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Abstract. We analyze the non-Abelian Read–Rezayi quantum Hall states on
the torus, where it is natural to employ a mapping of the many-body problem
onto a one-dimensional lattice model. On the thin torus—the Tao–Thouless (TT)
limit—the interacting many-body problem is exactly solvable. The Read–Rezayi
states at filling ν = k/(kM + 2) are known to be exact ground states of a local
repulsive k + 1-body interaction, and in the TT limit this is manifested in that
all states in the ground state manifold have exactly k particles on any kM + 2
consecutive sites. For M �= 0 the two-body correlations of these states also imply
that there is no more than one particle on M adjacent sites. The fractionally
charged quasiparticles and quasiholes appear as domain walls between the ground
states, and we show that the number of distinct domain wall patterns gives rise
to the nontrivial degeneracies, required by the non-Abelian statistics of these
states. In the second part of the paper we consider the quasihole degeneracies
from a conformal field theory (CFT) perspective, and show that the counting of
the domain wall patterns maps one to one on the CFT counting via the fusion
rules. Moreover we extend the CFT analysis to topologies of higher genus.
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1. Introduction

Microscopic wavefunctions have been instrumental for the understanding of the fractional
quantum Hall effect (FQHE) ever since Laughlin’s original work [1] back in 1983.
At Landau level filling fraction ν = 1/q, q odd, Laughlin’s construction shows why
an incompressible quantum liquid, with fractionally charged excitations, may form to
minimize the electron–electron repulsion by optimizing the short-range correlations as
two particles approach each other. The Moore–Read (MR) [2] and Read–Rezayi (RR)
states [3] provide a natural extension of this, where the wavefunctions vanish as clusters
of k + 1 particles are formed. The latter has filling fraction ν = k/(kM + 2), describing
fermions (bosons) for M odd (even).

Conformal field theory (CFT) plays a central role in the theory of the FQHE, as
it, for example, describes the edge theory and gives a method for the construction of
trial wavefunctions. The understanding of this connection was boosted by Moore and
Read with their seminal paper from 1991 [2], where they suggested a general CFT–FQHE
connection, and in particular showed that (at least) some FQHE wavefunctions can be
obtained from correlators in certain so-called rational CFTs. Not only did they reproduce
the Laughlin wavefunctions, but also put forward the so-called Moore–Read (aka pfaffian)
state which supports non-Abelian excitations. It was first suggested in [4] that this state
can describe the enigmatic state observed [5] at filling ν = 5/2. By now, there is ample
(numerical) evidence that this is indeed the case [6]–[8]. It is exciting that the first
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experimental steps towards determining the nature of the ν = 5/2 quantum Hall state
have recently been made [9].

Read and Rezayi [10] provided support for the suggestions that the k = 3, M = 1
RR state is underlying the QHE observed at filling ν = 12/5, but the amount of evidence
in this case is not as much as for the ν = 5/2 state. However, if this state does indeed
describe the ν = 12/5 state, it would open up the fascinating possibility of topological
quantum computation, as braiding of the non-Abelian excitations would be protected
from decoherence by topology and the braid group is rich enough, see, e.g., [11]. Recently,
another state, with the same non-Abelian structure as the MR state, has been proposed
to describe the ν = 12/5 QHE [12].

Bosonic RR states have also been predicted to describe the state of a rapidly rotating
Bose–Einstein condensate, in the regime where the rotation frequency is so high that the
vortex lattice (formed at moderate rotation rates) melts [13]. This system provides a
promising environment for these states as the extremely local potentials used to motivate
the RR states are more realistic in a dilute atomic Bose gas than in the electronic quantum
Hall system.

The Read–Rezayi states can be written as (see [14])

ΨRR = S

⎛
⎝

N/k∏
i1<j1

(zi1 − zj1)
2 · · ·

N/k∏
ik<jk

(zik − zjk
)2

⎞
⎠

N∏
i<j

(zi − zj)
M e−(1/4)

∑
i |zi|2, (1)

in the disc geometry. Here S symmetrizes over possible divisions of the particles into k
sets of equal size. As already discussed, these states are constructed as CFT correlators.
By using the operator product expansions of the fields creating the electrons, one can show
that these wavefunctions are exact ground states of certain local k + 1-body interactions.

On a torus, the topological properties of various QH phases will be manifest. A nice
exposition of this can be found in [15]. In particular, the one-dimensional nature of a
Landau level is explicit on the torus—a natural set of single-particle states exactly maps
the two-dimensional problem onto a one-dimensional lattice model, where all states will be
at least q-fold degenerate for states with filling fraction ν = p/q, and fractionally charged
excitations naturally appear as domain walls between degenerate ground states [16, 17].
Lately there has been considerable progress in understanding various phases of the QH
system in terms of the exactly solvable Tao–Thouless (TT) limit (corresponding to the
thin torus), using this mapping. It has been shown that this limit nicely accommodates
the gapped hierarchical (Abelian) [18]–[21], multicomponent liquids [22], as well as gapless
fractions [18, 19, 23].

In the present paper we extend earlier results [24, 25] obtained for non-Abelian FQHE
liquids in the TT limit, by considering the thin-torus limit of the Read–Rezayi states, in
the presence of excitations, by counting the number of TT states on the torus. State
counting for non-Abelian states has been considered before, and for the MR state the
complete results (on the sphere) appeared in [26]. The first results for the RR states
(again for the sphere) appeared in the original paper of Read and Rezayi, in which the
states were defined [3]. More general results, in terms of recursion relations, were obtained
by Gurarie and Rezayi [27] by exploiting the results of [28]. Explicit counting formulas
were obtained in [29]. More recently, Read [30] constructed an explicit set of wavefunctions
(building on the results of [31]), re-deriving the explicit counting of [29] in the process.
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The paper [30] also outlines the state counting on the torus, in terms of character formulas.
Subsequently, the quasihole states have been interpreted as Jack polynomials for negative
parameter [32, 33], and the orbital occupation numbers used in these two papers are the
ones we employ in this work. Our analysis, however, focuses on the domain walls, which
represent the excitations, and the main result is that the domain walls exactly reproduce
the structure of the fusion rules of the conformal field theory underlying the Read–Rezayi
states.

In particular we show how the number of inequivalent domain walls accounts for the
quasiparticle and quasihole degeneracies needed for non-Abelian statistics of these states.
We also explicitly show that this analysis maps one-to-one on the corresponding CFT
analysis of the bulk states and generalizes the counting rules to arbitrary genus.

