
ar
X

iv
:c

on
d-

m
at

/0
41

06
39

 v
1 

  2
5 

O
ct

 2
00

4
New phases in antiferromagnetic spin-crossover chains
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Spin-crossover molecules having a low-spin ground state and a low lying excited high-spin state
are promising components for molecular electronics. We theoretically examine one-dimensional
spin-crossover chain molecules. A prototypical compound is [Fe2+(R-trz)3]n, where R-trz stands for
1,2,4-triazole with an organic side group R. The existence of the additional low-spin/high-spin degree
of freedom leads, together with interactions, to rich physical behavior already in the ground state.
We obtain the complete ground-state phase diagram, taking into account the elastic nearest-neighbor
interaction, a ferromagnetic or antiferromagnetic exchange interaction between the magnetic ions,
and an external magnetic field. The energies of various phases are calculated with high numerical
precision using the density-matrix renormalization group (DMRG). Besides pure low-spin, high-spin,
and alternating low-spin/high-spin phases we obtain a number of periodic ground states with longer
periods, which we discuss in detail. For example, for antiferromagnetic coupling and small magnetic
field there is a dimer phase with a magnetic unit cell containing two high-spin ions forming a spin
singlet and a single low-spin ion, which is stabilized by the energy gain for singlet formation.

PACS numbers: 75.10.Jm, 75.50.Xx, 85.65.+h

I. INTRODUCTION

One of the most active fields of materials science to
emerge in recent years is molecular electronics,1,2 which
proposes to use individual molecules as electronic com-
ponents. A related idea is to use a single quantum spin,
say of an ion, to store information, idealy with purely
electronic read and write mechanisms. It has been em-
phasized by Kahn and coworkers3,4,5 that spin-crossover
compounds6,7,8,9,10 (SCC’s) are particularly promising
for molecular memory devices.

These compounds consist of complexes involving tran-
sition metal ions and organic ligands.7,8,9,10 The mag-
netic ions can be either in a low-spin (LS) or high-spin
(HS) state, i.e., for the spin operator Si at site i the
eigenvalues of Si · Si are SLS(SLS + 1) and SHS(SHS + 1)
in the LS and HS state, respectively. The energy differ-
ence between HS and LS states is due to the interplay
between the crystal field splitting, which prefers doubly
occupied d-orbitals and hence LS, and Hund’s first rule,
which favors unpaired spins and thus the HS state.7,8,9,10

The term SCC is usually applied when the LS state is the
ground state and the HS state is at a moderate (thermal)
excitation energy. Often intermediate spin states also ex-
ist but are typically at much higher energies. SCC’s show
a characteristic crossover from the LS ground state to
dominantly HS behavior at higher temperatures.6 This is
an entropic effect due to the higher degeneracy of the HS
state. This crossover is typically sharper than expected
for noninteracting magnetic ions and is even replaced by
a first-order transition at a finite temperature in several
compounds.7,8,9,10

Spin-crossover phenomena were first observed by Cam-
bi and Szegö6 in the 1930’s. It has since been shown
that SCC’s can be switched back and forth between their
states not only by changing the temperature but also

by light, pressure, and an external magnetic field. The
switching with light, known as light-induced excited spin

state trapping (LIESST), has been demonstrated for the
first time by Decurtins et al.11 Spin-crossover phenom-
ena are also observed in organic radicals12 and certain
inorganic transition-metal compounds.13

Of the large number of known SCC’s some naturally
form one-dimensional chains, for example Fe2+ with 4-
R-1,2,4-triazole ligands.4,14 Three ligands form bridges
between two adjacent iron ions. Other SCC’s consist
of two-dimensional layers, e.g., TlSr2CoO5.

13,15 There is
strong hope that many more one- and two-dimensional
SCC’s can be tailored by systematic variation of the lig-
and molecules.16 It should be possible to have chains
form in solution, which can subsequently be deposited
onto a surface. Such one-dimensional SCC’s appear to be
the most promising candidates for technological applica-
tions, in particular in view of recent work on carbon nan-
otubes and DNA molecules.17,18 Of course, SCC’s add
magnetism and the spin-crossover and LIESST effects,
hopefully leading to interesting new phenomena and per-
haps new functionalities.

On the other hand, SCC’s are also very interesting
from a statistical-physics point of view. In comparison
to conventional local-moment systems they introduce an
additional degree of freedom σi of Ising-type, which des-
tinguishes between the LS (σi = +1) and HS (σi = −1)
states. In the case of a diamagnetic LS state with spin
SLS = 0 the spins in the LS state are essentially switched
off. These SCC’s are thus related to site-diluted spin
models,19,20,21 but in our case the presence or absence
of a spin is itself a dynamical variable and not a type
of quenched disorder. Also related are recent studies of
magnetic models with mobile vacancies,22 which are mo-
tivated by cuprates with mobile defects, and of insulating
phases of atoms with spin S = 1 in optical lattices.23 As
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we shall see, there is also a close relation to finite anti-
ferromagnetic spin chains.

