PRL 107, 196804 (2011)

PHYSICAL REVIEW LETTERS

week ending
4 NOVEMBER 2011

Probability Distribution of Majorana End-State Energies in Disordered Wires
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One-dimensional topological superconductors harbor Majorana bound states at their ends. For super-
conducting wires of finite length L, these Majorana states combine into fermionic excitations with an
energy & that is exponentially small in L. Weak disorder leaves the energy splitting exponentially small,
but affects its typical value and causes large sample-to-sample fluctuations. We show that the probability
distribution of g, is log normal in the limit of large L, whereas the distribution of the lowest-lying bulk
energy level & has an algebraic tail at small &;. Our findings have implications for the speed at which a

topological quantum computer can be operated.
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Introduction.—Quantum bits based on topologically
protected states promise a platform for error-free quantum
computation [1-3]. Since information is stored in states
with a topologically protected degeneracy, qubits that rely
on this principle are immune to local external sources of
decoherence. In practical realizations, however, the energy
splitting of the topological qubit is not exactly zero, be-
cause of finite-size effects. This poses a restriction on the
speed at which a quantum computer must be operated.
Operations have to be performed in a time that is short in
comparison to the inverse energy splitting, but long in
comparison to the inverse excitation gap for (nontopolog-
ical) excitations.

A particularly promising possibility to realize topologi-
cally protected zero-energy states is found in one-
dimensional spinless p-wave superconductors, which are
known to have zero-energy Majorana fermion states at
their ends [4,5]. Although Majorana excitations are insuf-
ficient to build a universal topological quantum computer,
their implementation may considerably reduce the mini-
mum required accuracy of qubit operations. There are
several proposals for the experimental realization of such
topological superconducting wires [6-11]. In some of
these, one-dimensional wires can be brought into an alter-
nation of topological and nontopological domains, with
Majorana bound states at the domain boundaries [7,8,12],
whose location can be controlled via gate voltages or
magnetic fields [8,13].

Experimental realizations necessarily involve topologi-
cal domains of finite length L, as well as disorder. For finite
L, the Majorana end states fuse into fermionic excitations
at a finite energy g, that is exponentially small in L/¢,
where ¢ is the superconductor coherence length [5]. In
disordered wires, this sets a lower bound for the speed of
qubit operations which is sample specific. On the other
hand, disorder is known to cause a Lifschitz tail of local-
ized states below the gap A [5,14]. Since operations with
Majorana states require that they are transported through
the quantum wires [13], the lowest-lying bulk state of

0031-9007/11/107(19)/196804(4)

196804-1

PACS numbers: 73.63.Nm, 03.67.Lx, 71.23.—k

energy €; provides an upper bound for the speed of qubit
operations. In view of possible experimental applications
and their limitations, it is essential to know the full proba-
bility distribution of the energies g, and &,. This problem
is addressed in this Letter.

Models of topological superconductors.—We consider
two models known to support Majorana end states.
One model describes a one-dimensional, spinless p-wave
superconductor [4,5],

»?

H= <% +Vix) — ,LL)O'Z - A'po,. (1)
Here, m is the mass, 4 = p%/2m the chemical potential,
pr = mvg the Fermi momentum, and o; denotes Pauli
matrices in electron-hole space. The disorder potential
V(x) is drawn from a Gaussian distribution with zero
mean and correlator (V(x)V(x')) = y8(x — x’), corre-
sponding to the mean free path [ = v;7 = v%/y in the
normal state. The superconducting gap A = A'p, =
hvp/€ is induced by proximity to a bulk superconductor
so that A is not subject to a self-consistency condition.
Throughout our calculation, we assume that &, [ > h/pp.

A second model for a topological superconductor is the
Dirac Hamiltonian with random mass,

H= VppO; — A(X)U'x - V(X)O'x, (2)

where A is an effective superconducting gap which
changes sign at the topological phase transition in the
absence of disorder. The Pauli matrices o; act in the space
of right- and left-moving Majorana modes. The disorder
potential V(x) induces backscattering between these modes
and thus appears as a random mass in Eq. (2). It is taken
according to the same distribution as for the Hamiltonian
(1). (Long-range correlated disorder which breaks the sys-
tem into topological and nontopological regions has been
considered in Refs. [15,16].)