In section 2, we will introduce the thin-torus limit of the Read–Rezayi states. States
without excitations will be considered first, giving rise to a set of degenerate ground states.
The elementary excitations are represented as domain walls between these ground states.
The counting of these domain walls will be presented in section 2.4. In section 3, we will
revisit this counting from a CFT point of view. We will show that the counting of the
domain walls can be mapped one-to-one on the CFT counting, which reveals that the
domain walls provide a particularly simple way of representing the fusion rules of CFT.

Some details of the counting are collected in several appendices. Appendix A deals
with the generalization of the results to arbitrary M (we assume M = 0 in the main text).
In appendix B we explain the connection with the S-matrix. Some of the details of the
calculation in section 3.2 are collected in appendix C. Finally, appendix D deals with the
generalization to arbitrary genus.

2. Tao–Thouless limit

In this section we describe the Tao–Thouless limit and calculate degeneracies in this
solvable limit.

2.1. One-dimensional description

The structure of a single Landau level on a torus was first worked out by Haldane [34].
Here we provide a simple version that makes the one-dimensional nature of a Landau level
explicit.

We consider a (flat space) torus with lengths L1, L2 in the x and y directions,
respectively. Consistent boundary conditions can be enforced when L1L2 = 2πNφ (in

units where � =
√

(�c/eB) = 1), where Nφ is the number of magnetic flux quanta
penetrating the surface. In Landau gage, A = Byx̂, the states

ψj = π−1/4L
−1/2
1

∑
m

ei((2π/L1)j+mL2)x e−(y+(2π/L1)j+mL2)2/2, j = 0, 1, . . . , Nφ − 1, (2)

form a basis of one-particle states in the lowest Landau level. ψj is quasiperiodic and
centered along the line y = −2πj/L1. This maps the Landau level onto a one-dimensional
lattice model with lattice constant 2π/L1. A basis of many-particle states is given
by |n0, n1, . . . , nNφ−1〉, where nj is the number of particles occupying site j. Due to
periodic boundary conditions, ni+Nφ

≡ ni. The N -particle problem at filling fraction
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ν = N/Nφ = p/q (p, q coprime) can be shown to be at least q-fold degenerate for any
translation-invariant interaction.

On the thin torus, the overlap between different single-particle states goes to zero,
and the interacting many-body problem becomes solvable [18]. For generic interactions,
the ground states are regular lattices and the lowest charged excitations appear as domain
walls between degenerate ground states. This limit has been termed the Tao–Thouless
limit [18, 19] since the exact ground state (for a repulsive two-body interaction) at ν = 1/3
in this limit coincides with the early attempt to explain the quantum Hall effect by Tao
and Thouless [35]. It is interesting to note that Anderson, already in 1983, noted that the
TT state has a finite overlap with the Laughlin state and he proposed that one can think
of the TT state as a ‘parent’ evolving into the Laughlin state as the interaction is turned
on [16].

In the following we will show that Read–Rezayi states have a simple manifestation
in this limit and that the counting of quasiparticle (and/or quasihole) states reduces to a
combinatorially simple problem.

2.2. Ground states

Before we study the quasiparticle/quasihole states, we will specify the different ground
state sectors. ‘Ground state’ will in this paper mean a state without quasiparticles and
quasiholes (which we will collectively call excitations). (These conventions used here
are adapted to the somewhat artificial k + 1-body interaction. In the physical situation
quasiparticles and quasiholes do not only come as excitations. They are also a necessary
part of the ground state when the system deviates from an exact filling fraction.)

We search for the thin-torus ground states for the k + 1-body interaction at filling
ν = k/(kM + 2). For a given k and M in the TT limit, ground states are those that fulfill
the rules

• any kM + 2 consecutive sites contain exactly k particles,

• the distance between two particles is at least M .

The first rule is a consequence of the k + 1-body interaction and the filling, and the
second rule can be understood from the two-body correlations of the Read–Rezayi states.
For M = 0, the above rules lead to the ground states (in a basis of occupation numbers
of the sites)

|k − l, l, k − l, l, k − l, l, . . .〉, l = 0, 1, . . . , k, (3)

i.e. they have a pattern with the unit cell �k − l, l�. For k = 2, M = 0 for example,
the possible ground states are |2020 · · ·〉, its translated sector |0202 · · ·〉, and |1111 · · ·〉.
For k = 3 and M = 1 one such ground state is |0111001110 · · ·〉. The unit cells of these
sectors are �20�, �02�, �11� and �01110�, respectively. For more examples, see table 1.
The sectors are topologically distinct since there is no local process that can transform
one sector into the other without passing through states of higher energy.

We can now easily reproduce the well-known ground state degeneracy on the torus,
i.e. the number of ground state sectors, by counting the number of different unit cells. Let
us assume that M = 0 and that the number of sites Nφ is even (and hence Ne = 0 mod k).
In that case, all the ground states (3) can be put on a torus (periodic boundary conditions),
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Table 1. Examples of ground state sectors in the TT limit. The dots denote
that one should complete with all the possible rigid translations of the presented
unit cells to get the full space of degenerate ground states and the corresponding
degeneracy (for 2Ne/k = 0 mod 2) to the right. The degeneracies for k even and
2Ne/k = 1 mod 2 are indicated in brackets and are given by unit cells of the kind
�11�, �1010�, �22�, etc, with the reduced periodicity (kM + 2)/2.

k M TT unit cells Degeneracy

1 2 �100�,... 3
2 0 �20�, �11�,... 3 (1)
2 1 �1100�, �1010�,... 6 (2)
2 2 �101000�, �100100�,... 9 (3)
3 0 �30�, �21�,... 4
3 1 �11100�, �11010�,... 10
4 0 �40�, �31�, �22�,... 5 (1)

so the degeneracy is k + 1. For k even, there is one state which can be put on the torus
even when Nφ is odd, namely |k/2, k/2, k/2, . . .〉. However, this is the only possibility,
so the degeneracy is 1. For arbitrary M (changing only the center-of-mass degeneracies),
one recovers the results that the degeneracy is (k +1)(kM +2)/2 when 2Ne/k = 0 mod 2,
while for 2Ne/k = 1 mod 2 (only possible for k even) the degeneracy is (kM + 2)/2.