Antiferromagnetic spin chains came to the center stage
of physical interest due to Haldane’s (in the meantime
firmly established) conjecture of a fundamental difference
between (isotropic) half-integer and integer quantum spin
chains;24 among other things, the latter always show an
excitation gap, while the former are critical. The valence-
bond-solid toy model (AKLT model)25 in which each spin
of length S is replaced by 2S fully symmetrized spin-1/2
objects on each site that are then linked up by singlet
bonds between sites was found to explain all main fea-
tures of integer quantum spin chains. One peculiarity of
the AKLT model is that at each end of open spin chains S
of the spin-1/2 objects find no singlet partner and form a
free spin S/2 at each end. For integer spins as considered
in the following, this leads in the AKLT model for even
chain lengths to a [2(S/2)+1]2 = (S+1)2-fold degenerate
ground state instead of the non-degenerate ground state
found for periodic boundary conditions. The ground
state of the magnetization M = S + 1 sector is then one
of the (almost degenerate) lowest-lying bulk excitations
combined with edge excitations. It is the interaction of
the bulk and edge excitations which breaks the in princi-
ple exact degeneracy of the bulk excitation. This observa-
tion carries over to antiferromagnetic Heisenberg chains.
There, one finds a group of (S +1)2 low-lying states that
become degenerate exponentially fast on the length scale
of the bulk correlation length. The lowest-lying of these
states has total spin 0 and magnetization 0; above this
state there follows a spin-1 triplet, and so forth. The
maximum total spin is given by S. The maximum magne-
tization is also given by S and concentrated at the edges.
The lowest-lying excitation above them is the first true
bulk excitation and corresponds to the lowest-lying state
with M = S + 1. This phenomenon has been observed
experimentally,26 and generates a wealth of low-lying ex-
citations if there are segments of spin chains of various
length as is generically the case in the SCC’s. For odd
chain lengths, the situation is modified as the ground
state has spin S instead of 0 and the lowest-lying states
of the magnetization sectors M ≤ S are strictly degener-
ate both in the AKLT and Heisenberg models irrespective
of the free-end-spin physics. The order of the low-lying
(boundary) excitations is thus changed, but yet again,
the ground state of the magnetization S + 1 sector con-
tains the lowest-lying bulk excitation. This observation
points to a special role of magnetization M = S, as will
be seen throughout this paper.

In the present paper we focus on the ground-state prop-
erties of one-dimensional SCC’s. We mostly consider
antiferromagnetic coupling between the spins, which is
probably the more common and also the more interest-
ing situation compared to ferromagnetic coupling. To
our knowledge, the exchange interaction in SCC’s has
not been studied previously, although exchange inter-
actions between transition-metal ions in metal-organic
complexes can be relatively large.27,28,29,30 As we show

below, even the one-dimensional case with diamagnetic
LS state, which is the simplest realistic case, shows quite
rich behavior. In addition, the one-dimensional case al-
lows to obtain essentially exact results.

II. THEORY

We start from the Hamiltonian

H0 = −V
∑

〈ij〉

σiσj − B0

∑

i

σi − h
∑

i

Sz
i . (1)

The sum over 〈ij〉 counts all nearest-neighbor bonds once
and the eigenvalues of Sz

i are mi = −Si,−Si + 1, . . . , Si,
where Si = SLS (SHS) for σi = 1 (−1). V describes
an interaction that for V > 0 (V < 0) favors homoge-
neous (alternating) arrangements of LS and HS. At least
in a subset of known SCC’s this interaction is of elastic

origin.31 Recently, Khomskii and Löw15 have discussed
this interaction more carefully, showing that it can be
of either sign. We here approximate this interaction by
a nearest-neighbor term. 2B0 = ∆ > 0 describes the
energy difference between HS and LS and h is the phys-
ical magnetic field with g factor and Bohr magneton ab-
sorbed. The model so far is essentially equivalent to the
one considered in Ref. 32. This model is integrable. The
Hamiltonian H0 is diagonal in the basis of simultaneous
eigenstates of all Si · Si and Sz

i . In this basis

H0 = −V
∑

〈ij〉

σiσj − B0

∑

i

σi − h
∑

i

mi, (2)

where mi is the quantum number of Sz
i .33 For h = 0

we reobtain the Ising-type model introduced by Wajn-
flasz and Pick34 for magnetic molecular compounds and
by Doniach35 for lipidic chains. Here, each site can be
in two states characterized by σi like in the Ising model,
but the states are degenerate with degeneracies 2SLS + 1
and 2SHS + 1. It is known that the entropy change as-
sociated with the LS to HS transition is larger than pre-
dicted from these degeneracies.5,32 This is attributed to
the change in the vibrational properties between LS and
HS states and can be approximately taken into account
by effective degeneracy factors GLS(T ) and GHS(T ).5,32