Both of these Hamiltonians appear as effective models
for a variety of physical systems. For instance, Eq. (1)
describes semiconductor wires with strong spin-orbit
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coupling in proximity to an s-wave superconductor in
the limit of large applied magnetic field B [13,17].
Equation (2) appears in the same context when considering
the vicinity of the topological phase transition in the clean
limit. In this context, the effective gap A in Eq. (2) is the
difference between the applied magnetic field B and the
proximity-induced superconducting gap at B =0 [17].
The Hamiltonian (2) also arises, e.g., for fermions on a
lattice with random hopping [18], narrow-gap semiconduc-
tors [19,20], or organic molecules [21]. What appears here
as a pair of Majorana end states is referred to as a ““soliton—
antisoliton pair” in these contexts [22].

Dirac equation with random mass.—We start by analyz-
ing the end-state energies of the simpler Dirac Hamiltonian
(2). To model a wire of finite length L we set A(x) — —oo
for x <0 and x > L and A(x) = A for 0 < x < L. Since
the system is fully gapped for x < 0 and x > L, any states
contributing to the integrated density of states N(g) =
J& de'v(’) must be localized in the interval 0 < x < L.
In the presence of disorder, N(g) is a random quantity
with probability distribution P.(N), which is related to
the probability distribution p;(e) of the energy level &;
(j=0,1,2,...) through the equalities

9 <
pi(e) === 3 P/ (3)
j'=0

For each disorder configuration, we can calculate N(g)
from the scattering matrix S(e, x') of a wire with
Hamiltonian (2) for x <x’ and H = vppo, for x > x/,
see Fig. 1(a). The relation between S(g, x') (a complex
number of unit modulus in the present case) and N(g) is
given by the Friedel sum rule [23],

NGe) = 5L tim In dedlS(e, x)] — In dedlS(, 001}, (&

where the second term subtracts the contribution to the
phase of detS from scattering off the left half-infinite,
fully gapped region (A — —o0) with S matrix S(e,0) = 1.
We then proceed as follows to calculate S(e, x'). From the
Hamiltonian (2) we obtain the scattering matrix S(e, 8x)
of a slice of the wire with length 6x’ << min(/, ¢). Upon
concatenating S(e, x') with S(g, 8x), we obtain the evolu-
tion of S(e, x’) with increasing x’ [24]. This evolution has
drift contributions due to the kinetic and pairing terms in
Eq. (2), and a stochastic contribution from the disorder
potential. It is a Langevin process, which takes its simplest
form if we use the parametrization

S = itanhy, &)

where y takes values on the real axis *iw/4, see Fig. 1(b),
and is continuous at y = *=oo. The Langevin process is
specified by the equations

ox'

(6y*) = ;

(8y) = i—XI[is sinh2y — A(x)], (6)
F

(@) 1A(z) ?
A
]
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FIG. 1 (color online). (a) Pairing potential A(x) used for the
calculation of the scattering matrix S(e, x') for 0 < x’ < L (solid
gray line) and for x' > L (dashed). (b) The variable y in the
parametrization (5) of the scattering matrix takes values on the
real axis *im/4. The black dotted arrows indicate the boundary
conditions at y = *oo. In the simplified Langevin process used
for the asymptotic analysis (8), the boundary conditions are at
Rey = £y (full black arrows). The direction of the drift term in
topological (0 < x’ < L) and nontopological (x' <0 and x' > L)
regions is indicated by the full red arrow and dashed red arrow,
respectively. (c¢) Typical dependence of the Majorana end-state
energy &g and the energies €1, &,, ..., of low-lying bulk states on
the system size L.

[The reason we used the unusual parametrization (5) is that
it makes the noise term in Eq. (6) independent of S.] Near
y = *00, the shifts are dominated by the term proportional
to &, which unidirectionally couples the branch at y =
+oo ¥ i7r/4 into the branch at y = *oo * izr/4, see
Fig. 1. The Langevin process has the initial condition
S(e,0) = i or, equivalently, y = oo + i7r/4 for x' <O.
Note that for x' > L, the Langevin process returns y to
this starting point. The Friedel sum rule (4) now identifies
P.(N) as the probability distribution of the number of
times N that the variable y has passed through the point
at —oo upon increasing x’ from x’ = 0 to x’ = L. We have
calculated this probability distribution through direct nu-
merical simulation of the Langevin process, as well as
through an asymptotic analysis in the limit & <
min(A, 1/7).