2.3. Excitations as domain walls

Excitations are domain walls between different ground state sectors, as in |1110202 . . .〉.
At such domain walls the above rules are not satisfied. An isolated elementary excitation
is characterized by one string of kM +2 consecutive sites carrying k +1 or k−1 particles,
for quasiparticles or quasiholes, respectively. An example with k = 2, M = 1:

|11001100101010 · · ·〉, (4)

where the only string of kM + 2 = 4 sites that has deviating particle content is the string
marked in boldface. (Compare, for example, with the adjacent strings starting at the
sixth or the eighth site.) In this example, there is a domain wall between the ground
state sectors |1100 · · ·〉 and |1010 · · ·〉 giving a quasihole. We will throughout the paper
highlight the strings of deviating particle content in boldface.

To be able to compactly characterize states with domain walls we introduce the
following notation. A ground state sector of arbitrary length will be denoted by its unit
cell in between square brackets. The unit cell is extracted from the kM + 2 first sites of
the ground states. Thus, for k = 3, M = 0 we have

|030303 · · ·〉 → �03�
|121212 · · ·〉 → �12�
|212121 · · ·〉 → �21�
|303030 · · ·〉 → �30�.

(5)

A state with domain walls, i.e. with different sectors, is written as a sequence of such unit
cells. This is done by comparing each sector with the reference ground states. For k = 3,
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M = 0 this is illustrated for the last two sectors of the example state |A〉 below:

|A〉 = |2121211212121203 03 0302121 21〉 → �21� �12� �03� �12�

|0303030303030303 03 03030 30 303 · · ·〉 → �03�
|1212121212121212 12 12121 21 212 · · ·〉 → �12�.

(6)

This notation in terms of sectors does not specify the state completely, as is seen by
states |A〉 and |B〉 having the same notation;

|A〉 = |212121121212120303030212121〉 → �21��12��03��12�
|B〉 = |212122121212121303030212121〉 → �21��12��03��12� (7)

though the first domain wall in |A〉 is a quasihole and the first domain wall in |B〉, on
the other hand, is a quasiparticle. However, one can make the notation unambiguous
(up to the length of the intermediate sectors) by specifying the charge of each domain
wall (i.e. if it corresponds to a quasihole or quasiparticle). However, for the non-Abelian
structure this ambiguity is immaterial, wherefore the compact notation is useful for us.
Nevertheless, as we will see later, the constraint on the number of particles does depend
on whether we have quasiparticles, quasiholes or a mixture.

It is important to notice that not just any pair of sectors would give a domain wall that
corresponds to an elementary excitation. Again, we stress that an elementary excitation is
characterized by a single string containing k±1 particles for quasiparticles and quasiholes,
respectively. Taking k = 3, M = 0 as an example, starting from the sector |2121〉, the
only elementary excitations are given by the domain walls (given in both notations, with
the quasiholes on the left and the quasiparticles on the right)

|2121121212 · · ·〉 → �21��12� |2121221212 · · ·〉 → �21��12�

|2121203030 · · ·〉 → �21��30� |2121303030 · · ·〉 → �21��30�.

On the other hand, the domain wall |212103 · · ·〉 (i.e. �21��03� · · ·) is not of elementary
charge. In general we have for M = 0 (for M �= 0, see appendix A) that only the following
domain walls correspond to elementary excitations:

�k − l, l��k − l − 1, l + 1� �k − l, l��k − l + 1, l − 1� for 0 < l < k (8)

�k, 0��k − 1, 1� �0, k��1, k − 1�. (9)

The charge of the elementary excitations, for general M , is e∗ = ±e/(kM + 2) (the
charge of the particles is set to e). This can be determined by the Su–Schrieffer counting
argument [36]. Here we present an alternative way to derive the charge of the excitations,
which can be applied to general filling fractions ν = p/q (given the ground states), and
which does not require any particular number of quasiparticles/holes. There are in total
Nφ strings of kM +2 consecutive sites, one starting at each of the Nφ sites. In the absence
of excitations, the density within each string would be k/(kM + 2) particles per site and
the total charge of the ground state would be

eNe = Nφ × ek

kM + 2
.
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Figure 1. An example of a Bratteli diagram, here for those k = 3, M = 0, states
that has �21� as the starting sector. The arrows indicate which sectors one can go
to from a previous one to get a domain wall of elementary charge. The circles are
added just to guide the eye for the example discussed in the text. The sequences
in (7) would be represented by the path indicated by the dashed line.

In the presence of nqp quasiparticles and nqh quasiholes, on the other hand, each excitation
contributes with one string of deviating density and one has a total charge

eNe = (Nφ − nqp − nqh)
ek

kM + 2
+ nqp

e(k + 1)

kM + 2
+ nqh

e(k − 1)

kM + 2
. (10)

(Nφ−nqp−nqh) is the number of strings with the original ground state density. Rewriting
this expression we find

eNe = Nφ
ek

kM + 2
+ (nqp − nqh)

e

kM + 2
, (11)

from which one reads off the charge of the excitations:

e∗ = ± e

kM + 2
.

Note that (11) determines the number of flux quanta, which is integer. This gives a
constraint on the number of particles, quasiparticles and quasiholes.

2.4. Degeneracy in the presence of excitations

We will now calculate the degeneracy of the Read–Rezayi states in the presence of
excitations in the TT limit. For the nontrivial part of the calculation it is enough to study
the bosonic M = 0 case, because adding an overall Jastrow factor to the wavefunction
cannot change the degeneracy related to the non-Abelian statistics. The reasons for this
from the thin-torus point of view are explained in appendix A.

Concentrating on the case M = 0 from now on, the degeneracy of the general state
containing nqp elementary quasiparticles and nqh elementary quasiholes is given by the
number of distinct sequences of n = nqp +nqh domain walls as in the examples to the right
in (7). Such sequences can be represented by Bratteli diagrams as in figure 1, where the
arrows stand for possible domain walls of elementary charge according to (8). In section 3
we will see that the same structure appears from the CFT perspective.

Let us consider the simple example of figure 1. The l designate the levels in the
diagram. For M = 0 each level can be characterized by one sector. From the diagram
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we infer that, for n = 3 domain walls, there is no sequence of sectors leading back to the
starting sector �21�. (Note that ending with the same sector would impose Nφ = even.)
However, there are three paths from �21� at n = 0 to its translated sector �12� at n = 3.
(All the allowed paths between the two circles.) By terminating �12� in the middle of its
unit cell (hence Nφ = odd) as done in (6), periodic boundary conditions can be fulfilled.
Other states with three domain walls and Nφ odd can be found by starting with any of
the other sectors �30�, �12� or �03� and drawing the same kind of diagram. With the
choice �12� the result will, of course, again be three paths, whereas starting with �30�
and hence terminating with �03� (or vice versa) gives only one. The torus degeneracy
(denoted by td) for Nφ = odd, k = 3 and M = 0 is the sum of all different possibilities
for n = 3 domain walls, resulting in td = 8. For Nφ = even, on the other hand, td = 0 in
this case.

