing strongly intermixes states from the upper
band, producing an ordinary superconductor without Majo-
rana modes.
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In the topological phase, the connection to Eq. (1) becomes
more explicit when gµB |Bz| � mu2, |∆| where the spins
nearly polarize. One can then project Eq. (4) onto a sim-
pler one-band problem by writing ψ↑x ∼ u(ey+iex)

gµB |Bz| ∂xΨx and
ψ↓x ∼ Ψx, with Ψx the lower-band fermion operator. To
leading order, one obtains

Heff ∼
∫
dx

[
Ψ†x

(
−~2∂2

x

2m
− µeff

)
Ψx

+
(
|∆eff |eiϕeff Ψx∂xΨx + h.c.

) ]
, (5)

where µeff = µ + gµB |Bz|/2 and the effective p-wave pair
field reads

|∆eff |eiϕeff ≈ u|∆|
gµB |Bz|

eiϕ(ey + iex). (6)

The dependence of ϕeff on ê will be important below when
we consider networks of wires. Equation (5) constitutes an ef-
fective low-energy Hamiltonian for Kitaev’s model in Eq. (1)
in the low-density limit. From this perspective, the existence
of end-Majoranas in the semiconducting wire becomes mani-
fest. We exploit this correspondence below when addressing
universal properties such as braiding statistics, which must be
shared by the topological phases described by Eq. (4) and the
simpler lattice model, Eq. (1).

We now seek a practical method to manipulate Majorana
fermions in the wire. As motivation, consider applying a gate
voltage to adjust µ uniformly across the wire. The excitation
gap obtained from Eq. (4) at k = 0 varies with µ via

Egap(k = 0) =

∣∣∣∣gµB |Bz|2
−
√
|∆|2 + µ2

∣∣∣∣ . (7)

For |µ| < µc =
√

(gµBBz/2)2 − |∆|2 the topological phase
with end Majoranas emerges, while for |µ| > µc a topologi-
cally trivial phase appears. Applying a gate voltage uniformly
thus allows one to create or remove the Majorana fermions.
However, when |µ| = µc the bulk gap closes, and the exci-
tation spectrum at small momentum behaves as Egap(k) ≈
~v|k|, with velocity v = 2u|∆|/(gµB |Bz|). The gap closure
is clearly undesirable, since we would like to manipulate Ma-
jorana fermions without generating additional quasiparticles.

This problem can be circumvented by employing a ‘key-
board’ of locally tunable gates as shown in Fig. 2, each of
which impacts µ over a finite length Lgate of the wire. When
a given gate locally tunes the chemical potential across |µ| =
µc, a finite excitation gap Egap ∼ ~vπ/Lgate remains due to
quantum confinement effects. Assuming gµB |Bz|/2 ∼ 2|∆|
and ~u ∼ 0.1eVÅ yields a velocity v ∼ 104m/s; the gap for a
0.1µm wide gate is then of order 1K. We consider this a con-
servative estimate—heavy-element wires such as InSb and/or
narrower gates could generate substantially larger gaps.

Local gates allow Majorana fermions to be transported, cre-
ated, and fused. For instance, sequentially applying the left-
most gates in Fig. 2(a) drives the left end of the wire into an or-
dinary superconducting region, thereby transporting γ1 right-
ward as in Fig. 2(b). Applying gates to nucleate a topological

(a)

(b)

(c)

(d)

γ1 γ2

γ1 γ2

γ1 γ2γ3 γ4 γ5 γ6

γ3 γ4γ1 γ5 γ6γ2

FIG. 2: Applying a ‘keyboard’ of individually tunable gates to the
wire allows one to locally control which regions are topological (dark
blue) and non-topological (light blue), and hence manipulate Ma-
jorana fermions while maintaining the bulk gap. This method al-
lows Majorana fermions to be transported [(a)→(b)], created in pairs
[(b)→(c)], and fused [(c)→(d)].

section of the wire from an ordinary region or vice versa cre-
ates pairs of Majorana fermions out of the vacuum; see Fig.
2(c). Similarly, removing a topological region entirely or con-
necting two topological regions fuses Majorana fermions as
sketched in Fig. 2(d). In either case, a pair of Majorana end
states strongly overlaps in the process and thus combines into
an ordinary, finite-energy fermion.

As one germinates pairs of Majorana fermions, the ground
state degeneracy increases as does our capacity to topologi-
cally store quantum information in the wire. Specifically, 2n
Majoranas generate n ordinary zero-energy fermions whose
occupation numbers specify topological qubit states. Manipu-
lating these qubits, however, requires adiabatically braiding
Majorana fermions, which is not possible in a single wire.
Thus we now turn to the simplest arrangement which allows
for exchange—the T-junction of Fig. 3.

II. MAJORANA BRAIDING AND NON-ABELIAN
STATISTICS

First, we explore the physics at the junction where the wires
in Fig. 3 meet (see the Supplementary Material for a more
detailed discussion). It will be useful to view the T-junction
as composed of three segments whose ends meet at a point.
When only one segment realizes a topological phase, a single
zero-energy Majorana fermion exists at the junction. When
two topological segments meet at the junction, as in Figs. 3(a)
and (b), generically no Majorana modes exist there. To see
this, imagine decoupling the two topological segments so that
two Majorana modes in close proximity exist at the junction;
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(a)

(b)

(c)

(d)

(e)

(f )

(g)

(h)

γ1 γ2

γ1

γ2

γ1

γ2

γ2 γ1

γ1 γ2

γ1

γ2

γ1

γ2

γ2 γ1

FIG. 3: A T-junction allows for adiabatic exchange of two Majorana
fermions bridged by either a topological region (dark blue lines) as
in (a)-(d), or a non-topological region (light blue lines) as in (e)-(h).
Transport of Majorana fermions is achieved by gates as outlined in
Fig. 2. The arrows along the topological regions in (a)-(d) are useful
for understanding the non-Abelian statistics as outlined in the main
text.

restoring the coupling generically fuses these Majoranas into
an ordinary, finite-energy state.

As an illustrative example, consider the setup of Fig. 3(a)
and model the left and right topological segments by Kitaev’s
model with µ = 0 and t = |∆| in Eq. (1). [For simplic-
ity we will exclude the non-topological vertical wire in Fig.
3(a).] Suppose the superconducting phases are φL/R in the
left/right chains and that the fermion cL,N at site N of the left
chain couples weakly to the fermion cR,1 at site 1 of the right
chain via HΓ = −Γ(c†L,NcR,1 + h.c.). Using Eq. (2), the end
Majoranas at the junction couple as follows,

HΓ ∼ −
iΓ

2
cos

(
φL − φR

2

)
γLB,Nγ

R
A,1 (8)

and therefore generally fuse into an ordinary fermion18. An
exception occurs when the regions form a π-junction—that is,
when φL− φR = π—which fine-tunes their coupling to zero.
Importantly, coupling between end Majoranas in the semicon-
ductor context is governed by the same φL − φR dependence
as in Eq. (8)1,2.

Finally, when all three segments are topological, again only

a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual π junctions. Recall from
Eq. (6) that the spin-orientation favored by spin-orbit coupling
determines the effective superconducting phase of the semi-
conducting wires. Two wires at right angles to one another
therefore exhibit a phase difference of π/2, well away from
the pathological limits mentioned above.

