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Electronic Theory for the Magnetic Anisotropy in Sr2RuO4

I. Eremin,1,2 D. Manske,1 J. R. Tarento,3 and K. H. Bennemann1

Using a three-band Hubbard Hamiltonian we calculated within the random-phase-
approximation the spin susceptibility, χ(q, ω), and NMR spin-lattice relaxation rate 1/T1, in
the normal state of the triplet superconductor Sr2RuO4, and obtained quantitative agreement
with experimental data. Most importantly, we found that because of spin–orbit coupling the
out-of-plane component of the spin susceptibility χ zz(q, ω) becomes two times larger than
the in-plane one at low temperatures. We analyze in particular the role of the xy-band in the
magnetic anisotropy.
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The spin-triplet superconductivity with Tc =
1.5 K observed in layered Sr2RuO4 seems to be a new
example of unconventional superconductivity [1]. The
non-s-wave symmetry of the order parameter is ob-
served in several experiments (see e.g. Ref. [2,3]). Al-
though the structure of Sr2RuO4 is the same as for the
high-Tc superconductor La2−xSrxCuO4, its supercon-
ducting properties resemble those of superfluid He3.
Most recently, it was found that the superconducting
order parameter is of p-wave type, but probably con-
tains line nodes between the RuO2-planes [4,5]. These
results support Cooper-pairing via spin fluctuations as
one of the most probable mechanism to explain the
triplet superconductivity in Sr2RuO4. Therefore, the-
oretical and experimental investigations of the spin
dynamics behavior in the normal and superconduct-
ing state of Sr2RuO4 are needed.

Here, in addition to our previous study [6], we
analyze the normal-state spin dynamics of Sr2RuO4

by using the two-dimensional three-band Hubbard
Hamiltonian and spin–orbit coupling for the all three
bands crossing the Fermi level. We calculate the dy-
namical spin susceptibility χ(q, ω) within the random-
phase-approximation and show that the observed
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magnetic anisotropy in the RuO2-plane arises mainly
because of the spin–orbit coupling. We demonstrate
that as in the superconducting state [7] the spin–orbit
coupling plays an important role also for the normal-
state spin dynamics of Sr2RuO4.

We start from the two-dimensional three-band
Hubbard Hamiltonian

H = Ht + HU

∑
k,σ

∑
l

tkla+
k,lσ ak,lσ +

∑
i,l

Ulnil↑nil↓,

(1)

where ak,iσ is the Fourier-transformed annihilation
operator for the dl orbital electrons (l = xy, yz, zx)
and Ul is the corresponding on-site Coulomb re-
pulsion. tkl denotes the energy dispersions of the
tight-binding bands calculated as follows: tkl = −ε0 −
2tx cos kx − 2ty cos ky + 4t ′ cos kx cos ky. We choose
the values for the parameter set (ε0, tx, ty, t ′) as (0.5,
0.42, 0.44, 0.14), (0.24, 0.31, 0.045, 0.01), and (0.24,
0.045, 0.35, 0.01) eV for dxy− , dzx− , and dyz−orbitals in
accordance with band-structure calculations [8]. The
electronic properties of this model in application to
Sr2RuO4 were studied recently and as was found can
explain some features of the spin excitation spectrum
in Sr2RuO4 [9,7,10,11]. However, this model fails to
explain the observed magnetic anisotropy at low tem-
peratures [12]. On the other hand, it is known that
spin–orbit coupling plays an important role in the
superconducting state of Sr2RuO4 [7]. This is fur-
ther confirmed by the recent observation of large
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spin–orbit coupling in insulating Ca2RuO4 [13].
Therefore, we include spin–orbit coupling in our
model:

Hso = λ
∑

i

LiSi, (2)

where the angular momentum Li operates on the
three t2g-orbitals on the site i . Similar to an earlier ap-
proach [7], we restrict ourselves to the three orbitals,
ignoring e2g-orbitals and choose the coupling constant
λ such that the t2g-states behave like an l = 1 angular
momentum representation. The resulting 6 × 6 ma-
trix has the form:

Ht + Hso =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

tk,xy 0 0 − λ
2 0 i λ

2

0 tk,xy
λ
2 0 i λ

2 0

0 λ
2 tk, yz 0 −i λ

2 0

− λ
2 0 0 tk, yz 0 i λ

2

0 −i λ
2 i λ

2 0 tk,xz 0

−i λ
2 0 0 −i λ

2 0 tk,xz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One notices that the degeneracy with respect to a
spin projection is not removed by the spin–orbit cou-
pling (so-called Kramers degeneracy). Therefore, the
6 × 6 matrix decouples into two matrices 3 × 3. Fur-
thermore, it is known that the quasi-two-dimensional
xy-band is separated from the quasi-one-dimensional
xz- and yz-bands. Then, one expects that the effect
of spin–orbit coupling is small for xy-band and can
be included in the approximate way. In particular, we
suggest that the dispersion of the xy-band will be un-
changed and εσ

k,xy ≈ tk,xy. Then, other eigenvalues of
the matrix can be found and the new energy disper-
sions are

