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The RKKY interaction between substitutional Mn local moments in GaAs is both spin-direction-
dependent and spatially anisotropic. In this Letter we address the strength of these anisotropies
using a semi-phenomenological tight-binding model which treats the hybridization between Mn d-
orbitals and As p-orbitals perturbatively and accounts realistically for the non-local exchange inter-
action between their spins. We show that exchange non-locality, valence-band spin-orbit coupling,
and band-structure anisotropy all play a role in determining the strength of both effects. We use
these results to estimate the degree of ground-state magnetization suppression due to frustrating

interactions between randomly located Mn ions.

PACS numbers: 75.50.Pp, 75.30.Et, 75.30.Gw, 75.20.Hr

The current interest in diluted magnetic semiconduc-
tors (DMS) is fueled by possible applications in spintron-
ics and by basic-science issues generated by the inter-
play between disorder, spin-orbit coupling, and magnetic
order. We concentrate on the prototypical III-V DMS
Gaj_;Mn, As, which, once interstitial Mn ions have been
eliminated, exhibits robust homogeneous ferromagnetism
[1]] with critical temperatures T, above 160K for z = 0.05.
It is generally agreed that the substitutional Mn ions are
in Mn** valence states that have S = 5/2, L = 0 local
moments, and that exchange interactions with As neigh-
bors allow the Mn moments to interact via valence-band
holes ﬂﬂ] The effective exchange interaction between Mn
moments is spatially anisotropic and, because of spin-
orbit interactions, also anisotropic in spin space. This
Letter is motivated primarily by theoretical interest E, E]
in the role of anisotropies in determining the character of
the magnetic ground state but has implications for other
aspects of (II1,Mn)V DMS ferromagnetism.

The theory of (III,Mn)V ferromagnetism has been de-
veloped in several directions. A simple phenomenological
approach [E, E, ﬁ, , E, E, EI] approximates the valence-
band holes by a host-semiconductor Kohn-Luttinger
envelope-function Hamiltonian and couples them to ran-
domly located Mn spins by a local, isotropic exchange in-
teraction J,q. This leads to a semi-quantitative descrip-
tion of many transport and magnetic properties, particu-
larly in the high-carrier-density, high-T, systems that are
free of compensating Mn interstitials. However, it has led
to conflicting conclusions on the importance of exchange
anisotropy. The RKKY interaction obtained by Zarand
and Janko [E] is highly anisotropic in spin space, i.e., it
depends strongly on the orientation of two spins relative
to their connecting vector, but it is spatially isotropic
because it starts from a local hole-impurity exchange
interaction and uses a spherical approximation for the
bands. Using a more realistic 6-band envelope-function
Hamiltonian, Brey and Gémez-Santos [4] find that both

spin and real space anisotropies are weak. Their con-
clusion, however, depends in part on their momentum-
space cut-off [EI] for the exchange interaction Jpq, i.e.,
on atomic-length-scale physics not described realistically
in the envelope-function approach. First-principles calcu-
lations [IE] do not have these limitations, but are ham-
pered by their extreme sensitivity to the placement of
unoccupied and occupied d-orbital energies relative to
the valence and conduction bands. In this Letter we ad-
dress exchange anisotropy using a realistic tight-binding
model that combines virtues of these two different ap-
proaches and estimate the bulk magnetization suppres-
sion due to frustrating interactions between impurity mo-
ments. Based on our results we also suggest a possible
route toward higher transition temperatures in (IIL, Mn)V
ferromagnets.

Our theory is based on a Slater-Koster [IE] tight-
binding model, and on a perturbative treatment of pd
hybridization, in which the band electrons are integrated
out to yield a spin-only model E, E, E, |ﬂ, E, E] A sim-
ilar model has recently been used to obtain the local den-
sity of states around Mn impurities [Iﬂ] In Slater-Koster
theory, the electronic structure is specified by orbital-
dependent onsite energies and hopping amplitudes that
are treated as fitting parameters. Spin-orbit coupling is
included m] to obtain realistic bands and a realistic de-
scription of (IIIMn)V ferromagnetism |§].