The T-junction permits two types of (topologically equiv-
alent) exchanges. First, consider the configuration of Fig.
3(a) where the horizontal wire resides in a topological phase
while the vertical wire is non-topological. Counterclockwise
exchange of γ1 and γ2 can be implemented as outlined in
Figs. 3(b)-(d). Here, one shuttles γ1 to the junction by mak-
ing the left end non-topological; transports γ1 downward by
driving the vertical wire into a topological phase; transports
γ2 leftward in a similar fashion; and finally directs γ1 up and
to the right. Exchange of two Majorana fermions connected
by a non-topological region as in Fig. 3(e) can be similarly
achieved—counterclockwise exchange of γ1 and γ2 proceeds
as sketched in Figs. 3(f)-(h).

While the Majoranas can now be exchanged, non-Abelian
statistics is not obvious in this context. Recall how
non-Abelian statistics of vortices arises in a spinless two-
dimensional p+ ip superconductor6,7, following Ivanov’s ap-
proach. Ultimately, this can be deduced by considering two
vortices which bind Majorana fermions γ1 and γ2. Since
the spinless fermion operators effectively change sign upon
advancing the superconducting phase by 2π, one introduces
branch cuts emanating from the vortices; crucially, a Majorana
fermion changes sign whenever crossing such a cut. Upon ex-
changing the vortices, γ2 (say) crosses the branch cut emanat-
ing from the other vortex, leading to the transformation rule
γ1 → γ2 and γ2 → −γ1 which is generated by the unitary
operator U12 = exp(πγ2γ1/4). With many vortices, the anal-
ogous unitary operators Uij corresponding to the exchange of
γi and γj do not generally commute, implying non-Abelian
statistics.

Following an approach similar to that of Stern et al.25, we
now argue that Majorana fermions in semiconducting wires
transform exactly like those bound to vortices under exchange,
and hence also exhibit non-Abelian statistics. This can be
established most simply by considering the exchange of two
Majorana fermions γ1 and γ2 as illustrated in Figs. 3(a)-(d).
At each step of the exchange, there are two degenerate ground
states |0〉 and |1〉 = f†|0〉, where f = (γ1 + iγ2)/2 annihi-
lates |0〉. In principle, one can deduce the transformation rule
from the Berry phases χn ≡ Im

∫
dt〈n|∂t|n〉 acquired by the

ground states |n〉 = |0〉 and |1〉, though in practice these are
hard to evaluate.

Since exchange statistics is a universal property, however,
we are free to deform the problem to our convenience pro-
vided the energy gap remains finite. As a first simplification,
since the semiconductor Hamiltonian and Kitaev’s model in
Eq. (1) can be smoothly connected, let us consider the case
where each wire in the T-junction is described by the latter.
More importantly, we further deform Kitaev’s Hamiltonian to
be purely real as we exchange γ1,2. The states |0〉 and |1〉
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can then also be chosen real, leading to an enormous simpli-
fication: while these states still evolve nontrivially the Berry
phase accumulated during this evolution vanishes.

For concreteness, we deform the Hamiltonian such that
µ < 0 and t = ∆ = 0 in the non-topological regions of
Fig. 3. For the topological segments, reality implies that the
superconducting phases must be either 0 or π. It is useful to
visualize the sign choice for the pairing with arrows as in Fig.
3. (To be concrete, we take the pairing |∆|eiφcjcj+1 such
that the site indices increase moving rightward/upward in the
horizontal/vertical wires; the case φ = 0 then corresponds
to rightward/upward arrows, while leftward/downward arrows
indicate φ = π.) To avoid generating π junctions, when two
topological segments meet at the junction, one arrow must
point into the junction while the other must point out. With
this simple rule in mind, we see in Fig. 3 that although we can
successfully swap the Majoranas while keeping the Hamilto-
nian real, we inevitably end up reversing the arrows along the
topological region. In other words, the sign of the pairing has
flipped relative to our initial Hamiltonian.

To complete the exchange then, we must perform a gauge
transformation which restores the Hamiltonian to its original
form. This can be accomplished by multiplying all fermion
creation operators by i; in particular, f† = (γ1 − iγ2)/2 →
if† = (γ2 + iγ1)/2. It follows that γ1 → γ2 and γ2 →
−γ1, which is generated by the unitary transformation U12 =
exp(πγ2γ1/4) exactly as in the p + ip case discussed above.
Note that the second type of braiding exhibited in Figs. 3(e)-
(h) is topologically equivalent to the first, so that our results
apply to this case as well. In the situation where many Majo-
ranas are present in the wires, pairwise exchanges are imple-
mented by analogous unitary operators Uij , which again do
not generally commute with one another. Thus the statistics
is non-Abelian as advertised. In the Supplementary Material,
we further bolster these results by conducting a complemen-
tary analysis which explicitly analyzes the wavefunctions |0〉
and |1〉 in a tractable limit; additionally, we similarly exam-
ine exchange of the type shown in Figs. 3(e)-(h) in a simple
exactly solvable model yielding four Majorana modes.

III. DISCUSSION

The keyboard of gates shown in Fig. 2 and the T-junction
of Fig. 3 provide the basic elements required to manipulate
topological qubits in semiconducting wires. In principle, a
single T-junction can support numerous well-separated Majo-
rana modes, each of which can be exchanged with any other.
(First, create many Majoranas in the horizontal wire of the
T-junction. To exchange a given pair, shuttle all intervening
Majoranas down to the end of the vertical wire and then carry
out the exchange using the methods of Fig. 3.) However, net-
works consisting of several T-junctions—such as the setup of
Fig. 4(a)—enable more efficient Majorana exchange. In the
figure, all adjacent Majorana fermions can be immediately
swapped using Fig. 3, while non-adjacent Majoranas can be
shuttled down to the lower wire to be exchanged. This ‘lad-
der’ configuration straightforwardly scales up by introducing

(a)

(b)

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8

γ1 γ2

γ3γ4γ1 γ2

γ3γ4γ1 γ2

γ1 γ2 γ3 γ4

γ3 γ4γ1 γ2

ϕi
L ϕi

R

FIG. 4: (a) Example of a semiconductor wire network which al-
lows for efficient exchange of many Majorana fermions. Adjacent
Majoranas can be exchanged as in Fig. 3, while non-adjacent Majo-
ranas can be transported to the lower wire to be similarly exchanged.
(b) Minimal setup designed to detect the non-trivial Majorana fusion
rules. Majoranas γ1,2 are first created out of the vacuum. In the left
path, γ2 is shuttled rightward, and Majoranas γ3,4 always fuse into
a finite-energy state which is unoccupied. In the right path, γ3,4 are
also created out of the vacuum, and then γ2 and γ3 fuse, creating
an extra occupied quasiparticle at the junction with 50% probabil-
ity. The Josephson current flowing across the junction allows one to
deduce the presence or absence of this extra quasiparticle.

additional ‘rungs’ and/or ‘legs’.
As Fu and Kane10 suggested, fusing Majorana fermions

across a Josephson junction provides a readout method for the
topological qubit states. We illustrate the physics with the
schematic setup of Fig. 4(b), which extends the experiments
proposed in Refs. 1,2 to allow the Majorana fusion rules to
be directly probed. Here a semiconducting wire bridges two
s-wave superconductors with initial phases ϕiL/R; we assume
∆ϕi ≡ ϕiL−ϕiR 6= π. Three gates drive the wire from an ini-
tially non-topological ground state into a topological phase.
Importantly, the order in which one applies these gates qual-
itatively affects the physics. As we now discuss, only in the
left path of Fig. 4(b) can the qubit state at the junction be de-
termined in a single measurement.