The model can be rigorously mapped onto an Ising model
in a temperature-dependent effective field B.35,36 This
model has been treated in the mean-field approxima-
tion and with Monte Carlo simulations in two and three
dimensions.5 A related model for TlSr2CoO5 with next-
nearest-neighbor elastic interaction has recently been
studied by Monte Carlo simulations in two dimensions
and a number of stripe phases have been found.15

The physical magnetic field h was included by Gar-
cia et al.32 Their results can be obtained by a gener-
alized mapping onto the standard Ising model. To our
knowledge, the one-dimensional model suitable for tria-
zole compounds has not been treated before.
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We are interested in a model with an additional ex-
change interaction J 6= 0 between the magnetic ions. The
Hamiltonian (1) is generalized to

H = H0 − J
∑

〈ij〉

Si · Sj , (3)

where J > 0 (J < 0) corresponds to a ferromag-
netic (antiferromagnetic) coupling between the spins.
The antiferromagnetic case appears to be more realis-
tic since the interaction is due to superexchange.37 To
our knowledge, J has not been measured in SCC’s,
but it has been determined in very similar metal-or-
ganic complexes. It reaches 15 K and is indeed typi-
cally antiferromagnetic.27,28,29 Ab-initio calculations find
larger antiferromagnetic couplings, but are known to
overestimate the exchange interaction.30 On the other
hand, in compounds based on Prussian blue, large
ferromagnetic exchange interactions through CN− lig-
ands have been observed, leading to room-temperature
ferromagnetism.38 These experiments suggest that by
suitable choice of ligands the interaction parameters V
and J can be tuned to the same order of magnitude. It
should also be noted that longer-range exchange interac-
tions are exponentially suppressed and can be ignored.
The dipole-dipole interaction is of long range in an iso-
lated chain and might be the most important effect left
out here. However, if the chain is deposited on a metallic
surface, the dipole-dipole interaction becomes strongly
screened.

The full Hamiltonian H still commutes with the oper-
ators Si · Si. Thus the total spin at each site is still a
constant of motion. On the other hand, H does no longer
commute with Sz

i . In the case of Fe2+, which is the most
common magnetic ion in SCC’s, we have SHS = 2 and
SLS = 0 and a significant simplification occurs: For the
nearest-neighbor interaction considered here any low spin
partitions the chain into finite segments that do not in-
teract magnetically. (Note that since Si ·Si is a constant
of motion, there are no eigenstates containing superpo-
sitions of LS and HS states.) Thus there is a close re-
lation to the physics of finite spin chains. A low spin
also interupts the propagation of spin waves. A spin-
crossover chain could thus serve as a switchable filter for
spin waves. In more than one dimension SLS = 0 leads
to a less trivial percolation problem—for long-range or-
der to be present it is necessary but not sufficient for the
high spins to percolate.

In the following we restrict ourselves to SLS = 0. The
Hamiltonian can be written as

H = −V
∑

i

(σiσi+1 − 1) − B0

∑

i

(σi − 1)

− J
∑

i

Si · Si+1 − h
∑

i

Sz
i , (4)

where we have added a constant for convenience. Obvi-
ously, the energy of the pure LS state (σ = +1) vanishes.

The Ising-type operators σi all commute with the Hamil-
tonian H . Their eigenvalues ±1 are thus good quantum
numbers and the Hilbert space is a direct product of sub-
spaces for given {. . . , σi, σi+1, . . .}.

33

In each sector {. . . , σi, σi+1, . . .} the system consists of
chains of high spins separated by chains of low spins. The
pure HS and LS states are obtained as the obvious limits.
In Eq. (4) the LS chains do not contribute to the total
energy, except for their ends. The total energy in a sector
can thus be written as a sum over the energies of HS
chains of various lengths, including a contribution from
their ends. These HS chains do not interact magnetically
since SLS = 0.