Our Hamiltonian reads H = H. + Hq + Hyyp, where

Hc = Z Z €ao;a’o’ (k) CTkanga’a" (1)
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describes perfect GaAs [E, E] Here, CLM creates an
electron with wave vector k in orbital o with spin o.
The most important effect of Mn impurities is to in-
troduce partially filled d-orbitals. The resulting strong
electron-electron interactions are parametrized by the lo-
cal Hubbard repulsion U and the Hund’s-first-rule cou-

pling Jy [E, m] Hy = (€d+JH —U/2)N+1/2(U—



Ju/2)N? — Jy S-S, with N = Y, _df, d,, and S =
> oo Aho (0007 /2) dnor, where df, creates an electron
in d-orbital n with spin 0. We assume U =~ 3.5 eV [21]
and Jy =~ 0.55eV [22]. Hyyp describes the hybridization

between the d-orbitals and sp-bands,

thb \/— Z Z tkan Ckaadna +hec = hyb + thbv

k aon

(2)
where N is the number of unit cells in the system. The
coefficients are expressed in terms of real-space hopping
matrix elements, tkan = Y., €~ X Wit;q,, where the sum
runs over nearest-neighbor As sites of the impurity. The
symmetries of tx,, are obtained from Slater-Koster the-
ory |[13], which expresses the matrix elements in terms
of two-center integrals. We use (pdo) = 1.0 eV and
(pdm) = —0.46 €V as inferred from photoemission [21]
and (sdo) = 1.5 eV obtained as a rough spin average of
ab-initio calculations for zinc-blende MnAs [23].

In the large-U limit we can use canonical perturba-
tion theory (CPT) [24] to integrate out d-shell charge
fluctuations, leaving only the impurity spin degrees of
freedom. We first consider a single Mn impurity. We
introduce the canonically transformed Hamiltonian H =
e T (H, + Hy + eHpyp) €T, where T is hermitian, and
expand in €. The operator T is chosen so that the linear
term vanishes. To obtain manageable expressions we ne-
glect the energetic spread of virtual band-electron states
compared to the energy difference ~ U between different
Mn valence states. To be consistent we ignore contribu-
tions from bands other than the heavy-hole, light-hole,
and split-off bands. Truncating the expansion at second
order and projecting onto the N = 5, S = 5/2 ground-
state subspace, we obtain
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We have used that Hhiyb applied to a state in the (N, S) =
(5,5/2) sector results in a state with sharp quantum num-
bers (N, S) = (6,2) and (4,2), respectively. Eng is the
corresponding isolated-ion energy. Inserting Eq. @) and
noting that Y___, dl, (055 /2) dnor = S/5 in the (5,5/2)
sector, we obtain a Hamiltonian that includes a micro-
scopic hole-impurity exchange interaction,

H = H + (charge scattering)

Z > tianticarn 3 oaror 25 ks + S (4)
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The two energy denominators in 1/A are respectively
the isolated-ion d® — d* and d° — d°® transition energies

measured from the chemical potential. If either of the
denominators becomes small, the interval of energy over
which our approximations are justified is correspondingly
reduced. Note first that the exchange interaction is quite
generally invariant under spin rotation. The wavevector
dependence of the exchange interaction is specified by
the factor )ty .. tk’arn for which we can obtain analytic
expressions from tight-binding theory. For k, k' — 0 and