Consider first germinating Majorana fermions γ1 and γ2 by
applying the left gate. Assuming fA = (γ1 + iγ2)/2 ini-
tially costs finite energy as γ1 and γ2 separate, the system will
be prepared into a ground state with fA unoccupied. Apply-
ing the central and then right gates shuttles γ2 to the other
end [see the left path of Fig. 4(b)]. Since a narrow insulat-
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ing barrier separates the superconductors, an ordinary fermion
fB = (γ3 + iγ4)/2 arises from two fused Majoranas γ3,4 at
the junction. Similar to Eq. (8), the energy of this mode is
well-captured by1,2,18 HJ ∼ iεiγ3γ4 = εi(2f†BfB − 1) where
εi = δ cos(∆ϕi/2) with non-universal δ. The system has
been prepared in a ground state, so the fB fermion will be
absent if εi > 0 but occupied otherwise.

Suppose we now vary the phase difference across the junc-
tion away from its initial value to ∆ϕ. The measured Joseph-
son current (see Supplementary Material for a pedagogical
derivation) will then be

I =
2e

~
dE

d∆ϕ
=
eδ

~
sgn(εi) sin(∆ϕ/2) + I2e, (9)

where E is the ground-state energy and I2e denotes the usual
Cooper-pair-tunneling contribution. The first term on the right
reflects single-electron tunneling originating from the fused
Majoranas γ3,4. This ‘fractional’ Josephson current exhibits
4π periodicity in ∆ϕ, but 2π periodicity in the initial phase
difference ∆ϕi.

The right path in Fig. 4(b) yields very different results, re-
flecting the nontrivial Majorana fusion rules. Here, after cre-
ating γ1,2 one applies the rightmost gate to nucleate another
pair γ3,4. Assuming fA and fB defined as above initially
cost finite energy, the system initializes into the ground state
|0, 0〉 satisfying fA/B |0, 0〉 = 0. Applying the central gate
then fuses γ2 and γ3 at the junction. To understand the out-
come, it is useful to re-express the ground state in terms of
f ′A = (γ1 + iγ4)/2 and f ′B = (γ2 + iγ3)/2. In this ba-
sis |0, 0〉 = (|0′, 0′〉 − i|1′, 1′〉)/

√
2, where f ′A,B annihilate

|0′, 0′〉 and |1′, 1′〉 = f ′†A f
′†
B |0′, 0′〉. Following our previous

discussion, f ′B acquires finite energy at the junction, lifting
the degeneracy between |0′, 0′〉 and |1′, 1′〉. Measuring the
Josephson current then collapses the wavefunction with 50%
probability onto either the ground state, or an excited state
with an extra quasiparticle localized at the junction. In the
former case Eq. (9) again describes the current, while in the
latter the fractional contribution simply changes sign.

In more complex networks such as that of Fig. 4(a), fusing
the Majoranas across a Josephson junction—and in particu-
lar measuring the sign of the fractional Josephson current—
similarly allows qubit readout. Alternatively, the interesting
recent proposal of Hassler et al.21 for reading qubit states via
ancillary non-topological flux qubits can be adapted to these
setups (and indeed was originally discussed in terms of an iso-
lated semiconducting wire21).

To conclude, we have expanded the growing number of
topological quantum computation arenas to include a surpris-
ing new entry—networks of one-dimensional semiconduct-
ing wires. From a fundamental standpoint, realizing non-
Abelian statistics in this setting is quite remarkable. Perhaps
even more appealing, however, are our proposal’s physical
transparency and experimental promise, particularly given the
feats already achieved in Ref. 26. While topological quan-
tum computation in wire networks requires much experimen-
tal progress, observing the distinct fusion channels character-
istic of the two paths of Fig. 4(b) would provide a remarkable

step en route to this goal. Finally, extending our proposal to
enable universal quantum computation5,27,28 presents an ex-
tremely important open issue.

IV. SUPPLEMENTARY MATERIAL

A. Properties of the T-junction

Here we investigate in greater detail the properties of the
junction in Fig. 3 where the three wire segments meet. There
are three cases to consider, corresponding to the situations
where one, two, or all three of the wire segments emanat-
ing from the junction reside in a topological superconduct-
ing state. It is conceptually simplest to address each case by
viewing the T-junction as composed of three independent wire
segments as in Fig. 5, which initially decouple from one an-
other. In this limit a single Majorana exists at the end of each
topological segment. One can then straightforwardly couple
the wire segments at the junction and explore the fate of the
Majorana end states.

Suppose that the phases of the p-wave pair fields in each
region are φA/B/C as shown in Fig. 5 [in the semiconductor
wire context, these phases correspond to ϕeff in Eq. (6)]. To
be precise, if the wires are described by a lattice model, we
define these phases relative to a pairing term |∆|eiφαcjcj+1

such that the site indices increase moving rightward in the hor-
izontal wires and upward in the vertical wire. A similar con-
vention can be employed in the semiconductor wire context.
Now suppose we allow single-electron tunneling between the
ends of each segment, with amplitude Γ as shown schemati-
cally in Fig. 5. (Pairing between electrons residing at the ends
of each region is also generally allowed, but does not change
any qualitative results below and will therefore be neglected.)
For convenience we will assume that the tunneling strength is
weak compared to the bulk gaps in the wires, which will allow
us to focus solely on the Majorana end states; our conclusions,
however, are more general and do not require this assumption.

In the setup of Fig. 5(a) with only one topological region,
the Majorana γ1 is qualitatively unaffected by the coupling
to the non-topological wires. At most its wavefunction can
be quantitatively modified, but it necessarily remains at zero
energy. This reflects the familiar topological protection of a
single isolated Majorana mode in a gapped system.

With two of the three wires topological as in Fig. 5(b),
the end Majoranas γ1 and γ2 generally fuse into an or-
dinary finite-energy fermion, except with fine-tuning. To
a good approximation, the Majoranas couple through a
Hamiltonian1,2,18

H12 ∝ −iΓ cos

(
φA − φB

2

)
γ1γ2. (10)

This was discussed in the main text in the context of two wires
described by Kitaev’s toy model in a particular limit, but is
qualitatively rather general—the 4π periodicity in φA − φB
has a topological origin18. For instance, end Majoranas in
two topological semiconducting wires coupled through an or-
dinary region exhibit the same phase dependence as above1,2.
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(a)

γ1

γ2

φA φB

φC

(b)

γ1φA φB

φC

γ2

(c)

γ1φA φB

φC

γ3

Γ

Γ Γ

Γ

Γ Γ

Γ

Γ Γ

FIG. 5: T-junction viewed as three wire segments with p-wave super-
conducting phases φA,B,C . The ends of each segment are coupled
via tunneling with amplitude Γ as shown. (a) When only one seg-
ment is topological, the tunneling can not destroy the Majorana γ1
at the junction. (b) Two topological regions meeting at the junction
leads to the end Majoranas γ1 and γ2 generally fusing to an ordinary,
finite-energy fermion, unless the topological wires form a π junction.
(c) When all the three wires are topological, the Majoranas γ1,2,3
generally fuse to form a finite-energy fermion and a single topologi-
cally protected Majorana. All three Majoranas remain at zero energy
only when all three wire segments form mutual π junctions.