We are interested in the ground state and thus consider
the lowest energy in each sector. The lowest energy in a
sector can be written as the sum over the ground-state
energies of non-interacting, finite HS chains. Note that
H commutes with the total spin of each finite HS chain
separately since these do not interact. The z-components
M of the total spins of all the finite chains are thus also
good quantum numbers. Let us denote the lowest energy
of a HS chain of length n with magnetic quantum number
M by e0

n(M), where |M | ≤ nSHS. We write

e0
n(M) = 4V + 2nB0 − hM + ∆e0

n(M), (5)

where the first term comes from the extra energy of the
change from HS to LS at the ends. The final term is the
lowest eigenenergy of the finite Heisenberg chain with
open boundary conditions with the Hamiltonian Hn =
−J

∑n−1

i=1 Si · Si+1. Here, S2
i = SHS(SHS + 1) for all

i = 1, . . . , n.

III. RESULTS AND DISCUSSION

For ferromagnetic coupling, J > 0, and magnetic
field h > 0 both the exchange interaction and the Zee-
man term prefer ferromagnetic alignment of spins. The
lowest-energy state thus has the maximum magnetic
quantum number M = nSHS for each chain. The ground
state of Hn for J > 0 is exactly the fully aligned state
with energy ∆e0

n(nSHS) = −(n − 1)JS2
HS. Thus for all

J ≥ 0:

e0
n(nSHS) = 4V + 2nB0 − nhSHS − (n − 1)JS2

HS. (6)

Now let us consider a sector {. . . , σi, σi+1, . . .} for which
the state consists of volume fractions pn of HS chains of
length n. The HS chains have to be separated by at least
one low spin. When counting this low spin with each HS
chain, the volume fractions become (n + 1)/n pn. Thus
the volume fractions must satisfy the constraint

∞
∑

n=1

n + 1

n
pn ≤ 1. (7)

The energy per site is

ǫ0 =
∑

n

pn

e0
n(nSHS)

n
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=
∑

n

pn

(

4V + JS2
HS

n
+ 2B0 − hSHS − JS2

HS

)

.(8)

We have to solve the linear optimization problem of mini-
mizing ǫ0 under the constraint (7). In the space of vectors
(p1, p2, . . .) the region allowed by Eq. (7) is a hyperpyra-
mid with apex at zero and the other corners at points
with pm = m/(m + 1) for one m and pn = 0 for n 6= m.
These are the points for which only chains of one single
length are present and have the maximum volume frac-
tion. This means that the finite HS chains are separated
by single low spins. Since the allowed region is convex,
the only possible solutions are its corners, except for spe-
cial choices of parameters. Thus either pn = 0 for all n
(LS state) or pm = m/(m + 1) for one m and all other
pn = 0. This strongly restricts the {. . . , σi, σi+1, . . .} that
can appear in any ground state. For the LS state, ǫ0 = 0,
whereas for the state with nonzero pn,

ǫ0 =
4V − 2B0 + 2JS2

HS + hSHS

n + 1
+ 2B0 − hSHS − JS2

HS.

(9)
Examination shows that there are only three possible
phases for J ≥ 0: (i) If 4V −2B0+2JS2

HS+hSHS > 0 and
2B0−hSHS−JS2

HS > 0 or 4V −2B0 +2JS2
HS +hSHS < 0

and 2V + B0 − hSHS/2 > 0 the ground state is the
LS state. (ii) If 4V − 2B0 + 2JS2

HS + hSHS > 0 and
2B0 − hSHS − JS2

HS < 0 the ground state has pn > 0
and all other pm = 0, for n → ∞, which corresponds to
the HS state, and the energy is ǫ0 = 2B0−hSHS−JS2

HS.
Note that the HS state appears for any values of V and h
for sufficiently large exchange interaction J . This is sim-
ilar to the exchange-induced Van-Vleck ferromagnetism
in rare-earth compounds.39 (iii) If 4V − 2B0 + 2JS2

HS +
hSHS < 0 and 2V + B0 − hSHS/2 < 0 the ground state
has p1 = 1/2 and all other pm = 0. This corresponds to
an alternating state of low and high spins. The energy is
ǫ0 = 2V + B0 − hSHS/2.

By using the LS/HS splitting B0 as our unit of energy,
we obtain a three-dimensional phase diagram in V/B0,
h/B0, and J/B0. The phase diagram is shown as the
upper, J ≥ 0, part of Fig. 8, below.