a =o' = pg,py,p. we obtain
16
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Restoring the prefactor from Eq. @) we find a micro-
scopic expression for the envelope-function exchange con-
stant J,q. By including the full (k,k’) dependence we
recover spatial anisotropies neglected in that theory.
Since both denominators in 1/A must be negative for
(5,5/2) to be the isolated-ion ground state, the exchange
interaction is antiferromagnetic, Joq < 0. |Jpa| is min-
imized and the effective model has the widest range of
validity when the d® —d* and d° — d transition energies
bracket the Fermi energy Er symmetrically. In this case
Jpd = —48 meV nm?®, close to the experimental value in
(Ga,Mn)As [23]. We consider this case in what follows.
The expression for Jpq, combined with materials trends
[26], suggests that T, of Gaj_,Mn,As;_,P, quaternary
alloys might increase with y since their d° — d* transition
energy will approach E, increasing the value of Jpq.
We employ the full (k, k’)-dependent hole-impurity ex-
change to evaluate the RKKY interaction between two
Mn spins at 0 and R and perform the CPT as above.
Integrating out the band electrons and expanding the
action to second order in impurity spins we obtain
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where ¢é(k) is the tight—binding Hamiltonian with
matrix elements €yoi00(k) and j*(k K )aoiae =
Yo teantikrarn 0b, . The trace in Eq. ([@) is over orbital
and spin indices. We diagonalize é(k) = UIZ d(k) Uk,
where d(k) is the diagonal matrix of band energies
doo(k), and perform the Matsubara sum. Tt is useful
to express J,, (R) = [ d3¢/(2m)3 ¥R J,,(q) in terms of
its Fourier transform. Making use of the symmetries of
d and U we obtain
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where vy is the unit-cell volume and fr.o, is a Fermi
factor. In the following, we take the electrons to be at
T = 0. We remark that Eq. ) is unreliable when q
is comparable to Brillouin-zone dimensions because the
band eigenenergies are then as far from the Fermi energy
as the d-quasiparticle levels. Correspondingly the results
for J,,(R) are quantitatively reliable only for R > a,
where a is the dimension of the fcc unit cell.

e (100), xx
0.2 = (100),yyizz
(110), xxiyy
4 A-A(110), z
r® (111), xxtyylz| |
< (211), xx
Q (211), yyl/zz
£ 01- . + (310), % N
4 (310), yy
._’1 * (310),z
[aV]
~ i
z o

0.04 1 } : ‘ ;

I 4
2x 10 MC points
0.6 _
- e (100) direction |
g i = (111) direction
> 0.4- -- (100),zeeman splitting 0.125 eV |
[ «
S L o il
‘-’;é ®* =
= 0.2- \:‘h 1
(N
L g Tmy 1
H*.!"’."ﬁt‘tt—‘s-ﬂﬂ
1 1 L 1
% 2 3
g/ (2/a)

FIG. 1: (color online) Fourier-transformed RKKY interaction
Jz2(q) and numerical errors in the (100) and (111) directions
for Er = —0.307 eV relative to the valence-band top, cor-
reponding to a hole concentration of 3.8 x 10?® cm™>. The
dashed curve shows Jg,(q) in the (100) direction calculated
with a band Zeeman splitting of 0.125 eV, corresponding to
5% Mn substitution and full polarization of Mn moments.

We have evaluated J,,(q) using Monte Carlo (MC)
integration with the VEGAS algorithm [27]. Figure [
shows J,.(q) in the (100) and (111) directions. At a
nonzero Mn density, the interactions between spins are
dominated by the pairwise RKKY interaction only if the
mean hole-impurity exchange interaction is weak [, i&].
This is indeed the case since Fig. [ll shows that the effect
of a realistic Zeeman splitting on J(q) is small. We note
that J,,(q = 0) is isotropic; this limit determines the
bulk magnetic anisotropy [d, [L0] which vanishes in the
present approximation [28§].

Juw(R) is evaluated as a Fourier sum over J,,(q) cal-
culated on a cubic grid with (2nx)3/2 points in the fcc
Brillouin zone, making use of all symmetries. The result-
ing RKKY interaction is plotted in Fig. It is ferro-
magnetic at small separations, as expected. The near-
neighbor interactions are not reliable, both because their
evaluation stretches the validity of the CPT and because
we neglect the supererchange interaction, which appears
at fourth order in Hyyp, and in which an electron hops
virtually from a Mn d-orbital to a d-orbital on a neigh-
boring Mn site via an intervening As p-orbital. For larger
separations .J,,,, (R) shows typical Friedel oscillations.