Equation (10) demonstrates that γ1 and γ2 remain zero-energy
modes only when the topological wires form a π junction, i.e.,
when φA = φB + π.

Finally, consider the case shown in Fig. 5(c) where all three
segments are topological. Here the Majoranas γ1,2,3 couple

via

H123 ∝ −iΓ
[

cos

(
φA − φB

2

)
γ1γ2

+ cos

(
φC − φB

2

)
γ3γ2 + sin

(
φA − φC

2

)
γ1γ3

]
.

(11)

Note the sine function determining the coupling between γ1

and γ3, which arises because of the conventions we chose for
defining φα above. Recall that to make the problem well-
defined, we needed to define the phases with respect to a par-
ticular direction in each wire; otherwise there is an ambigu-
ity of π in the definition, since for instance |∆|eiφcjcj+1 =

|∆|ei(φ+π)cj+1cj . We defined the phases such that the site in-
dices increase upon moving rightward or upward in the wires.
But this implies that the site indices in both the left and bot-
tom wires increase upon moving towards the junction, in con-
trast to all other pairs of wires. It follows that the splitting
of γ1 and γ3 is proportional to cos[(φA − φC − π)/2] =
sin[(φA − φC)/2]. Hence with our conventions a π junction
between these two regions actually corresponds to the case
φA = φC .

The Hamiltonian H123 implies that γ1,2,3 all remain zero-
energy modes only when φA = φC = φB + π, where
all pairs of wires form mutual π junctions. (This remains
true even when coupling to the ordinary gapped states is in-
cluded.) Aside from this fine-tuned limit, however, H123 al-
ways supports one zero-energy Majorana mode and one or-
dinary finite-energy fermion. As an illustration, consider the
case φA = φB + π and φC 6= φA, so that only the horizontal
wires form a π junction. Here the Hamiltonian simplifies to

H123 ∝ −iΓ cos

(
φC − φB

2

)
γ3(γ2 − γ1). (12)

It follows that the linear combination (γ1 +γ2)/
√

2 remains a
zero-energy Majorana mode, while γ3 and (γ1−γ2)/

√
2 fuse

to a finite-energy state. While here the zero-energy Majorana
carries weight only on the horizontal wires which formed the
π junction, in general its wavefunction will have weight on all
three segments.

As we braid Majorana fermions using the methods de-
scribed in the main text, it is imperative that we avoid gen-
erating spurious zero-modes at the T-junction. The above dis-
cussion implies that we are safe in this regard so long as we
avoid π junctions. Fortunately, the semiconducting wires we
considered naturally avoid such situations, since two wires at
right angles to one another exhibit effective p-wave phases
that differ by π/2 as discussed in the main text.

B. Wavefunction approach to Majorana fermion exchange

In this section we provide alternative derivations (and addi-
tional details) for the transformation rule obtained in the main
text for exchange of two Majorana fermions. First, we will
consider the process outlined in Figs. 3(a)-(d) and study the
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exchange from the perspective of the ground state wavefunc-
tions. Second, we will consider a simple exactly solvable four-
site problem that allows us to similarly analyze an exchange
of the type sketched in Figs. 3(e)-(h). We will demonstrate
that the transformation rule here is identical to the topologi-
cally equivalent braid in Figs. 3(a)-(d) as claimed in the main
text.

1. Exchange in a system with two Majorana fermions

Consider now the initial setup in Fig. 3(a). As in the main
text we will assume that each wire in the T-junction is de-
scribed by Kitaev’s toy lattice model. For concreteness let us
assume that the horizontal wire consists of 2N + 1 sites while
the vertical wire consists ofN sites as Fig. 6 illustrates. Addi-
tionally, let cx and c̃y respectively denote the spinless fermion
operators in the horizontal and vertical chains. In the initial
configuration the vertical wire is non-topological, while the
horizontal wire is topological and thus exhibits end Majorana
fermions which we would like to exchange. We will follow
the strategy adopted in the main text and keep the Hamilto-
nian purely real during this exchange (until the very end, when
we will allow the Hamiltonian to become complex). Again,
this assumption has the virtue that the wavefunctions can then
also be chosen real, so that in spite of their complex evolution
the Berry phase accumulated as the Majoranas are transported
vanishes identically.

For convenience we will further deform the Hamiltonian
describing this initial setup to the following:

Hi = −µ̃
N∑
y=1

c̃†y c̃y + t

2N∑
x=1

(c†x + cx)(c†x+1 − cx+1),(13)

with µ̃ < 0 and t > 0. The first term implies that all
c̃y fermions in the vertical wire will be absent in the initial
ground state, while the second can be recognized as Kitaev’s
toy model in the special limit where µ = 0, t = |∆|, and the
superconducting phase is φ = 0. We graphically denote this
initial superconducting phase by the rightward-pointing arrow
in Fig 3(a) (a leftward-pointing arrow would indicate a phase
of π, which would also keep the Hamiltonian purely real). The
end Majorana fermions for the horizontal wire take on a par-
ticularly simple form, allowing the initial wavefunctions to be
easily obtained.

As shown by Kitaev18 and outlined in the main text, decom-
posing cx in terms of Majorana fermions γA/B,x via

cx =
1

2
(γB,x + iγA,x) (14)

allows the Hamiltonian to be written as

Hi = −µ̃
N∑
y=1

c̃†y c̃y − it
2N∑
x=1

γB,xγA,x+1. (15)

The zero-energy end Majorana fermions γA,1 and γB,2N+1

which do not appear in H can be combined into an ordinary

N

1 2N+1N+1

1
FIG. 6: Lattice structure giving rise to the T-junction.

zero-energy fermion

dend =
1

2
(γA,1 + iγB,2N+1), (16)

while the gapped bulk states are captured by operators

dx =
1

2
(γA,x+1 + iγB,x). (17)

In terms of dx, Hi becomes

Hi = −µ̃
N∑
y=1

c̃†y c̃y + t

2N∑
x=1

(2d†xdx − 1). (18)

The Majorana end states give rise to two degenerate ini-
tial ground states whose evolution we are interested in: |0〉i
which is annihilated by dend and |1〉i = d†end|0〉i. The former
can be written |0〉i =

∏2N
x=1 dx|vac〉, where |vac〉 denotes the

vacuum of cx and c̃y fermions (dend indeed annihilates |0〉i
as defined here). After some algebra, the normalized ground
states can be written explicitly as

|0〉i =
1

2N

1 +

N∑
p=1

2N+1∑
i1<···<i2p

c†i2p · · · c
†
i1

 |vac〉

|1〉i =
1

2N

N∑
p=0

2N+1∑
i1<···<i2p+1

c†i2p+1
· · · c†i1 |vac〉. (19)