In the case of antiferromagnetic coupling, J < 0, there
is a competition between the exchange and Zeeman terms
in Eq. (4). Thus in principle finite HS chains of length n
can occur with any magnetic quantum number M . The
energy e0

n(M) of such a chain is given by Eq. (5). We
introduce volume fractions pn,M of HS chains of length n
with magnetic quantum number M . They must satisfy
the constraint

∞
∑

n=1

nSHS
∑

M=−nSHS

n + 1

n
pn,M ≤ 1. (10)

The energy per site is

ǫ0 =
∑

n,M

pn,M

(

4V − hM + ∆e0
n(M)

n
+ 2B0

)

. (11)

0 0.1 0.2 0.3 0.4 0.5
1/(n+1)

-4

-2

0

2

4

∆ε
n0 (M

) 
/ (

n+
1)

FIG. 1: (Color online). The lowest energies ∆e0
n(M)/|J |

of antiferromagnetic Heisenberg chains of length n for spin
SHS = 2 in sectors with open boundary conditions for fixed
total Sz quantum number M . The energies are normalized
by a factor 1/(n + 1) and shown as a function of 1/(n + 1),
where n+1 is the length of the chain counting one low spin per
chain needed to separate HS chains. Circles: Results from ex-
act Lanczos diagonalization. Squares: Results from DMRG,
see text. Equal colors correspond to equal M . For odd n the
energies for M = 0 (white), 1 (black), and 2 (red) are degen-
erate. The cross at 1/(n + 1) = 0 denotes the extrapolated
energy density −4.761248(1) of an infinite chain.45

Minimizing ǫ0 under the constraint is again a linear op-
timization problem. Except for accidental degeneracies,
the minima occur at the corners of the allowed parameter
region. Thus either pn,M = 0 for all n and M (LS state)
or pn,M = n/(n + 1) for one (n, M) and pn,M = 0 for all
others. Note that the period of the spin structure is then
n + 1. In the latter case the energy per site is

ǫ0 =
4V − 2B0 − hM + ∆e0

n(M)

n + 1
+ 2B0. (12)

∆e0
n(M)/|J | is the lowest energy of the finite antiferro-

magnetic Heisenberg chain with open boundary condi-
tions and the Hamiltonian H ′

n =
∑n−1

i=1 Si · Si+1 in the
sector with total Sz quantum number M . It is not pos-
sible to find these energies in analytical form. For suf-
ficiently small n, the Hamiltonian H ′

n can be diagonal-
ized numerically. However, the Hilbert space of H ′

n has
the dimension (2SHS + 1)n, which quickly becomes in-
tractable. We have calculated the energies up to n = 8
for all M using the Lanczos algorithm. The results for
∆e0

n(M)/|J |/(n+1) are shown in Fig. 1 as colored circles,
where identical colors denote the same values of M .

The energies for longer chains can be calculated
with excellent precision with a finite-chain DMRG al-
gorithm;40,41 for a detailed explanation of the algorithm
and its applications see Refs. 42,43. To obtain typically
seven-digit precision for the ground state energy per site,
we have kept up to M = 300 states in the reduced DMRG
Hilbert spaces and carried out three finite-system sweeps
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which was enough to ensure convergence. Note that
DMRG prefers open to periodic boundary conditions; in
the present application, this matches the physical situ-
ation. In standard DMRG applications to integer-spin
chains, end spins of length S/2 (i.e., a spin 1 at each
end for our case) are attached to eliminate the pecu-
liar boundary degrees of freedom and access bulk physics
directly.40,44 In the present calculation, these boundary
degrees of freedom are physical and hence no end spins
are attached.

The energies for lengths n = 9 through n = 49 as well
as n = 99 (to mimic the pure HS phase) are shown in
Fig. 1 by squares. (For M = nSHS−2 and M = nSHS−1
the results have been obtained by exact numerical diag-
onalization. For M = nSHS the exact analytical value
∆e0

n(nSHS)/|J | = (n − 1)S2
HS has been used.)

We first consider the case of vanishing magnetic
field, h = 0. Figure 1 shows that the state with
M = 0 has the lowest energy for any n. Then
ǫ0 = (4V − 2B0 + ∆e0

n(0))/(n + 1) + 2B0 is a sum of
∆e0

n(0)/(n + 1) and a linear function in 1/(n + 1). The
minimum of ǫ0 can only occur for n = 1, n = 2,
or n → ∞, since all other points lie above the dot-
ted straight lines connecting the corresponding points in
Fig. 1 (not obvious on this scale). The relevant energies
per site are thus determined by ∆e0

1/2 = 0, ∆e0
2/3 = 2J ,

and limn→∞ ∆e0
n/(n + 1) = 4.761248 J and have to be

compared to the LS energy ǫ0 = 0. The resulting phase
diagram is shown in Fig. 2. Note the appearance of a
dimer phase with n = 2. In this phase the energy in-
crease due to the HS-HS pairs (V < 0 prefers HS-LS
neighbors) is overcompensated by the energy decrease
due to the formation of spin singlets. Thus this phase is
stabilized by the large negative singlet formation energy
of Heisenberg spin pairs. Figure 1 shows that a similar
energy decrease is also found for the other even chain
lengths n = 4, 6, . . . but that it is not large enough to
stabilize these states as the ground state.