These calculations can be formalized by introducing the off-diagonal (k +1)× (k +1)
adjacency matrix N1 with (N1)ij = δi,j+1 + δi,j−1; i, j = 0, . . . , k. It readily follows that
the number of distinct paths d(k, n, l1, l2) starting at level l1 and terminating at level l2 via
n domain walls is given by the matrix element of the nth power of the adjacency matrix:

d(k, n, l1, l2) = (Nn
1 )l1l2 . (12)

The total degeneracy is given by the sum of all allowed paths that also are compatible
with the periodic boundary conditions. When the number of sites, Nφ, is even, these
paths are the ones with l1 = l2, and when Nφ is an odd number, they are the ones that
connect level l1 with its complementary level l2 = k− l1. Combining this we find the total
degeneracy to be

td(k, M = 0, n, δ) =
∑
paths

d(k, n, l1, l2) = Tr(Nn
1B

δ). (13)

Here δ = 0 when the sequence returns to its initial level, i.e. l2 = l1 (Nφ even) whereas
δ = 1 when the sequence terminates at the complementary level l2 = k− l1 (Nφ odd). The
off-diagonal permutation matrix (B)ij = δi,k−j; i, j = 0, . . . , k connects the complementary
levels.

For M = 0, (11) yields Nφ = (2Ne + nqh − nqp)/k, thus δ = (2Ne + nqh − nqp)/k
mod 2. However, M only affects the center-of-mass degeneracy, hence this expression for
δ holds generically (see also appendix A). Thus, for general M , we find

td(k, M, n, δ) =
kM + 2

2
Tr(Nn

1B
δ), (14)

with δ = (2Ne + nqh − nqp)/k mod 2. For odd k one can also write δ = n mod 2 (obvious
from inspection of the pertinent Bratteli diagrams) and hence replace Bδ in (14) by Bn

since B2 = 1. For even k one can insert domain walls only in pairs, which the result (14)
captures by giving td = 0 for odd n.

We arrived at this formula for the degeneracy of the Read–Rezayi states on the
thin torus by considering the simple picture of domain walls representing the elementary
excitations. As we will see in section 3, this formula exactly reproduces the counting
formula one obtains by using more sophisticated conformal field theory methods, which
were used to define the Read–Rezayi states. We will also show how the trace in (14) can
be evaluated, with the result given in (31).

doi:10.1088/1742-5468/2008/04/P04016 9

http://dx.doi.org/10.1088/1742-5468/2008/04/P04016


J.S
tat.M

ech.
(2008)

P
04016

Degeneracy of non-Abelian quantum Hall states on the torus: domain walls and conformal field theory

It is, however, instructive to consider a few simple examples explicitly, which can
be obtained by evaluating the trace. We will compare these torus degeneracies with the
degeneracies on the plane5, namely pd(k, M, n, δ = 0) = d(k, n, 0, 0) and pd(k, M, n, δ =
1) = d(k, n, 0, k):

td(2, M, n, δ) =
2M + 2

2
(2n/2+1 + (−1)δδn,0), pd(2, M, n, δ) = (2n/2 + (−1)δδn,0),

(15)

td(3, M, n) =
3M + 2

2
2(Fn−1 + Fn+1), pd(3, M, n) = Fn−1, (16)

td(4, M, n, δ) =
4M + 2

2

(
2
(
3n/2 + (−1)δ

)
+ δn,0

)
,

pd(4, M, n, δ) =
(
(3n/2−1 + (−1)δ)/2 + δn,0/3

)
,

(17)

where it is assumed that n is even for even k. Fn are the Fibonacci numbers, Fn =
Fn−1 + Fn−2, with the initial conditions F0 = 0 and F1 = 1.

In general, one can write the torus degeneracies in terms of recursion relations.
Taking k = 5, M = 0 as an example, one finds the following result: td(5, 0, n) =
td(5, 0, n− 1) + 2td(5, 0, n− 2)− td(5, 0, n− 3), with the initial conditions td(5, 0, 0) = 6,
td(5, 0, 1) = 2 and td(5, 0, 2) = 10.

3. Counting from a conformal field theory perspective

In this section, we will show that there is a very close connection between the counting
of the states on the thin torus and conformal field theory. We will do this by performing
the counting in a conformal field theory setting in a rather (perhaps overly) explicit way.
This section is written for an audience which is not too familiar with conformal field
theory, and would like to understand some of the ideas underlying the state counting
by making use of CFT techniques. As a remark for the experts, one could express the
results directly in terms of the modular S-matrix, which diagonalizes the fusion rules [38].
However, doing the calculation in a more explicit way nicely reveals the connection with
the thin-torus limit. This also has the advantage that we can easily deal with the case
δ = 1 (see the previous section), which is more complicated in terms of the S-matrix. In
appendix B we will make some general remarks about expressing the counting in terms
of the S-matrix.

3.1. General remarks

We will start by explaining the origin of the degeneracy on the plane6 and torus in general
terms, before going into the details of the specific case at hand. The conformal field theory,
which can be used to describe (or define) quantum Hall states, contains a set of (primary)

5 The results for the plane were also given in [37], a nice paper in which the braid properties of the RR quasiholes
are calculated.
6 The results on the sphere are the same, if one considers localized excitations. In the numerical studies of
quantum Hall states on the sphere, this is not the case if one only fixes the flux, number of electrons and their
interaction. In this case, the counting is more complicated, see, for instance, [29].
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Figure 2. Graphical representation of the fusion rule.

Figure 3. Fusion of the three particles a, b and c.

fields φa, which one can think of as the creation operator of particles of type a. In order
to be a consistent theory, there has to be an ‘identity’ particle (the vacuum). In addition,
for each particle a, there has to be a dual (or anti-) particle, which we denote by ā.
As a simple example, we consider the description of the ν = 1/3 Laughlin state. This
theory contains three particle types; φ0, φ1 and φ2, with charges 0, e/3 and 2e/3. One
can combine two particles with charge e/3 into one particle with charge 2e/3 by bringing
them close together, or in other words, by ‘fusing’ the two particles. In taking an electron
completely around any of the three types of particles, one does not pick up any nontrivial
phase. In this sense, the electrons are trivial and correspond to the ‘identity’ sector.
Thus, in this theory, charge is defined modulo e. We can now specify the rules stating
how particles can be combined, the so-called fusion rules. In this case, they are simply
given by φi × φj = φi+j mod 3.