Note that we have multiplied |0〉i and |1〉i by overall phase
factors to make each wavefunction purely real. Although the
ground states have different fermion parity, both yield the
same average particle number

N =
2N + 1

2
(20)

corresponding to half-filling of the horizontal chain.
Let us now transport the Majorana fermions as outlined

in Figs. 3(a)-(d), keeping the Hamiltonian (and ground state
wavefunctions) real and avoiding generating additional zero-
energy modes. For example, γ1 can be transported rightward
one site by adding the following term to Hi,

δH = −λµc†1c1 − λt(c†1 + c1)(c†2 − c2) (21)



9

(with µ < 0) and varying λ from 0 to 1. As emphasized in the
main text, a subtle but essential point is that as we so transport
γ1 and γ2 we must avoid having two neighboring topological
regions whose superconducting phases differ by π, for in this
case a pair of ‘accidental’ zero-energy Majorana modes ap-
pears at the junction. It is therefore useful to employ arrows
as shown in Figs. 3(a)-(d) to signify the sign of the pairing in
each topological region. Two inward or two outward arrows
meeting at the junction correspond to a π junction and must
be avoided. Figures 3(a)-(d) illustrate that in accordance with
this simple rule, we can indeed swap the positions of γ1 and
γ2 while keeping the Hamiltonian and wavefunctions purely
real, consequently acquiring no Berry phase in the process.
However, the arrows and hence the sign of the pairing in the
topological region unavoidably reverse, as seen by compar-
ing Figs. 3(a) and (d). Thus we have not yet completed an
exchange in the usual sense.

At this stage we have adiabatically evolved the Hamiltonian
to

H ′ = −µ̃
N∑
y=1

c̃†y c̃y − t
2N∑
x=1

(c†x − cx)(c†x+1 + cx+1),(22)

corresponding to Hi with the sign of the pairing reversed, and
the wavefunctions to

|0〉′ =
1

2N

1 +

N∑
p=1

2N+1∑
i1<···<i2p

(−1)pc†i2p · · · c
†
i1

 |vac〉

|1〉′ =
1

2N

N∑
p=0

2N+1∑
i1<···<i2p+1

(−1)pc†i2p+1
· · · c†i1 |vac〉. (23)

[Modulo phase factors, these wavefunctions can be obtained
by sending cx → icx in Eqs. (19).] To complete the exchange,
let us now return the Hamiltonian to its original form by adia-
batically rotating the superconducting phase in the topological
region from π back to 0. The Hamiltonian then involves com-
plex matrix elements, which implies that Berry phases need
no longer vanish here. As we will see, however, the Berry
phase contributions for this final step can be easily calculated.

To this end, consider

H(λ) = −µ̃
N∑
y=1

c̃†y c̃y − t
2N∑
x=1

(eiλπ/2c†x − e−iλπ/2cx)

× (eiλπ/2c†x+1 + e−iλπ/2cx+1). (24)

Upon varying λ from 0 to 1, the superconducting phase rotates
by π such that H(λ = 0) = H ′ and H(λ = 1) = Hi as

desired. The ground states of H(λ) are

|0(λ)〉 =
eiλθ

2N

[
1 +

N∑
p=1

2N+1∑
i1<···<i2p

(−1)peiλπp

× c†i2p · · · c
†
i1

]
|vac〉

|1(λ)〉 =
eiλθ

2N

N∑
p=0

2N+1∑
i1<···<i2p+1

(−1)peiλπ(p+1/2)

× c†i2p+1
· · · c†i1 |vac〉. (25)

Importantly, |0(λ = 0)〉 = |0〉′ and |1(λ = 0)〉 = |1〉′ so that
the wavefunctions evolve smoothly throughout. Note also that
we have inserted an arbitrary phase factor θ above. We will
select this phase momentarily such that the Berry phase ac-
quired by each wavefunction during this final stage also van-
ishes. The outcome of the exchange is then simpler to inter-
pret, since one simply compares the initial states |0〉i and |1〉i
with the final states |0〉f ≡ |0(λ = 1)〉 and |1〉f ≡ |1(λ = 1)〉.

Using Eqs. (25), one can now compute the Berry phases;
we find

Im

∫ 1

0

dλ〈0(λ)|∂λ|0(λ)〉 = Im

∫ 1

0

dλ〈1(λ)|∂λ|1(λ)〉

= θ +
Nπ

2
. (26)

(Off-diagonal components such as 〈0(λ)|∂λ|1(λ)〉 vanish triv-
ially due to the different fermion parity of the ground states.)
This result is quite sensible given that both wavefunctions de-
scribe on average N/2 Cooper pairs whose phase rotates by
π. We now choose

θ = −Nπ
2

(27)

so that the Berry phases vanish as desired. Only the explicit
relative phases between the initial and final wavefunctions re-
main. For λ = 1 the factors of (−1)p cancel in Eqs. (25),
yielding

|0〉f = e−iNπ/2|0〉i
|1〉f = ie−iNπ/2|1〉i. (28)

Crucially, the ground state |1〉 acquires an additional phase
factor of i relative to |0〉 under the exchange. Neglecting an
overall phase factor, the unitary operator that generates this
relative phase can be written

U12 = ei
π
4 (2d†enddend−1) = e

π
4 γ2γ1 , (29)

where we have identified γ1 = γA,1 and γ2 = γB,2N+1. This
coincides with the expression obtained in the main text by
somewhat different means, and is identical to the unitary op-
erator generating the exchange of vortices in a spinless p+ ip
superconductor7.

As an aside, we comment that we have chosen in Eq. (24)
to rotate the superconducting phase clockwise from π to 0 in
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γ1 γ2

γ1

γ2
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γ2

γ2 γ1
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(b)
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(d)

FIG. 7: Exchange of two Majorana fermions separated by a non-
topological region. Here we envision transporting the Majoranas
while keeping the Hamiltonian purely real. The superconducting
phase in the topological regions can then only take on two values, 0
or π, which we indicate by arrows above. Unlike in the exchange of
Figs. 3(a)-(d), here we can exchange Majorana fermions while keep-
ing the Hamiltonian purely real, maintaining the gap, and returning
the Hamiltonian back to its original form (i.e., without reversing the
sign of the pairing). As explained in the text, this does not mean that
the exchange is trivial; indeed, the Majoranas transform exactly as
they do in the topologically equivalent braid of Figs. 3(a)-(d).

the final step of the exchange. Had we alternatively chosen
to rotate the phase in a counterclockwise fashion, the ground
state |1〉 would pick up a relative phase of −i under the ex-
change compared to |0〉. We stress that this does not at all
affect the conclusion of non-Abelian statistics. A similar am-
biguity arises in Ivanov’s construction7, since the relative sign
that arises in the p+ ip context depends on whether one takes
the branch cuts emanating ‘upwards’ or ‘downwards’ from the
vortices.