εσ
k, yz ≈ (tk, yz + tk,xz + Ak)/2,

(3)

εσ
k,xz ≈ (tk, yz + tk,xz + Ak)/2,

where Ak = √
(tk, yz − tk,xz)2 + 3λ2, and σ refers to

spin projection.
The resultant Fermi surface consists of three

sheets like observed in the experiment. Most impor-
tantly, spin–orbit coupling together with Eq. (1) leads
to a new quasiparticle which we label by pseudo-spin
and pseudo-orbital indices. The unitary transforma-
tion Ũk connecting old and new quasiparticles is de-
fined for each wave vector and lead to the following
relation between them

c+
k, yz+ = u1ka+

k, yz+ − iv1ka+
k,xz+ + ν1ka+

k,xy−,

c+
k,xz+ = u2ka+

k, yz+ − iv2ka+
k,xz+ + ν2ka+

k,xy−,

c+
k,xy− = u3ka+

k, yz+ − iv3ka+
k,xz+ + ν3ka+

k,xy−,

ck, yz+ = −u1ka+
k, yz+ − iv1ka+

k,xz+ + ν1ka+
k,xy−,

ck,xz+ = −u2ka+
k, yz+ − iv2ka+

k,xz+ + ν2ka+
k,xy−,

ck,xy− = −u3ka+
k, yz+ − iv3ka+

k,xz+ + ν3ka+
k,xy−, (4)

where

umk = tk,xz − tk, yz ∓ Ak − λ√
2(tk,xz − tk, yz)2 + 2(λ ± Ak)2 + λ2

,

vmk = tk, yz − tk,xz ∓ Ak − λ√
2(tk,xz − tk, yz)2 + 2(λ ± Ak)2 + λ2

,

νmk = 2λ√
2(tk,xz − tk, yz)2 + 2(λ ± Ak)2 + λ2

.

The “−” and “+” signs refer to the m = 1 and m = 2,
respectively. In the similar way, one obtains

u3k = (tk,xz − tk,xy)
(

λ
2

) − λ2

4

N
,

v3k = (tk, yz − tk,xy)
(

λ
2

) − λ2

4

N
,

ν3k = sign
(
(tk,xz − tk,xy)(tk, yz − tk,xy) − λ2

4

)
N

,

where N is determined from the normalization of
the eigenvector. One could also see that different
new eigenstates are only approximately orthogonal
to each other. This is due to approximations which we
have made for finding the eigenvalues. However, one
estimates that the error of the order of O(λ2) that indi-
cates the equivalence of our procedure to an effective
second order perturbation theory.

For the calculation of the transverse, χ+−
l , and

longitudinal, χ zz
l , components of the spin susceptibil-

ity of each band l we use the diagrammatic represen-
tation. Since the Kramers degeneracy is not removed
by the spin–orbit coupling, the main anisotropy arises
from the calculations of the anisotropic vertex gz =
l̃ z + 2sz and g+ = l̃+ + 2s+ calculated on the basis
of the new quasiparticle states. In addition, because
of the hybridization between xz- and yz-bands we
also calculate the transverse and longitudinal com-
ponents of the the interband susceptibility χw . Then,
for example,

χ+−
0,xz(q, ω) = − 1

N

∑
k

|M+−
k,k+q|2

×
f (ε+

kxz) − f (ε−
k+qxz)

ε+
kxz − ε−

k+qxz + ω + iO+ , (5)
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and

χ zz
0, yz(q, ω) = − 1

N

∑
k

∣∣Mzz
k,k+q

∣∣2

×
f (ε+

kxz) − f (ε+
k+qxz)

ε+
kxz − ε−

k+qxz + ω + iO+ , (6)

where f (x) is the Fermi function and |Mi
k,k+q|2 =

|〈l|gi |l ′〉|2 are the corresponding matrix elements cal-
culated with the help of Eqs. (4). For all other orbitals
the calculations are straightforward.

Assuming Ui j = σi jU one gets the following
expressions for the transverse susceptibility within
random-phase-approximation (RPA):

χ+−
RP A,l(q, ω) = χ+−

0,l (q, ω)

1 − Uχ+−
0,l (q, ω)

, (7)

and for the longitudinal susceptibility

χ zz
RP A,l(q, ω)

= χ
↑
0,l(q, ω) + χ

↓
0,l(q, ω) + 2Uχ

↑
0,l(q, ω)χ↓

0,l(q, ω)

1 − U2χ
↓
0,l(q, ω)χ↑

0,l(q, ω)
.