For the asymptotic analysis, we observe that the term
proportional to & dominates the Langevin process when

1 2A,1
[Rey| = j(e) = 3 lnw.

(N
The other terms dominate for |[Rey| < y(&). Thus, to loga-
rithmic accuracy, we can reduce Eq. (13) to a truncated
process in which |Rey| <  and the energy contribution to
(8y) is omitted [25]. The unidirectional connection be-
tween the upper and lower branches now takes place at
Rey = *3(e), see Fig. 1(b). The resulting Langevin pro-
cess for y is then specified by the equations

(8y) = —ox'/&  (8y*) = 8x'/1, ®)

with absorbing boundary conditions (“sink”) at y =
*+[y(e) — iw/4] and hard-wall boundary conditions at
y = *[y(e) + im/4], see Fig. 1(b).

There is a qualitative difference between the Langevin
processes at the upper branch (Imy = 7/4) and the lower
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branch (Imy = —/4). At the upper branch, the drift term
proportional to 1/£ pushes the variable y towards the sink,
whereas at the lower branch it keeps it away from the sink.
The slow diffusion in the latter case does not affect g, but
it dominates the probability distribution of all higher levels
€;, j = 1,2,.... By analyzing the diffusion process on the
upper branch, we find that the probability P(0) is [26]

<L/§ Z—LZ;(S))'

Using Eq. (3) and recalling that y(¢) is given by Eq. (7), we
conclude that In(g,/2A) has a normal distribution with
mean and variance given by

(In(eo/24)) = —L/§, varln(ey/2A) = L/, (10)

up to corrections of order unity that cannot be determined
from the above argument. Similarly, analyzing the diffu-
sion process on the lower branch, we find P,(0) + P.(1) =
e~ N where the disorder-averaged integrated density of
states (N(g)) = (L/&)(g/A)?/¢ [20,25], with proportion-
ality constant that could not be determined from the
asymptotic analysis. From this, we find that p,(g)
(L7/&)(e/A)?/¢=1 for small €. The theoretical predictions
are compared to numerical simulations of the Langevin
process in Fig. 2.

One-dimensional spinless p-wave superconductor.—We
now extend these results to the Hamiltonian in Eq. (1).
Previous studies of lattice versions of the model (1) ad-
dressed the disorder-averaged density of states (¥(g)) in the
limit L — oo [5,14]. Using a strong-disorder renormaliza-
tion group approach, Motrunich et al. showed that the
model (1) is in a topological phase if the disorder strength

1
P.(0) = = erfc
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FIG. 2 (color online). Integrated probability density P.(0) of
the Majorana end-state energies g, (blue dots) and &g, (red
crosses) in the two models obtained from a numerical solution of
the Langevin process, together with the theoretical prediction
(solid). Energies are normalized to the median €,, of the distri-
bution. Left inset: Logarithm of the integrated probability dis-
tribution P_(0) + P,(1) of the lowest-lying bulk state energies
e, and &) ;. Right inset: Average of loge; and logeg nax VS
length. In both insets the slope of the solid lines is given by the
theoretical predictions of the main text.

is below a critical value, and in a nontopological phase for
stronger disorder. On both sides of the critical disorder
strength, the density of states »(e) has a power law depen-
dence on ¢ for & < A, with an exponent that depends on
the disorder strength. For the continuum model (1) we now
show that the transition is at & = 2/ and calculate the
probability densities of the Majorana end-state energy &,
and the lowest-lying bulk level for disorder strengths below
the critical value.

Our calculation essentially follows the approach taken
above for the Dirac equation with random mass with some
modifications. A wire of finite length L with hard-wall
boundaries is modeled by setting u = —oo for x <0 and
x>L,and u = p%/2m > 0for 0 < x < L [27]. We define
a 2 X2 scattering matrix S(e,x') of a wire with
Hamiltonian given by Eq. (1) for x <x’ and by H =
(p?/2m)o, for x > x' and parametrize S through

1 +e'% tanhy.
Sle, x') = _Eg( i tanhy .