2. Exchange in a toy model exhibiting four Majorana modes

We next examine by similar means an exchange of the type
outlined in Figs. 3(e)-(h). This braid is topologically equiva-
lent to the one considered above and displayed in Figs. 3(a)-
(d), so the Majoranas must transform in an identical manner
under exchange. Demonstrating this equivalence, however, is
rather nontrivial. Suppose we proceed as we did earlier for
the exchange of Figs. 3(a)-(d) and transport γ1,2 while keep-
ing the Hamiltonian purely real to avoid Berry phase accu-
mulation. It is once again instructive to view the sign of the
pairing in the topological regions with arrows as displayed in
Figs. 7(a)-(d). As the figure illustrates, it is now possible to
exchange γ1 and γ2 without reversing the sign of the pairing
in the process. In other words, we can keep the Hamiltonian
purely real, swap the locations of the Majoranas, and return
the Hamiltonian back to its original form—without closing a
gap. One may worry, then, that this type of exchange is trivial,
but this is not so.

The subtlety arises because there are now four Majorana
fermions rather than two, and in this case one gets less mileage

out of keeping the Hamiltonian real during the exchange. To
illustrate the point, let γ1,2 denote the Majoranas we wish to
exchange, and γ3,4 the stationary Majoranas of Figs. 3(e)-(h).
Defining

fA =
1

2
(γ1 + iγ2)

fB =
1

2
(γ3 + iγ4), (30)

we see that there are now two degenerate ground states in each
fermion parity sector: |0, 0〉 which both fA and fB annihilate,
|1, 1〉 = f†Af

†
B |0, 0〉, |1, 0〉 = f†A|0, 0〉, and |0, 1〉 = f†B |0, 0〉.

Reality of the Hamiltonian does not imply that these four
ground states can each be chosen real. Indeed, we provide
an example below where this is clearly not possible. Rather,
this condition only guarantees reality of specific linear com-
binations of these ground states, which in general can vary as
the exchange takes place. In other words, the reality condition
does not preclude the phases of the above ground states from
evolving nontrivially during the exchange (see below for an
explicit example). Drawing conclusions about the exchange
from this route therefore requires a more detailed analysis than
in the case with only two Majorana fermions. To remedy this
issue, one might be tempted to modify the setup of Figs. 3(e)-
(h) by connecting the horizontal wire into a loop, then fusing
γ3 and γ4 so that only the two Majoranas which we exchange
remain. One will quickly discover, however, that in this case
the positions of γ1 and γ2 can not be swapped while keeping
the Hamiltonian real and all other excitations gapped. Specif-
ically, in the process one necessarily ends up with a config-
uration similar to Fig. 7(c), except with two arrows pointing
either into or out of the junction; that is, one can not avoid π
junctions here.

We will therefore proceed by considering a toy problem that
provides an illustrative minimal setting in which such an ex-
change can be analyzed explicitly. Specifically, we examine
the four-site setup shown in Fig. 8 and described by the fol-
lowing purely real Hamiltonian:

H = −µc†4c4 + t(c†1 + c1)[(c†2 − c2) + (c†3 − c3)]

+ [t24(c†2 + c2) + t34(c†3 + c3)](c†4 − c4), (31)

with t > 0, µ ≤ 0, and t24, t34 ≥ 0. In spite of the small
number of sites, this Hamiltonian supports four zero-energy
Majorana modes for any values of µ, t24, and t34. To get in-
tuition here, it is useful to think of site 1 as forming a π junc-
tion between sites 2 and 3. This gives rise to two Majorana
modes which are independent of the parameters appearing in
Eq. (31). One of these, γ3, resides at site 1:

γ3 = i(c†1 − c1). (32)

The other, γ4, resides on sites 2 and 3:

γ4 =
i√
2

(c†2 − c2 − c†3 + c3). (33)

The locations of the second pair of Majoranas, γ1 and γ2, de-
pend on µ, t24, and t34. We will vary these parameters so
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FIG. 8: Minimal four-site setup that supports four Majorana modes
(only γ1 and γ2 are shown for clarity). The Hamiltonian is chosen
so as to exchange γ1 and γ2 as sketched in (a)-(d), mimicking the
exchange of Fig. 3(e)-(h) in a tractable setup. Solid lines denote
bonds with non-zero pairing whose sign is indicated by the arrows.

as to carry out an exchange of γ1 and γ2 in a manner that is
analogous to the exchange of Figs. 3(e)-(h).

To help establish a connection between the setup of Fig.
3(e) and the present four site-problem, imagine first forming
a loop out of the horizontal wire so that the two topological
regions connect. The outer Majoranas of Fig. 3(e)—which
are analogous to γ3,4 in our setup—can then be generated by
forming a π junction in the topological region. The four-site
problem shrinks this π junction to the smallest possible size.
The other two Majoranas γ1,2 will initially be separated by an
unpaired region, similar to the non-topological segments con-
necting γ1,2 in Fig. 3(e). We carry out their exchange piece-
wise in three stages to reduce the algebraic complexity of the
problem. Care will be taken to ensure that the wavefunctions
and operators defined below evolve continuously in between
each of these stages.

(I) In the first stage, we evolve the Hamiltonian by taking

µ = (1− λ)µ4

t24 = λt (34)
t34 = 0

(with µ4 < 0) and varying λ from 0 to 1. Initially when λ = 0,
γ1 and γ2 are situated at sites 2 and 3, respectively, as Fig. 8(a)
illustrates. Ramping up λ to 1 shuttles γ1 to site 4, leading to
the configuration of Fig. 8(b). More precisely, γ1,2 are given
by

γI1 =
1

α24
[−µ(c†2 + c2) + 2t24(c†4 + c4)] (35)

γI2 = c†3 + c3, (36)

where we have defined α24 =
√

4t224 + µ2. The finite-energy

fermion operators which annihilate the ground states are

dIA =
1

2
√

2
[
√

2(c†1 + c1) + (c†2 − c2) + (c†3 − c3)] (37)

dIB =
1

2α24
[2t24(c†2 + c2) + (µ+ α24)c†4 + (µ− α24)c4].

(38)

Now define f IA and fB analogously to Eqs. (30). Suppress-
ing the λ dependence for notational simplicity, the four de-
generate ground states are then

|0, 0〉I
|1, 1〉I = f I†A f

†
B |0, 0〉I (39)

|1, 0〉I = f I†A |0, 0〉I
|0, 1〉I = f†B |0, 0〉I ,

where |0, 0〉I is annihilated by f IA, fB , d
I
A, and dIB . With the

above definitions and some time to carry out the algebra, one
can obtain these ground states for arbitrary λ. When λ =
0 leading to the initial configuration shown in Fig. 8(a), the
wavefunctions are

|0, 0〉i =
1

2
[−i− eiπ4 c†2c†1 + e−i

π
4 c†3c

†
1 + c†3c

†
2]|vac〉

|1, 1〉i =
1

2
[e−i

π
4 + c†2c

†
1 − ic†3c†1 − ei

π
4 c†3c

†
2]|vac〉 (40)

|1, 0〉i =
1

2
[−eiπ4 c†1 − ic†2 − c†3 − e−i

π
4 c†3c

†
2c
†
1]|vac〉

|0, 1〉i =
1

2
[c†1 + e−i

π
4 c†2 + ei

π
4 c†3 + ic†3c

†
2c
†
1]|vac〉.