The fusion rules in an Abelian theory are of the form φa × φb = φc. However, fusing
two particles in a non-Abelian theory in general gives more than one possible result. This
possibility lies at the heart of the degeneracies studied in this paper. In general, the fusion
rules can be written as

φa × φb =
∑

c

(Na)b,cφc, (18)

where the integer (Na)b,c is the number of times φc appears in the fusion of the fields φa

and φb (note that a more conventional notation would be N c
a,b). In this paper, we only

consider theories for which (Na)b,c = 0, 1. In this case, it is easy to represent the fusion
rules in a graphical way. The particles are represented by lines, which are labeled by the
particle type. The ‘graph’ in figure 2 means that two particles of type a and b can fuse
to a particle of type c. The fusion of more than two particles is represented similarly. For
instance, fusing three particles a, b and c to a particle of type d, namely7

(φa × φb) × φc =
∑
d,e

(Nb)a,e(Nc)e,dφd (19)

is shown in figure 3. Note that in a non-Abelian theory, there can be more than one
consistent way of labeling this graph, i.e. the label e can take more than one value.

7 One can also first fuse particle b with c, and the resulting particle with a. Requiring that the two results are
the same gives the associativity condition on the fusion matrices.
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Figure 4. The connection between the labelings of the fusion graph and the paths
on a Bratteli diagram. The labels {li} on the fusion graph correspond to the bold
path on the Bratteli diagram.

Figure 5. The number of consistent labelings {b, b, ai} of this graph is the torus
degeneracy.

After these general remarks, we will now focus on the Read–Rezayi states, but leave
the details for the next section. Fusing n quasiholes, which we will denote by φ1, leads to

φ1 × φ1 × · · · × φ1 =
∑
{ai}

(N1)1,a1(N1)a1,a2 · · · (N1)an−2,cφc = (Nn−1
1 )1,cφc. (20)

As we will show in the following section, the matrix N1 describing the fusion of the
quasiholes (or quasiparticles) in the Read–Rezayi states is exactly the same matrix
describing the possible domain walls between the different sectors. Thus, the rules for
domain walls exactly reproduce the fusion rules associated with the Read–Rezayi states!
This observation lies at the heart of the close connection between the Tao–Thouless states
and (the combinatorics of) conformal field theory.

To make this connection more concrete, we consider the degeneracy of the states with
n quasiholes on the plane. In general, one has to count the number of different ways
in which one can fuse all the fields to the identity. This condition is the non-Abelian
generalization of charge neutrality. Taking the case k = 3, with n = 6 quasiholes as an
example, this degeneracy is given by the number of labelings of the fusion graph on the
left in figure 4. Each possible labeling of this graph uniquely corresponds to a path on
the Bratteli diagram on the right.

On the torus, the situation is slightly different. In this case, one can create a particle–
hole pair b and b̄ and take one of them, say b, around one of the handles of the torus.
Then, one could successively fuse all the n quasiholes with the particle b, and finally
annihilate the resulting particle with b̄. Following this logic, the degeneracy on the torus
(in the case that δ = 0, see the previous section) is given by the number of labelings of
the graph of figure 5. Because all the possible particles b are self-dual (as explained in the
following section), it follows that, to obtain the degeneracy on the torus, one has to count
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all the paths on the Bratteli diagram, which begin and end at the same value of l, see
figure 4. Thus, the torus degeneracy (in the case δ = 0) is given by

∑
l(N

n
1 )l,l = Tr(Nn

1),
i.e. equation (13). Once again, we see that the structure of the domain walls in the thin-
torus limit precisely reproduces the results obtained by using the fusion rules. Thus, one
can interpret the domain walls as a very elegant representation of the fusion rules.

3.2. Counting of the Read–Rezayi states on the torus

We will now move on to the details of the counting of the torus degeneracy of the Read–
Rezayi states in the presence of quasiholes (note that we could also consider quasiparticles
without additional complication). We will use the fact that the operators creating the
electrons and the quasiholes can be written in terms of fields of the Zk parafermion theory
(see [39]) in combination with a vertex operator, constructed from a compactified chiral
boson. In fact, this is the way these states were originally constructed [3]. The vertex
operator is purely Abelian and does not contribute to the degeneracy associated with the
quasiholes, so we will concentrate on the parafermion part of the theory for now. Of
course, the chiral boson will play a role in the center-of-mass degeneracy later on.

We will think of the Zk parafermion theory in terms of the su(2)k/u(1)2k coset theory.
Hence, the parafermion fields Φl

m are labeled by an su(2) label l, which takes values
l = 0, 1, . . . , k and a u(1) label m, taking values m = 0, 1, . . . , 2k − 1. Because the u(1)

theory is at level 2k, or radius
√

2k, the label m is defined modulo 2k, i.e. we have the
following identification:

Φl
m ≡ Φl

m+2k. (21)

Furthermore, from the coset construction, it follows that the labels l and m have to
be ‘compatible’, which in the case at hand means that l + m = 0 mod k. Finally, the
requirement that the coset theory is modular yields the following field identification [40]:

Φl
m ≡ Φk−l

m+k. (22)

From this it follows that the Zk theory has k(k + 1)/2 primary fields, and the fusion
rules of the theory are determined by the fusion rules of the su(2)k theory which take the
following form:

Φl1
m1

× Φl2
m3

=

min(l1+l2,2k−l1−l2)∑
l3=|l1−l2|

Φl3
m1+m2

with l3 = l1 + l2 mod 2. (23)

The parafermion fields ψi, with i = 0, 1, . . . , k − 1, are given by Φ0
2i ≡ Φk

2i−k. Their
conformal dimension is hψi

= i(k − i)/k and they have Abelian fusion rules ψi1 × ψi2 =
ψi1+i2 . The spin fields σi ≡ Φi

i have scaling dimension hσi
= i(k − i)/(2k(k + 2)).