—itanhy
+e¢ % tanhy. )’ (ih

where the variables y, and y_ take values on the real axis
*im/4,see Fig. 1, and ¢ is a real phase. The energy levels
can no longer be calculated from the Friedel sum rule (4),
but instead have to be obtained from the condition
det[1 + S(e, L)] = 0, which becomes

cos¢p = coth(y_ — y,) (12)

in the parametrization (11). For h/py < 6x' < I, &, the
resulting Langevin processes for the variables y. and the
phase ¢ decouple,

Sx’ Sx’!
<3Yt> = _x(is sinh2y. — A) + ot coth(y+ — y=),
UF 2l

<5yi> = —(8y+8y=) = 6x'/2],
(8¢p) = 2ppdx/,
(8¢2) = 46x'/1 + (6x'/2l)coth*(y, — y_).

The initial condition is ¢(0) = 0 and y.(0) = *oo *
i /4. For a given disorder realization, the solutions g; of
Eq. (12) oscillate as a function of L, with oscillation period
=~ 7/ pr, as shown schematically in Fig. 1(c). This follows
from the observation that y, and y_ are “slow” as a
function of L [they vary on the scale min(/, £)], whereas
¢ is a “fast” variable (8¢/8x’ = 2pp). Solutions of
Eq. (12) then appear in quick succession upon increasing
L at fixed &, until y, passes through the point at —oo or y_
passes through the point at +o00, whichever occurs first. No
solutions of Eq. (12) are found upon increasing L further,
until eventually again one of the variables y. passes
through a point at infinity and solutions to Eq. (12) reap-
pear in quick succession; cp. Fig. 1(c).

We now calculate the probability distributions pg pax
and pj i, of the maximum &g, and the minimum &,
with respect to variations of L of order 7/py. (Note that
gomax and & i, are the energies relevant for setting the

(13)
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operation speed of a hypothetical topological quantum
computer.) Repeating the arguments of the first part of
this Letter, these probabilities obey

dJ
pj,max(min)(s) = _g Z
J'=2j(j'=2j-1)

P.(j), (14

where P,(N) is the probability that (in total) the variables
y4 or y_ have passed N times through the points at *oo
upon increasing x’ from 0 to L. We have calculated these
probabilities from direct numerical simulation of the
Langevin process, as well as from an asymptotic analytical
solution valid in the limit & << min(A, 1/7). For the
asymptotic analysis, we make the same simplification of
the Langevin process as in the case of the Dirac equation
with random mass. In addition, we observe that for the
energies of interest, one of the variables y. effectively
remains pinned at —3y(g) — i7r/4, so that the factor
coth(y, — y_) in the interaction term may be approxi-
mated by *=1. The resulting Langevin process for the
remaining variable is then specified by the equations

(8y) = —8L/&+ 8LJ21,  (8y*)=8L/21, (15)

with the boundary conditions as specified below Eq. (8).
The result for P_(0) has the same functional form as in the
case of the random-mass Dirac equation, and we conclude
that In(&( nac/2A) has a normal distribution with mean and
variance given by

(In(eqmee/20)) = ~L[1/£ — 1/(21)), 6
varn(eg max/24) = L/21,

up to corrections of order unity that cannot be determined
from the asymptotic argument. The end-state energy re-
mains exponentially small in L as long as 2/ > ¢, which
identifies 2/ = ¢ as the critical disorder strength that drives
the system into the nontopological phase. Similarly,
we find P,(0) + P,(1) = e~ NE) with (N(g)) = (L/€) X
(e/A)*/€-2 [514,25], from which we conclude that
Pimin(&) ® (LT/E)(e/A)*/¢73 for small energies. At the
critical disorder strength, the integrated density of states
takes the Dyson form N(g, L) « In*(e/A) [5,14,28]. The
theoretical prediction for pg ., 1S compared to numerical
simulations of the Langevin process in Fig. 2.
Conclusions.—For both models of a topological super-
conducting wire, we find that the energy splitting g, of the
Majorana end states has a log-normal distribution, imply-
ing large sample-to-sample fluctuations. Nevertheless, for
sufficiently long wires, the width of the log-normal distri-
bution remains small compared to its average. In this case,
the lower limit on the speed of the qubit operations is well
determined by the typical value of the log-normal distri-
butions in Egs. (10) and (16), which is exponentially small
in L/&. By contrast, we find that the energy &, of the
lowest-lying bulk state is algebraically small in L/&.
This implies that in principle, there is a large parameter
window in which both conditions on the operation speed

can be met if L is made sufficiently large. It is important to
note, however, that with increasing disorder or increasing
L, this parameter window is shifted to lower energies
which would require the topological quantum computer
to operate at a lower temperature and lower speed.
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