For general magnetic field h we have to take all pos-
sible magnetic quantum numbers M of the chains into
account. This is obviously impossible for the pure HS
phase. Instead, we have performed DMRG calculations
for chain length n = 99 for all possible magnetizations
M = 0, . . . , 198 and use them as a caricature of the HS
state. Since in the n = 99 state one spin in 100 is in the
LS state, we expect quantitative errors of the order of
1%. We check the errors quantitatively below.

The parameter space is again effectively three-dimen-
sional since we take B0 as our unit of energy. For each
set of parameters (V, J, h) we calculate the minimum en-
ergy densities for all states with n ≤ 49 as well as n = 99
from Eq. (12). The energy density of the LS state is
zero. Then the ground state is obtained by finding the
minimum energy. Figure 3 shows a series of phase di-
agrams in (V, h) space for fixed exchange interaction J .
Note that the lower edges of each diagram, i.e., h = 0,
are consistent with Fig. 2. We observe that the dimer
(n = 2) phase present at h = 0 is suppressed by the field,

−1 0 1
V/B

0

−1

−0.8

−0.6

−0.4

−0.2

0

J/
B

0

h = 0

singlet

singlets

FIG. 2: (Color online). Ground-state phase diagram of the 1D
spin-crossover model with SLS = 0 and SHS = 2 for vanishing
magnetic field, h = 0, and antiferromagnetic exchange inter-
action, J < 0. The dimer (n = 2) phase case is highlighted.
The heavy solid lines denote discontinuous transitions. The
various spin structures are indicated by cartoons (solid sym-
bols: HS state, open symbols: LS state); these should not be
overinterpreted—there is no long-range order.

as is expected since this phase is stabilized by the singlet
formation energy.

The phase boundaries involving the HS state (black)
are markedly curved, although the energy of each phase
is a linear function of the parameters V , B0, J , h so that
the phase boundaries should be straight. The explana-
tion is that the HS phase does not have constant magneti-
zation in the ground state. For optimized magnetization,
the ground-state energy in the HS sector is not linear
in the parameters. We come back to the ground-state
magnetization below.

For J <
∼ −0.6 the phase diagrams remain qualitatively

the same. The features are shifted to lower V and ex-
panded linearly in both the V and h directions. Letting
V , J , and h go to infinity while keeping their ratios fixed
corresponds to the limit B0 → 0, i.e., vanishing energy
difference between LS and HS states. In this limit we
choose |J | as our unit of energy, leaving two dimension-
less parameters V/|J | and h/|J |. The resulting phase
diagram is shown in Fig. 4.

Interesting behavior is seen in the triangular region
surrounded by phases with n = 1, n = 2, and the HS
phase, as shown in Fig. 4(b). Here, phases with HS chain
lengths n = 3, 5, 7, and 9 are found. We do not observe
any further phases. To understand why only odd chain
length n appear, we refer to the energy densities in Fig. 1:
For even n, the energy of the singlet (M = 0) state is
lower than expected from a linear fit, at least for the
small n relevant here, while for odd n it is higher (note
the white circles). Thus at zero magnetic field, even-n
states are preferred. As discussed above, only n = 2
actually appears as a ground state. On the other hand,
for even n, the energy of states with M ≥ 2 is higher



6

−2.0 −1.0 0.0 1.0 −1.0 0.0 1.0 −1.0 0.0 1.0

B
0

/
h

V B0/

0.0

0.0

2.0

2.0

1.0

1.0

0.0 −0.2 −0.4

−0.41 −0.42 −0.6

FIG. 3: Zero-temperature phase diagrams for the same model
as in Fig. 2, but in a magnetic field, for antiferromagnetic ex-
change interactions J/B0 = 0.0, −0.2, −0.4, −0.41, −0.42,
−0.6. The white area corresponds to the LS phase, the black
to the HS phase, approximated by a phase with n = 99, and
the gray areas correspond to n = 1, 2, 3, 5 (from light to dark).
All transition are discontinuous, the purely magnetic contin-
uous transition discussed below is not shown.

|
|

J
/
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FIG. 4: (a) Zero-temperature phase diagrams as in Fig. 3 in
the limit B0 → 0 (or V, J, h → ∞ with their ratios fixed).
The gray scale is the same as in Fig. 3. (b) Enlargement of
the left figure on a different gray scale. The values of n in the
various ground states are indicated.

than a linear fit, while for odd n it is lower (note, for
example, the red circles). Thus in a sufficiently large
magnetic field odd-n states are preferred. The fact that
the series of odd n is cut off at n = 9 is a result of
the detailed numerical values of energies in Fig. 1—for
larger n, the HS state happens to have the lower energy.
While we expect the appearance of only odd HS chain
lengths to be a robust feature of spin-crossover chains
with strong antiferromagnetic interaction, the restriction
to n ≤ 9 should thus be model dependent. For example,
inclusion of a next-nearest-neighbor elastic interaction or
a different integer value of SHS may change this result.