We can now specify the operators creating the electrons and (elementary) quasiholes
for the Read–Rezayi states [26]. For convenience, we give the explicit form of these
operators for the Moore–Read pfaffian state (k = 2) on the right, by using the operators
ψ and σ of the Ising CFT:

Vel(z) = Φ0
2(z) ei

√
(kM+2)/kϕc(z), Vel,mr(z) = ψ(z) ei

√
M+1ϕc(z), (24)

Vqh(w) = Φ1
1(w) ei/

√
k(kM+2)ϕc(w), Vqh,mr(w) = σ(w) ei/

√
4(M+1)ϕc(w), (25)
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Figure 6. The number of consistent labelings of this graph is the torus degeneracy.

where ϕc is a chiral boson, which creates the charge of the electron and quasihole. From
the point of view of the state counting, one can write the operator creating quasiparticles in

the MR state (and similarly in the RR states) as Vqp(w) = σ(w) e−i/
√

4(M+1)ϕc(w), though
this operator would not give sensible wavefunctions. Nevertheless, this operator can be
modified in such a way to give explicit wavefunctions in the presence of quasiparticles [41].

The wavefunctions of the Read–Rezayi states can be expressed in terms of correlators
of the operators Vel and Vqh:

ΨRR = 〈Vel(z1) · · ·Vel(zNe)Vqh(w1) · · ·Vqh(wnqh
)Obg〉, (26)

where Obg is a background operator ensuring u(1)-charge neutrality. The zi and wi are
the (complex) positions of the electrons and quasiholes, respectively. The form of the
wavefunctions without quasiholes was first given in [3]. To obtain the wavefunctions for
an arbitrary number of quasiholes is hard, but for four quasiholes (in which case there are
two conformal blocks), they were explicitly calculated in [42].

To obtain the degeneracy of the Read–Rezayi states on the torus, in the presence
of quasiholes, we have to count the number of consistent labelings of the fusion graph
shown in figure 6. The solid lines numbered 1, . . . , nqh represent the spin field Φ1

1, which
is associated with the quasiholes. The dashed lines represent the electrons and correspond
to the field Φ0

2. The labels ai and b have to be chosen consistently with the fusion rules.
The lines ‘connecting’ the dashed lines representing the electrons do not have a label,
because they are completely determined by the fusion rules. Fusing an electron with an
arbitrary particle always gives a unique result. We will concentrate on the bosonic M = 0
case first. So, we are dealing with the su(2)k theory, which has k + 1 fields that are all
self-dual, i.e. a = ā, or in other words, the fusion rules are of the form a × ā = 1 + · · ·.
This implies that the label b in figure 5 can take k + 1 different values.

Because we will be considering the insertion of electrons, which are described by
descendent fields (namely, of the identity), it turns out that the full counting is most
easily done in terms of the parafermion fields. This also allows us to deal with the case
δ = 1 as well. In terms of the parafermions, the possible labelings of b are Φl

l mod 2, with
l = 0, 1, . . . , k. Modulo the chiral boson factors, which do not affect the counting, these
fields are self-dual. This implies a constraint on the number of quasiholes and electrons.
Namely, the u(1) labels of all the inserted fields have to sum to zero, modulo 2k. Thus,
naively one would get the constraint that 2Ne + nqh = 0 mod 2k. However, by making
use of the field identification (22), we actually find that consistent labelings are possible
when 2Ne + nqh = 0 mod k, which is precisely the condition that the number of flux
quanta is an integer. From this condition, it follows that, for k even, nqh also has to be
even.
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We continue by focusing on the su(2) label l of the parafermion fields. Fusing a field
with a quasihole will change this label by one, i.e. it flips the parity

Φ1
1 × Φl

m = Φl−1
m+1 + Φl+1

m+1, (27)

where the first and second fields on the right-hand side are present only if l − 1 ≥ 0 or
l+1 ≤ k, respectively. The corresponding fusion matrix is given by (N1)b,c = δb,c−1+δb,c+1,
where b, c = 0, 1, . . . , k. The only other way to change the label l is by making use of the
field identification (22). This will only change the parity of the label l in the case that k is
odd. Fusing with an electron, namely Φ0

2, does not change l. Because all the fields Φl
l mod 2

are self-dual, it follows that b = b̄. Thus, if b takes the value Φl
l mod 2, we find the condition

that, after fusing this field with all the nqh quasiholes, and a possible application of the
field identification (22), we should end up with a parafermion field with the su(2) label l.
This field should be fused with the right number of electrons, such that the resulting field
is b̄. In this way, we find the consistent labelings of the graph in figure 6. Note that the
number of electrons is determined by the relation 2Ne + nqh = 0 mod 2k when the field
identification is not used (this corresponds to the case δ = 0 in the previous section), or
2Ne + nqh = k mod 2k, when it is (i.e. δ = 1). Note that there are combinations of the
number of electrons and quasiholes for which neither of these conditions is satisfied. In
those cases, no states exist.

Let us focus on the case 2Ne+nqh = 0 mod 2k first, i.e. we do not make use of the field
identification. This can occur for k odd and nqh even, or when both k and (2Ne + nqh)/k
are even. In both cases, we fuse with an even number of quasiholes, from which it follows
that there is a parafermion field with label l in the possible fusion outcomes.

We will now explain the connection between the labelings of the graph in figure 6 and
the number of paths on the Bratteli diagrams given in section 2.4. Let us say we start
with a field Φl

m. Fusing with a quasihole, or Φ1
1, can only give two possible results, namely

the ‘neighboring’ fields Φl−1
m+1 and Φl+1

m+1, which are the possibilities for the intermediate
label a1. In the Bratteli diagram, this corresponds to the two possible directions, starting
from level l (assuming that 0 < l < k). Repeating this, one finds the correspondence we
were after.

Recall that we denote the number of paths on the level k Bratteli diagram, starting
at l1 and ending, after fusing nqh quasiholes, at l2 by d(k, nqh, l1, l2). This number is given
by (N

nqh

1 )l1,l2 . The number of fusion paths in the case at hand is given by d(k, nqh, l, l).
To obtain the degeneracy on the torus, we have to sum over all possible values of b or,
in other words, l, so the degeneracy is given by

∑k
l=0 d(k, nqh, l, l). In other words, the

total number of states is given by the trace of the nqhth power of the fusion matrix N1,
or equivalently by the sum of all eigenvalues raised to the power nqh. In appendix C,
it is shown that the eigenvalues in this case are given by 2 cos((l + 1)π/(k + 2)), with
l = 0, 1, . . . , k. So, in the case that 2Ne +nqh = 0 mod 2k, we find that the number of nqh

quasihole states on the torus is given by

k∑
l=0

(
2 cos

(
(l + 1)π

k + 2

))nqh

. (28)

Let us now consider the case 2Ne + nqh = k mod 2k, where we do make use of the
field identification (22). This case can occur when both k and nqh are odd or when k is
even and (2Ne +nqh)/k is odd. When both k and nqh are odd, we need to make use of the
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field identification, because otherwise no parafermion field with su(2) label l is present in
the fusion of the field b and the quasiholes. When k is odd, but (2Ne +nqh)/k even, using
the field identification does not change the parity of l, so after the field identification, the
field with label l will be present. In the Bratteli diagram, the label l occurs at ‘level’ l.
However, after using the field identification, the ‘level’ at which the label l occurs is k− l.
Thus, to obtain the torus degeneracy in the case the field identification is used, we need
to know the number of paths on the Bratteli diagram which start at l, and end at k − l,
and sum over them, i.e.