(8)

Figure 1 shows the results for the real part of
the transverse and longitudinal total susceptibility,
χ

+−,zz
RPA = �iχ

+−,zz
RP A,i along the route (0, 0) → (π, 0)

→ (π, π) → (0, 0) in the first Brillouin zone for
U = 0.505 eV. Note the important difference between
the two components. Most importantly, the incom-
mensurate antiferromagnetic fluctuations (IAF) at

Fig. 1. Results for the real part of out-of-plane (solid curve) and in-
plane (dashed curve) magnetic susceptibilities, Re χ(q, ω), calcu-
lated within RPA by using U = 0.505 eV along the two-dimensional
route (0, 0) → (π, 0) → (π, π) → (0, 0) within the first Brillouin
zone at temperature T = 100 K.

Qi = (2π/3, 2π/3) are present in the case of xz- and
yz-bands only in the longitudinal components of the
spin susceptibility, but not in the transverse ones. This
is connected to the fact that the matrix elements type
of uk and vk are important because they suppress tran-
sition between “+” and “−” bands for the transverse
susceptibilities. The transverse susceptibility is larger
than the longitudinal one at small values of q indi-
cating ferromagnetic fluctuations. These are mainly
pointing in the RuO2-plane. On the other hand, the
longitudinal component shows a structure at the IAF
wave vector indicating a direction of the IAF fluctu-
ations perpendicular to the RuO2-plane. Our results
are similar our previous studies [6] where the effect
of spin–orbit coupling for xy-band was excluded, for
simplicity. This also indicates that the magnetic prop-
erties of the γ -band remains almost unaffected by the
spin–orbit coupling.

We also note that our results are in accordance
with earlier estimations made by Ng and Sigrist [14]
with one important difference. In addition to Ng and
Sigrist [14], we include in accordance with mixing of
the spin and orbital degrees of freedom also the or-
bital contribution to the magnetic susceptibility χ .
For example, because of lz and l+ (l−) vertices at
Qi = (2π/3, 2π/3), χ zz is affected by factor of 2 from
spin–orbit coupling. Moreover, in previous work [14],
it was found that the IAF are slightly enhanced in the
longitudinal components of the xz- and yz-bands in
comparison to the transverse one. In our case there
are no IAF in the transverse component of the spin
susceptibility. Furthermore, by taking into account the
correlation effects within RPA we show that the IAF
will be further enhanced in the z-direction.

Finally, in order to compare our results with ex-
perimental data we calculate the nuclear spin-lattice
relaxation rate for 17O ion in the RuO2-plane for dif-
ferent external magnetic field orientation (i = a, b,
and c)

[
1

T1T

]
i
= 2kBγ 2

n

(γeh)2

∑
q

∣∣Ap
q

∣∣2 χ ′′
p(q, ωs f )

ωs f
, (9)

where Ap
q is the q-dependent hyperfine-coupling con-

stant and χ ′′
p is the imaginary part of the corre-

sponding spin susceptibility, respectively, perpendic-
ular to the i-direction. Similar to experiment [12] we
use an isotropic hyperfine coupling constant (17Aq ∼
22 kOe/μB).

Figure 2 shows the calculated temperature de-
pendence of the spin-lattice relaxation for an ex-
ternal magnetic field within and perpendicular to
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Fig. 2. Calculated normal state temperature dependence of the
nuclear spin–lattice relaxation rate T−1

1 of 17O in the RuO2-plane
for the external magnetic field applied along c-axis (dashed curve)
and along the ab-plane (solid curve). Down- and up-triangles are
experimental points taken from Ref. [12] for the corresponding
magnetic field direction.

the RuO2-plane together with experimental data.
At T = 250 K the spin-lattice relaxation rate is al-
most isotropic. Because of the anisotropy in the spin
susceptibilities arising from spin–orbit coupling the
relaxation rates become different with decreasing
temperature. The largest anisotropy occurs close to
the superconducting transition temperature in good
agreement with experimental data [12].

To summarize, our results clearly demonstrate
the essential significance of spin–orbit coupling for
the spin-dynamics already in the normal state of the
triplet superconductor Sr2RuO4. We find that the
magnetic response becomes strongly anisotropic even
within a RuO2-plane: while the in-plane response is
mainly ferromagnetic, the out-of-plane response is
antiferromagnetic-like. We would like to stress that
our calculations are purely two-dimensional and the
discussion of magnetic anisotropy refers only to the

RuO2-plane. It remains, however, to see how the two-
dimensional properties of Sr2RuO4 can be affected
by the magnetic anisotropy. One could expect, for ex-
ample, the significant interplane magnetic activity in-
duced by some kind of RKKY interaction resulting
from the anosotropic χzz.
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