We next turn to the magnetic properties of the various
ground states. Figure 5 shows the magnetic quantum
number M of the finite HS chains and the magnetization
m in the ground states in the limit of large V , J , h.
The magnetization is defined as the magnetic quantum

−3.0 −2.0 −1.0 −3.0 −2.0 −1.0
0.0

2.0

1.0

| |JV /

|
|

J
/

h

M = 2

0

m

FIG. 5: Left: Density plot of the magnetic quantum number
M of the finite chains in the same parameter region as in
Fig. 4(a). Black corresponds to M = 0, white to maximum M .
The phases with odd n all have M = 2. Right: Magnetization
m = M/(n + 1) derived from the data in the left plot. Black
(white) corresponds to m = 0 (m = 1). The magnetization
of the fully polarized HS state, which does not appear in the
plot, would be m = SHS = 2.

number M per site, taking the separating low spins into
account, i.e.,

m =
M

n + 1
. (13)

Interestingly, the phases with odd n all have M = SHS =
2, including the n = 7 and n = 9 phases not re-
solved in Fig. 5. This of course corresponds to differ-
ent magnetizations m, as shown in the right-hand plot
in Fig. 5. To understand the special significance of the
value M = SHS = 2, we plot in Fig. 6 the local expec-
tation values of the spins, 〈Sz

i 〉, for each site of a HS
chain of length n = 9, obtained with DMRG. The plot
shows that for 0 < M ≤ SHS the chain can accomo-
date the finite spin by forming a Néel-type state. (For
an Ising chain, the state with M = SHS is clearly real-
ized by 〈Sz

i 〉 = (−1)i+1SHS.) For higher M this is no
longer possible and spins pointing in the “wrong” direc-
tion are reduced (a bulk magnon is excited), as seen in
Fig. 6. This costs exchange energy and it turns out that
such states are always higher in energy than competing
phases.

The dimer (n = 2) phase always consists of two-high-
spin singlets, M = 0. This shows that it is energetically
favorable to replace the dimer state by a state with odd n
or the HS state, instead of having M > 0 for the dimers.

Finally, we turn to the pure HS phase. At T = 0
the system is equivalent to an infinite antiferromagnetic
S = SHS chain. We thus expect the magnetization to
rise continuously with increasing magnetic field h and to
reach its maximum value m = SHS, i.e., full spin align-
ment, at a continuous phase transition. Since we approx-
imate the HS phase by the n = 99 phase, the continuous
increase is replaced by small steps in Fig. 5. The position
of this transition is determined by equating the energies
per site for M = nSHS and M = nSHS−1. From Eq. (12)
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FIG. 6: (Color online). Local expectation values 〈Sz
i 〉 for each

site of a HS chain of length n = 9 for various total magnetic
quantum numbers of the chain, M . The values have been
obtained by DMRG.

we thus obtain the critical field

hc = ∆e0
n(2n) − ∆e0

n(2n − 1), (14)

which is proportional to J and independent of B0 and V .
For n = 99 exact diagonalization yields hc ≈ −7.9980 J .
This can be compared with the exact result for an infinite
chain, which is easily found to be hc = −4JSHS = −8 J .
Thus our result for n = 99 is already very close. This also
gives an indication of the order of magnitude of errors.
By restricting the DMRG calculations to n < 100 we
make an error for the transition to full spin alignment
of the order of 0.03%. As another way to estimate the
errors, we determined the triple point between LS, HS,
and dimer (n = 2) phases in zero field and compared
the result to the “exact” triple point shown in Fig. 2.
The error is of the order of 0.2% for V and 0.1% for J ,
indistinguishable on the scale of the figure.

It is obvious to ask about the critical behavior close
to this continuous transition. We define the deviation of
the magnetization from its maximum by ∆m ≡ SHS−m.
Plotting ∆m2 vs. h close to hc (not shown) we find that,
apart from steps originating from the finite n = 99, ∆m2

is linear in hc − h so that the critical exponent of ∆m
with respect to the field h is mean-field-like, β = 1/2.