∑k
l=0 d(k, nqh, l, k − l).

In appendix C, we will explain how to calculate this sum and here we will simply
quote the result:

k∑
l=0

(−1)l

(
2 cos

(
(l + 1)π

k + 2

))nqh

. (29)

The only difference with formula (28) is the additional sign, which can be explained
as follows. In this case, we have an odd number of flux quanta. In transporting one of
the particles of the particle–hole pair around one of the handles of the torus, one can pick
up a sign, which happens in the case that b corresponds to a field with an odd label l.

The results in (28) and (29) are easily combined into one equation by observing
that the additional sign only occurs for the ‘odd’ representations in the case that
Nφ = (2Ne + nqh)/k is odd, thus

td(k, M = 0, nqh, Ne) =
k∑

l=0

(−1)l(2Ne+nqh)/k

(
2 cos

(
(l + 1)π

k + 2

))nqh

. (30)

To obtain the torus degeneracy for arbitrary M , we note that the only thing that
changes is the possible values of b in the graph in figure 5. One can show that this
gives rise to an additional factor of (kM + 2)/2. Thus, we find (taking the possibility of
quasiparticles into account as well)

td(k, M, nqh, nqp, Ne) =

(
kM + 2

2

) k∑
l=0

(−1)l(2Ne+nqh−nqp)/k

(
2 cos

(
(l + 1)π

k + 2

))nqh+nqp

.

(31)

The results presented here for the torus can be generalized to surfaces of arbitrary
genus g. These results are presented in appendix D, with the main result being (D.1).

4. Conclusions and outlook

We considered the thin-torus limit of the Read–Rezayi states. The ground state
degeneracy on the torus is easily obtained in this limit. Elementary excitations correspond
to domain walls between the various ground states. The problem of finding the number of
degenerate states in the presence of elementary excitations translates to the combinatorial
problem of finding all the domain walls of elementary charge. This particularly simple
picture exactly reproduces the results one obtains by studying the fusion rules of the
conformal field theory underlying the Read–Rezayi states. We provided explicit counting
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formulas for the degeneracy of the RR states on the torus. For completeness, we also give
the results for surfaces of arbitrary genus.

The connection between the counting of domain walls and the fusion rules of the
su(2)k conformal field theory describing the Read–Rezayi states can easily be extended to
su(n)k. The labels of the ground states correspond one-to-one to the extended labels of
the representations of the su(n)k affine Lie algebra. The domain walls corresponding to
quasiholes and -particles are interpreted as fusions with the representations ω1 and ωn−1,
respectively. That the elementary domain walls correctly reproduce these fusion rules is
a consequence of the Littlewood–Richardson rule.

In [30] Read comments about extending the counting of quasihole states on the sphere
to the torus, by making use of a character formula obtained by Warnaar [43]. In this
approach, the positions of the quasiholes is not fixed and non-elementary quasiholes are
considered as well. It would be interesting to investigate the connection between these
two different problems.
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Appendix A. Higher M

Increasing M to M → M + 1 corresponds to attaching one Jastrow factor, i.e. to push
particles away from each other. In the TT limit one should choose the term in the Jastrow
factor that gives the particles the maximal spread. Up to an overall translation one has
the following one-to-one correspondence: for the transition between M = 0 and 1 one has
(i, j ≥ 0)

|i1, j1, i2, j2, . . .〉M=0 ↔ | 11 · · ·1︸ ︷︷ ︸
i1

0 11 · · ·1︸ ︷︷ ︸
j1

0 11 · · ·1︸ ︷︷ ︸
i2

0 11 · · ·1︸ ︷︷ ︸
j2

0 · · ·〉M=1. (A.1)

The mapping applies for all M , for M > 0 resulting in the simple rule that every 1
in the pattern is replaced by 10 when increasing M by one. For example, with k = 3:

|10110 10110 · · ·〉M=1 ↔ |10010100 10010100 · · ·〉M=2. (A.2)

In such a mapping domain walls of elementary charge are mapped to domain walls
of elementary charge. Of course the absolute value of the charge of the domain wall will
change. Hence, every state with quasiparticles and quasiholes for some higher M can
(up to an overall translation) be one-to-one mapped to an M = 0 state with the same
sequence of quasiparticles and quasiholes. The only change in the degeneracy is that
the center-of-mass part of the degeneracy—related to the overall translations of a state—
goes from kM + 2 to 2. The Bratteli diagrams will have the same topological structure
(compare figures A.1 and 1). A state keeps the same path in the diagram under the
mapping and consequently the value of δ does not change. Hence the non-Abelian part of
the degeneracy counting will be the same. Note that for M > 0 the sectors within a level
get shuffled around with translated siblings and therefore, in contrast to M = 0, the levels
can no longer be labeled by specific unit cells. Note also that for M > 0 a domain wall
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Figure A.1. A Bratteli diagram for k = 3 and M = 1 for sequences of
quasiholes. Note how the ground states within each level are shuffled around
among translated siblings. Note also that, as for M = 0, each level l1 has
a complementary level l2 = k − l1 with translated siblings. For sequences of
quasiparticles the structure of the diagram will be the same, but the sectors will
follow each other in a different order.

no longer has the quasiparticle/quasihole ambiguity. The domain wall [01101][01110] can
only be an elementary quasiparticle, not also an elementary quasihole. This means that,
for quasiparticles, the sectors within each level in a Bratteli diagram get shuffled around
in a different order compared to the same Bratteli diagram for quasiholes.