We find a very strong anisotropy in real space; J,.,, (R)
depends on the direction of R for similar R = |R|. This is
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FIG. 2: (color online) (a) Diagonal and (b) off-diagonal com-
ponents of the RKKY interaction J,,(R) in various crystal
directions, scaled by (R/a)?. All results have been obtained
with ng = 36 and 2 x 10° MC points for each q point except
for (gqa/2)* < 0.5, when 2 x 10° points have been used. The
off-diagonal components vanish exactly along (100).

a consequence of both the directionality associated with
pd hybridization and of the anisotropy of the band struc-
ture and the Fermi surface; neither effect is included in
the spherical model of Ref. [3]. In Ref. [4] the real-space
anisotropy is concluded to be small, based on the inter-
action between two spins at neighboring sites. For small
R we also find relatively weak anisotropies but at larger
R this conclusion does not hold. The isotropic Gaussian
ansatz for the hole-impurity exchange interaction [4] con-
tributes to this small anisotropy.

The anisotropy in spin space, i.e., the deviation of
Juw(R) from J(R) 4, is also large. For small spin-orbit
coupling, the differences between diagonal components
are of second order in spin-orbit coupling, whereas the
off-diagonal components are linear. Only for the small-
est separations is the relative anisotropy below 10% as
found in Ref. [4]. At larger R the anisotropy becomes
quite pronounced, as in Ref. [3].

When the anisotropies are neglected, the moments
are fully aligned in the ground state. To determine
whether or not the anisotropies substantially alter the



character of the ground state, we start from a fully
aligned (in the z direction) spin configuration and con-
sider the mean effective fields acting on individual spins,
H,(Ri) = S, Juz(Ri — R;), where the sum is over
Mn impurity sites. Assumming that the Mn ions are dis-
tributed completely at random [[16, 29], the average over
all sites is H, = (2.5/vuc) Juz(q = 0) x §,.. On average
the effective fields align with the average moment, but
spatial fluctuations reduce the overall degree of spin po-
larization. The typical angle of the Mn tilt at a given site
is proportional to the ratio of the zy plane effective-field
components to H,. We find

H_g o g |Jez(@)?
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Thus the anisotropies become more important for small
Mn fractions x. For the parameters used above we get
H2/[H.)? = 3.1 x 1075 (z~! — 1). We conclude that
the anisotropies do not cause a large moment suppres-
sion in (Ga,Mn)As even for x ~ 0.01, despite the large
anisotropies. The effect is small because many moments
contribute to the effective field due to the long-range in-
teraction, averaging over the anisotropies. We neglect the
indirect influence of charge scattering, as well as Coulomb
interactions and local chemical shifts. These will reduce
the RKKY interaction at large separations and further
reduce the importance of frustrating interactions [11].

To conclude, we have used a Slater-Koster tight-
binding model of ITI-V DMS to calculate the full momen-
tum dependence of the hole-impurity exchange interac-
tion. We find that this interaction depends crucially on
the position of the Mn d-levels relative to the valence
band and suggest that quaternary Gaj;_,MngAs;_,P,
alloys might have higher transition temperatures than
Gaj_Mn_ As. Starting from the hole-impurity interac-
tion, we have calculated the hole-mediated RKKY in-
teraction between impurity spins. This interaction is
highly anisotropic in real and spin space. The anisotropy
crucially depends on two factors partly ignored in pre-
vious works: the nonlocal form of the hole-impurity ex-
change interaction and the highly anisotropic band struc-
ture. However, despite the strong anisotropies the local-
moment suppression is weak due to the averaging brought
about by the long-range RKKY interaction.
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