We also obtain spin correlations from the DMRG. Fig-
ure 7 shows spin-spin correlation functions for n = 99 for
two spins close to the center of the chain, where the infi-
nite chain should be well approximated. We first notice
the anomaly at M = 2. This is of the same origin as the
stabilization of M = 2 for small odd chain lengths, dis-
cussed above. It is thus a finite-size effect not present for
the true HS phase. Apart from this anomaly, the trans-

verse correlations 〈S+
i S−

j 〉 first grow with magnetic field
h or magnetization. This is the one-dimensional analog
of the spin-flop state in ordered antiferromagnets, where
the staggered magnetization is oriented perpendicularly
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5
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>
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n  =  99

FIG. 7: (Color online). Expectation value of the z-component
of the spins, 〈Sz〉, and spin-spin correlation functions at the
separation of |i − j| = 4 as functions of the total magnetic
quantum number M . Inset: Correlation function 〈S+

i S−

j 〉 as
a function of separation for three values of the total magnetic
quantum number M .

to the applied field. For large fields, the correlations de-
crease again since the spins are more and more forced
into the field direction. In the fully polarized state for
h ≥ hc the transverse fluctuations vanish.

As a summary, we show in Fig. 8 the three-dimensional
phase diagram. The continuous transition to full spin
alignment is indicated by the heavy solid outline. All
other surfaces are discontinuous transitions between
states with different chain length n. Horizontal cuts cor-
respond to the plots in Fig. 3. The vertical cut at h = 0
corresponds to Fig. 2.

To conclude, we have studied a model for spin-cross-
over compounds forming one-dimensional chains. We
consider spin quantum numbers appropriate for Fe2+

ions, which have a spin-0 LS and a spin-2 HS state.
The model includes elastic and exchange interactions
and an external magnetic field. We obtain the ground-
state phase diagram analytically for ferromagnetic or
zero exchange interaction and using the density-matrix
renormalization group (DMRG) for antiferromagnetic ex-
change. Besides a diamagnetic LS phase and a HS
phase equivalent to the usual Heisenberg chain we find
a number of more complex phases. For sufficiently
negative elastic interaction V we find an alternating
phase of low and high spins. In bulk, three-dimensional
SCC’s the corresponding checkerboard state with low and
high spins forming nearest neighbors has been observed
experimentally.13

For antiferromagnetic coupling, which is the more re-
alistic and more interesting case, we find a robust dimer
(n = 2) phase, which consists of spin singlets (M = 0)
formed by two high spins separated by single low spins.
This phase is stabilized by the relatively large energy
reduction due to singlet formation of two spins and



8

−3 −2 −1 0 1

0

1

2

3

−1

0

−1

0

B0/h

B
0

/
J

B0V /

FIG. 8: (Color online). Zero-temperature phase diagram of
the spin-crossover chain with SLS = 0 and SHS = 2. Positive
(negative) J/B0 corresponds to ferromagnetic (antiferromag-
netic) exchange interaction. The solid surfaces denote phase
transitions between different phases, which are indicated. The
phases with HS chain lengths n = 3, 5, . . . are hidden in this
view. All transitions are discontinuous, except for the contin-
uous transition to full spin alignment in the HS phase, marked
by the solid blue outline.

would thus be absent for an Ising exchange interaction,
−J

∑

i Sz
i Sz

i+1. Since this phase appears at zero and low

magnetic fields, it should be accessible experimentally.
As the magnetic field is increased, the dimers remain in
the singlet state until states with an odd number of HS
ions or the pure HS state become lower in energy, where-
upon the singlet dimer phase is destroyed in a discontin-
uous transition.

At higher magnetic fields we find a number of phases
consisting of finite chains of length n = 3, 5, 7, 9 of ions
in the high-spin state with total Sz quantum number
M = 2 separated by single ions in the diamagnetic low-
spin state. We argue that the succession of odd chain
lengths is a robust feature, while the restriction to just
these odd numbers is not.

We find that a model that contains the most impor-
tant ingredients of one-dimensional spin-crossover chain
molecules shows a rich ground-state phase diagram. The
model is related to various systems studied in recent
years, such as site-diluted spin models and finite anti-
ferromagnetic Heisenberg chains. Obvious questions for
the future concern the behavior at nonzero temperature
and of higher-dimensional models, in which percolation
plays an important role if the LS state is diamagnetic.
New physics beyond that of diluted spin models comes
into play since the dilution by LS ions is not quenched
disorder but a dynamical degree of freedom.
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44 U. Schollwöck and T. Jolicœur, Europhys. Lett. 30, 493

(1995).
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