As for M = 0, the degeneracy formula (14) requires δ = 0 when the sequences have to
return to the initial level in the diagram (l2 = l1), whereas δ = 1 is needed for the sequences
which have to end with the complementary level (l2 = k− l1). Because increasing M for a
given state neither changes the structure of the state in terms of whether one needs δ = 0
or 1, nor changes the number of particles, quasiparticles and quasiholes, respectively, we
have that δ = (Ne + nqh − nqp)/k mod 2 must apply also for M �= 0. On the other hand,
the equation δ = Nφ mod 2 applying for M = 0 changes to δ = Nφ − MNe mod 2.

Appendix B. Using the S-matrix to count conformal blocks

The material presented in this section is standard (see, for instance, [44]), but is included
for completeness. The Verlinde formula [31] relates the fusion rules of the modular S-
matrix in the following way. Let (Na)b,c denote the number of times the operator φc

appears in the fusion product of φa and φb, and Sa,b the modular S-matrix. Then

(Na)b,c =
∑

d

Sb,dSa,dS
∗
c,d

S1,d
, (B.1)

where the sum is over all fields and 1 denotes the identity field. In other words, the
S-matrix diagonalizes all the fusion matrices Na simultaneously; the eigenvalues of Na

are (λa)d = Sa,d/S1,d, where d is any primary field:
∑
b,c

S∗
b,d(Na)b,cSc,e =

Sa,d

S1,d

δd,e. (B.2)

Note that S is unitary and symmetric.
First, we will apply this result to count the number of conformal blocks of the fields

φi, i = 1, . . . , n on the plane. This number is given by the number of labelings, consistent
with the fusion rules, of the graph given in figure B.1, namely

#g=0 =
∑
{ai}

(Ni1)1,a1(Ni2)a1,a2 · · · (Nin−1)an−2, an−1(Nin)an−1,1.
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Figure B.1. The number of consistent labelings {ai} of this graph gives the
number of conformal blocks on the plane.

Figure B.2. The number of consistent labelings of this graph gives the degeneracy
of a genus g surface.

Inserting the Verlinde formula (B.1), and first performing the sum over the ai, followed
by the sums coming from (B.1), we obtain

#g=0 =
∑

a

Si1,aSi2,a · · ·Sin,a

(S1,a)n−2
. (B.3)

We can now count the number of labelings on the graph in figure B.2, which will give
the number of states on the torus, if no fields (or quasiholes in our case) are present. We
will make use of the result (B.3) by choosing i2j−1 = bj , i2j = bj , for j = 1, 2, . . . , g, and
performing a sum over all possible values of bj . This leads to the following result:

∑
a

(
1

S1,a

)2g−2

. (B.4)

The genus g generalization of (B.3) is given by

#g =
∑

a

Si1,a · · ·Sin,a(S1,a)
2−n−2g, (B.5)

as follows from gluing the graphs in figures B.1 and B.2 by summing over all intermediate
states and making use of the unitarity of the S-matrix.

Appendix C. Some details of the counting in section 3.2

In this appendix, we will describe how to obtain the result (29) by making use of the
results in the previous appendix. We start by first calculating the general result for the
number of paths on the Bratteli diagram d(k, nqh, l1, l2). In terms of the fusion matrix N1

(recall that this matrix has the components (N1)i,j = δi,j+1 + δi,j−1, for i, j = 0, 1, . . . , k),
we have

d(k, nqh, l1, l2) = (N
nqh

1 )l1,l2 =
k∑

l=0

Sl1,l

(
S1,l

S0,l

)nqh

Sl2,l, (C.1)

where the modular S-matrix for su(2)k is given by (see, for instance, [45])

Sl1,l2 =

√
2

k + 2
sin

(
(l1 + 1)(l2 + 1)π

k + 2

)
. (C.2)
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Thus, we obtain

d(k, nqh, l1, l2) =
2

k + 2

k∑
l=0

sin

(
(l + 1)(l1 + 1)π

k + 2

)
sin

(
(l + 1)(l2 + 1)π

k + 2

)

×
(

2 cos

(
(l + 1)π

k + 2

))nqh

. (C.3)

Note that the eigenvalues of N1 are given by S1,l/S0,l = 2 cos((l + 1)π/(k + 2)), which is
a consequence of the Verlinde formula.

We can now perform the sum
∑k

l=0 d(k, nqh, l, k − l) explicitly by making use of

sin

(
(l + 1)(k − l1 + 1)π

k + 2

)
= (−1)l sin

(
(l + 1)(l1 + 1)π

k + 2

)

and the unitarity of the S-matrix. This gives the result stated in the main text (29):
k∑

l=0

(−1)l

(
2 cos

(
(l + 1)π

k + 2

))nqh

. (C.4)

Note that one can also obtain the eigenvalues of the matrices N1 by observing that,
as a function of k, the characteristic polynomials satisfy a recursion relation, which is
the same as the recursion relation for the Chebyshev polynomials. The zeros of these
polynomials are indeed the eigenvalues we quote above.

Appendix D. Counting results for arbitrary genus

For completeness, we give the state counting for arbitrary genus g. By making use of the
results in appendices B and C, we find

td(k, M, g, nqh, nqp, Ne) =

(
kM + 2

2

)g k∑
l=0

(−1)l(2Ne+nqh−nqp)/k

×
(

2 cos

(
(l + 1)π

k + 2

))nqh+nqp
(

k + 2

2 sin((l + 1)π/(k + 2))2

)g−1

. (D.1)

Specializing to the case g = 1, nqh = 0, we find that, when Ne = 0 mod k, the
degeneracy is given by (k + 1)(kM + 2)/2. When Ne = k/2 mod k, which only occurs for
k even, we find a degeneracy of (kM + 2)/2. Some other simple results8, in the absence
of quasiholes, are

td(2, M, g, 0, Ne) = ((2M + 2)/2)g2g−1(2g + (−1)Ne), (D.2)

td(3, M, g, 0, Ne = 0 mod 3) = ((3M + 2)/2)g2((5 +
√

5)g−1 + (5 −
√

5)g−1), (D.3)

td(4, M, g, 0, Ne = 0 mod 2) = ((4M + 2)/2)g(3g−1 + (−1)Ne/22 4g−1 + 2 12g−1). (D.4)

In the case g = 0, we reproduce the result that the degeneracy is given by the
number of paths on the Bratteli diagram, namely d(k, nqh, 0, 0) or d(k, nqh, 0, k), (C.3),
for (2Ne + nqh)/k = 0 mod 2 or (2Ne + nqh)/k = 1 mod 2, respectively.

8 For k = 2, M = 0, these are known as the boundary condition sectors, or spin structures, of the genus g torus,
as explained in [46].
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