Clearly none of these can be made real by introducing overall
phase factors (though one can readily verify that a purely real
basis does exist by considering linear combinations of these
states). When λ→ 1 and we arrive at the configuration shown
in Fig. 8(b), the wavefunctions evolve to

|0, 0〉b =
1

2
√

2
[−i− eiπ4 c†2c†1 + e−i

π
4 c†3c

†
1 − ei

π
4 c†4c

†
1

+ c†3c
†
2 − ic†4c†2 − c†4c†3 − e−i

π
4 c†4c

†
3c
†
2c
†
1]|vac〉

|1, 1〉b =
1

2
√

2
[e−i

π
4 + c†2c

†
1 − ic†3c†1 + c†4c

†
1 − ei

π
4 c†3c

†
2

+ e−i
π
4 c†4c

†
2 + ei

π
4 c†4c

†
3 + ic†4c

†
3c
†
2c
†
1]|vac〉 (41)

|1, 0〉b =
1

2
√

2
[−eiπ4 c†1 − ic†2 − c†3 − ic†4 − e−i

π
4 c†3c

†
2c
†
1

− ei
π
4 c†4c

†
2c
†
1 + e−i

π
4 c†4c

†
3c
†
1 + c†4c

†
3c
†
2]|vac〉

|0, 1〉b =
1

2
√

2
[c†1 + e−i

π
4 c†2 + ei

π
4 c†3 + e−i

π
4 c†4

+ ic†3c
†
2c
†
1 + c†4c

†
2c
†
1 − ic†4c†3c†1 − ei

π
4 c†4c

†
3c
†
2]|vac〉.

(II) For the second stage of the exchange, we evolve the
Hamiltonian according to

µ = 0

t24 = (1− λ)t (42)
t34 = λt.
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Here varying λ from 0 to 1 leaves γ1 unchanged but adiabati-
cally transports γ2 from site 3 to site 2, leading to the config-
uration of Fig. 8(c). Defining β =

√
t234 + t224, the Majorana

fermion operators at this stage obey

γII1 = c†4 + c4 (43)

γII2 =
1

β
[−t34(c†2 + c2) + t24(c†3 + c3)], (44)

while the gapped quasiparticle operators are

dIIA = dIA (45)

dIIB =
1

2β
[t24(c†2 + c2) + t34(c†3 + c3) + β(c†4 − c4)].(46)

The wavefunctions can again be obtained for arbitrary λ after
some tedious algebra. In particular, when λ→ 1 bringing the
system to the setup of Fig. 8(c), the wavefunctions evolve to

|0, 0〉c =
1

2
√

2
[−i− eiπ4 c†2c†1 + e−i

π
4 c†3c

†
1 + e−i

π
4 c†4c

†
1

+ c†3c
†
2 + c†4c

†
2 − ic†4c†3 − ei

π
4 c†4c

†
3c
†
2c
†
1]|vac〉

|1, 1〉c =
1

2
√

2
[ei

π
4 + ic†2c

†
1 + c†3c

†
1 + c†4c

†
1 + e−i

π
4 c†3c

†
2

+ e−i
π
4 c†4c

†
2 + ei

π
4 c†4c

†
3 + ic†4c

†
3c
†
2c
†
1]|vac〉 (47)

|1, 0〉c =
1

2
√

2
[e−i

π
4 c†1 + c†2 − ic†3 − ic†4 − ei

π
4 c†3c

†
2c
†
1

− ei
π
4 c†4c

†
2c
†
1 + e−i

π
4 c†4c

†
3c
†
1 + c†4c

†
3c
†
2]|vac〉

|0, 1〉c =
1

2
√

2
[c†1 + e−i

π
4 c†2 + ei

π
4 c†3 + ei

π
4 c†4

+ ic†3c
†
2c
†
1 + ic†4c

†
2c
†
1 + c†4c

†
3c
†
1 + e−i

π
4 c†4c

†
3c
†
2]|vac〉.

Notice how the phase factors in the wavefunctions evolve non-
trivially in passing from Eqs. (41) to (47), despite the reality
of the Hamiltonian.

(III) To conclude the exchange, we now choose

µ = λµ4

t24 = 0 (48)
t34 = (1− λ)t

and again vary λ from 0 to 1. In this final step, γ2 remains
unchanged while γ1 moves adiabatically to site 3 as in Fig.
8(d). The Majorana operators now obey

γIII1 =
1

α34
[−µ(c†3 + c3) + 2t34(c†4 + c4)] (49)

γIII2 = −(c†2 + c2), (50)

with α34 =
√

4t234 + µ2, and the gapped quasiparticle opera-
tors are

dIIIA = dIA (51)

dIIIB =
1

2α34
[2t34(c†3 + c3) + (µ+ α34)c†4 + (µ− α34)c4].

(52)

Computing the ground states as before, we obtain the remark-
able result that the final and initial ground states are related
by

|0, 0〉f = |0, 0〉i
|1, 1〉f = i|1, 1〉i (53)
|1, 0〉f = i|1, 0〉i
|0, 1〉f = |0, 1〉i.

That is, the ground states with an fA = (γ1 + iγ2)/2 fermion
present acquire a phase factor of i under the exchange. Up
to an overall unimportant phase factor, this transformation is
generated by the unitary operator U12 = eπγ2γ1/4, which is
precisely what we obtained earlier under quite different cir-
cumstances. This should not be surprising, however, since
again this reflects a topological result that must have worked
out in this way.

To close this section, we remark that one may object that in
obtaining this result we have simply compared the initial and
final states. Since the above wavefunctions are not real, one
may in particular ask whether the exchange is tainted by Berry
phases. It is not—it is always possible to simply change to a
real basis by suitably superposing these wavefunctions, and
in such a basis the absence of Berry phases is manifest. The
exchange indeed is governed solely by the difference between
initial and final states.

C. Derivation of the fractional Josephson effect in a simple
model

For pedagogical purposes, we will review here the ‘frac-
tional Josephson effect’ originally predicted by Kitaev18 and
discussed by other authors in the context of one-dimensional
wires1,2 and other topological systems10,20,29,30. We will ex-
amine this effect in a minimal setup where all calculations
can be explicitly carried out, although the qualitative aspects
of the physics are more universal. Consider two topological
superconducting wires forming a Josephson junction as shown
schematically in Fig. 9(a). The phases of the p-wave order pa-
rameters are taken to be φL/R in the left/right wires, which are
coupled by a weak (compared to the gap in each wire) electron
tunneling term at the junction. The full Hamiltonian reads

H = HL +HR +HΓ, (54)

where HL/R describe the left/right regions and HΓ represents
the electron tunneling term coupling the wires. For compu-
tational simplicity, we model the left and right regions as N -
site chains described by Kitaev’s toy model with µ = 0 and
t = |∆|. In this case we have

Hα = t

N−1∑
x=1

(e−iφα/2c†α,x + eiφα/2cα,x)

× (e−iφα/2c†α,x+1 − eiφα/2cα,x+1), (55)

for α = L/R, along with a tunneling term

HΓ = −Γ(c†L,NcR,1 + h.c.). (56)
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φL − φR

2π
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2t

(b)

(a)
ΓφL φR

FIG. 9: (a) Schematic of the Josephson junction formed by two
topological wires with p-wave superconducting phases φL/R. The
wires couple at the junction through an electron tunneling term with
strength Γ. (b) Bogoliubov-de Gennes spectrum as a function of
(φL − φR)/(2π) for the effective Hamiltonian in Eq. (65) chosen
to describe the junction. Only the solid lines denote physically dis-
tinct states. The states centered around E/(2t) = 1 represent ordi-
nary bulk quasiparticles, while the state near zero energy represents
the quasiparticle formed when the two end Majoranas at the junction
fuse. The energy and hence Josephson current corresponding to the
latter exhibit 4π periodicity in φL−φR. The ordinary bulk quasipar-
ticle states, however, contribute only to the usual 2π-periodic Joseph-
son effect.

When Γ = 0, two Majorana fermions reside at the junction;
turning on Γ 6= 0 generally fuses these to an ordinary finite-
energy quasiparticle state. We wish to compute the zero-bias
current flowing across the junction,

I = −eΓ
~
〈ic†L,NcR,1 + h.c.〉, (57)

in the ground state as well as the excited state where this quasi-
particle state is occupied.

We proceed by first diagonalizing HL/R in the usual way.
Writing cα,x = e−iφα/2(γαB,x + iγαA,x)/2 and then defining
dα,x = (γαA,x+1 + iγαB,x)/2, one obtains

Hα = t

N−1∑
x=1

(2d†α,xdα,x − 1). (58)

It is useful to group the end Majorana fermions residing at the
junction into an ordinary fermion operator via

dend =
1

2
(γRA,1 + iγLB,N ). (59)

The tunneling term, which we will treat as a perturbation, can

then be written

HΓ =
Γ

2
{C[d†R,1(d†L,N−1 + dL,N−1) + h.c.]

+ S[id†end(d†R,1 − dR,1 + d†L,N−1 + dL,N−1) + h.c.]

+ C(2d†enddend − 1)} (60)

with

C = cos(∆φ/2) (61)
S = sin(∆φ/2) (62)

∆φ = φL − φR. (63)

Rewriting the expression for the current in this basis, one ob-
tains the familiar relation

I =
2e

~
d〈HΓ〉
d∆φ

. (64)

Notice that the fermion operators dL,1...N−2 and dR,2...N−1

essentially drop out from the problem—the full Hamiltonian
separately conserves the fermion number for each of these
states and they do not contribute to the Josephson current.
Thus for the purposes of evaluating the current, the prob-
lem maps onto a simpler Hamiltonian involving only dend,
dL,N−1, and dR,1. In terms of dA = (dL,N−1 + dR,1)/

√
2

and dB = (dL,N−1 − dR,1)/
√

2, this effective Hamiltonian
becomes

Heff = t[(2d†AdA − 1) + (2d†BdB − 1)] +HΓ, (65)

where now

HΓ =
Γ

2
{C[(2d†enddend − 1) + (d†AdA − d†BdB)]

+ C(d†Ad
†
B + h.c.) +

√
2S[id†end(d†A + dB) + h.c.]}.

(66)

Applying degenerate perturbation theory to obtain the ener-
gies of the dend, dA, and dB fermions to O[(Γ/t)2], we obtain

Heff ≈ EA

(
f†AfA −

1

2

)
+ EB

(
f†BfB −

1

2

)
+ Eend

(
f†endfend −

1

2

)
(67)

The operators fA/B/end correspond to states that evolve from
dA/B/end due to the tunneling perturbation. Their energies to
the desired order are

EA/B = 2t± Γ

2
cos(∆φ/2) +

Γ2

32t
[5− 3 cos ∆φ] (68)

Eend = Γ cos(∆φ/2). (69)

We can now evaluate the Josephson current in the ground
state, as well as the excited state where the finite-energy quasi-
particle formed from the fused Majoranas is occupied. Equa-
tions (64) and (67), along with the above energies, yield

I± = ±eΓ
2~

sin(∆φ/2)− 3eΓ2

16~t
sin ∆φ, (70)
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where the +/− sign corresponds to the current obtained when
the fend fermion is unoccupied/occupied. The second term
represents the standard Josephson current that is 2π periodic
in ∆φ. This contribution reflects Cooper-pair tunneling and
thus arises at second-order in perturbation theory. More inter-
estingly, the first term exhibits 4π periodicity and has a topo-
logical origin since it arises solely from the Majoranas fused
at the junction. This contribution reflects a first-order process
corresponding to single-electron tunneling, which is possible
at zero bias because the Majoranas form a zero-energy state at
the junction when Γ = 0.

It is interesting to observe from Eq. (68) that the fA/B
fermions also pick up a first order correction to their en-
ergy from Γ. Thus one can view each of these states as
individually contributing both 2π- and 4π-periodic Joseph-
son currents. Their 4π-periodic contributions exactly can-
cel one another, however, so that only the fused Majoranas
contribute to this effect. Mathematically, this can be un-
derstood from the particle/hole-symmetric spectrum of the
Bogoliubov-de Gennes Hamiltonian in Eq. (65). This is plot-
ted versus ∆φ/(2π) in Fig. 9(b). Here only the solid lines
denote physically distinct states since those with energy E
and −E are not independent. As one turns on the tunneling
strength Γ from 0, the ordinary fermionic states that begin at
energy 2t split with opposite sign at first order, and only yield
a net change in energy at second order in Γ/t. Thus they con-
tribute only to the usual 2π-periodic Josephson current. The
state of affairs for the end state which begins at zero energy is
very different—its energy also shifts at first order, but its ‘part-
ner’ which shifts in the opposite direction does not represent
a physically distinct state. It therefore produces an observable
4π-periodic Josephson current.

Finally, it is useful to ask whether the crossings in the spec-
trum of Fig. 9(b) at ∆φ = π are stable. In the case of the ordi-
nary fA,B quasiparticle states, they are certainly not. For in-
stance, adding a weak superconducting pairing between cL,N
and cR,1 at the junction lifts the crossings nearE = ±2t in the
figure. When this happens, there is no sense in which the bulk

quasiparticle states even individually contribute a 4π-periodic
current. The crossing at E = 0, however, is stable provided
the Majoranas at the outer ends of the wires do not overlap
with those at the junction18. (The location of the crossing1

though need not occur exactly at ∆φ = π). This can be un-
derstood as follows. As long the as occupation number of the
fermion corresponding to the outer Majorana end states re-
mains fixed, the ground states at ∆φ = 0 and ∆φ = 2π have
different fermion parity. In the former case f†endfend = 0

in the ground state while in the latter f†endfend = 1. If this
crossing could be removed, then one would be able to adi-
abatically evolve ∆φ from 0 to 2π while remaining in the
ground state, but this can not happen unless the outer end
Majoranas transfer a fermion to the junction. It is useful to
keep this in mind when considering the left path of Fig. 4(b),
where γ2 crosses the junction. At fixed phase ∆ϕi 6= π, the
ground state is always accessible here, precisely because γ2

overlaps with the fused Majoranas γ3,4 at the junction during
this process. However, when γ2 resides at the far right end of
the wire, then (neglecting residual overlap between the Ma-
joranas) the ground state will no longer accessible when the
phase difference changes by 2π. This explains why the frac-
tional Josephson current in Eq. (9) exhibits 2π periodicity in
the initial phase difference ∆ϕi, but 4π periodicity in ∆ϕ.
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