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Abstract. The intrinsic contribution to the spin Hall effect in a two-dimensional
degenerate electron gas (2DEG) with non-magnetic impurities is studied in a
quantum Boltzmann approach. It is shown that if the steady state response is
perturbative in the spin–orbit coupling parameter λ, then the precession term—
vital for Dyakonov–Perel relaxation and the key to the spin Hall effect in previous
similar Boltzmann studies—must be left out to first order in spin–orbit coupling.
In such a case one would have that to lowest order in the parameters electric
field, spin–orbit coupling, impurity strength and impurity concentration there is
no intrinsic contribution to the spin Hall effect, not only for a Rashba coupling
but also for a general spin–orbit coupling. To cover all possible lowest order terms
we also consider electric field induced corrections to the collision integral in the
Keldysh formalism. However, these corrections turn out to be of second order in
λ. For comparison we derive some familiar results in the case when the response
is not assumed to be perturbative in λ. We also include a detailed discussion of
why a relaxation time approximation of the collision integral fails. Finally we
make a comment on pseudospin currents in bilayer graphene.
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1. Introduction

The idea in spintronics is to manipulate the electron spin for information storage and
transfer, as done with the electron charge in electronics. Possible advantages could for
example be smaller resistive losses or the additional richness that comes from the non-
scalar nature of spin. In the study of spin currents particular attention has been given to
the spin Hall effect (SHE) in a two-dimensional degenerate electron gas (2DEG) with spin–
orbit coupling. Perpendicular to an applied electric field, opposite spins travel in opposite
directions, thus creating a spin current without a net charge current. Such a spin current
can lead to an accumulation of spin at the edges of a sample, although in contrast to the
electrical charge analogy this is not given. An individual spin can change its direction, for
example due to spin precession, and therefore the accumulated spin polarization is not a
conserved quantity. The SHE opens up one possibility of manipulating spin with electric
fields.

The experiments on the SHE are few and recent [1]–[6]. In contrast, much work
have been devoted to the theoretical aspects (see e.g. the reviews [7]–[9]) and even in
recent years there has been an intense discussion about the different mechanisms and how
to compare results reached by different formalisms. This discussion is closely related
to the one on the anomalous Hall effect (AHE) [10], for example in the distinction
between extrinsic (impurity related, e.g. skew scattering, side-jump etc) and intrinsic
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(band structure related) mechanisms. The latter could be due to structure inversion
asymmetry of the confining potential (leading, for example, to Rashba coupling) or due
to bulk inversion asymmetry (allowing for Dresselhaus coupling).

The earliest theoretical works on the SHE were done by Dyakonov and Perel in
1971 [11], who showed that spin–orbit coupling leads to a spin current perpendicular
to the electric field. The name spin Hall effect was coined in 1999 [12]. A universal spin
Hall conductivity in a 2DEG was proposed [13]–[15]. However, impurities were neglected
in these studies. Many studies have later shown that universality is lost when impurities
are taken into account [16]–[28]. On the other hand, there can still be topological edge
modes, responsible for the quantum SHE (see e.g. [29]).

The effect of non-magnetic impurities on the intrinsic contribution to the SHE
has been studied using a Boltzmann approach [16]–[21] as well as diagrammatic
methods [22]–[28] like the Kubo formalism. The diagrammatic methods are more
systematic and have a more general range. The Boltzmann approach offers more intuition,
but has typically been implemented by identifying distinct processes or hand-picking
different contributions rather than systematically covering all possible contributions
through a formal approach. Within the Boltzmann language one finds several different
approaches. We are going to use the quantum Boltzmann approach, which treats spin
coherently.

This paper is going to deal with the intrinsic SHE in a steady state calculation to first
order in spin–orbit interaction. We attempt in a Keldysh derivation of the Boltzmann
equation to account for all contributions present to lowest order in the electric field, in
spin–orbit splitting and in the strength and concentration of non-magnetic impurities
(sections 3–5 and 10). The spin–orbit interaction HSO = σ · b is chosen to be of

the isotropic form b = b(k)b̂(θ), where the unit vector b̂ has a winding number N ,

i.e. b̂x + îby = eiθ0+iNθ with θ0 being a constant.

Many recent theoretical studies conclude that the SHE vanishes for N = ±1 (e.g. for
the Rashba and linear Dresselhaus spin–orbit couplings) for point-like impurities [16]–[23],
[25]–[28] as well as finite range impurities [17]–[19], [21]. General arguments have been
proposed to explain this vanishing [27, 28] (section 7). A nonzero result can be found
in [23, 24]. With an alternative definition of spin currents, a nonzero result is also found
in [18].

For other odd N the SHE is nonzero [18, 19], assumes a universal value in a specific
limit [19], but depends otherwise on the range of the impurity potential and is therefore
in general not universal, though it is independent of the spin–orbit splitting b, the overall
strength of the impurity potential and of the impurity concentration [19]. We reproduce
these results in section 6. Additionally, we give explicit results on the polarization and
spin currents for the components of the spin parallel to the plane and calculate equilibrium
spin currents.

We will also show that the above results on the SHE are based on the response not
being perturbative in the spin–orbit coupling. If perturbativeness is assumed (section 8),
the spin precession term—seemingly the prerequisite for a spin Hall current—must be left
out to linear order in spin–orbit coupling, suggesting that to lowest order the intrinsic SHE
is zero for arbitrary winding N (section 9). Possible alternative contributions to the SHE
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Table 1. Summary of spin densities and spin currents in the nonperturbative
and the perturbative cases for the cases N = ±1 and for other odd N . The
entries present the (phase space)/(real space) quantities, respectively. NZ stands
for a (typically) nonzero result whereas uncommented zeros stand for trivially
vanishing components (e.g. due to angular considerations). Nontrivial cases are
commented.

Nonperturbative
sx,y sz jx,y jz

|N | = 1 f eq NZ/0 0/0 NZ/NZa 0/0
f (E) NZ/NZb 0c/0 NZ/0 0c/0d

|N | �= 1 f eq NZ/0 0/0 NZ/0 0/0
f (E) NZ/0 NZ/0 NZ/0e NZ/NZ

Perturbative
sx,y sz jx,y jz

|N | = 1 f eq NZ/0 0/0 NZ/NZf 0/0
f (E) NZ/0f 0/0 NZ/0 0/0

|N | �= 1 f eq NZ/0 0/0 NZ/0 0/0
f (E) NZ/0 0/0 NZ/0e 0/0

a jy
x , jx

y = O(λ3), see under (26).
b See (39).
c Since G = 0.
d General arguments in section 7.
e Vanishing for N odd. Could, however, be nonzero for |N | = 2.
f See end of section 9. Relies on the introduced spin relaxation term. Here jy

x, jx
y = O(λ).

from electric field induced corrections to the collision integral are discussed in section 10.
A contribution that we believe has not been discussed before in the Boltzmann approach
turns out to be the only candidate when the precession term is absent. However, this
contribution turns out to be of second order in spin–orbit splitting.

Leaving out the precession term leads to some formal difficulties in the case N = ±1.
The Boltzmann equation becomes unsolvable. However, this can be remedied by including
a small spin relaxation term (section 9). This could suggest that for N = ±1, non-
magnetic impurities are not enough for a consistent steady state solution in the spin
polarization in the case that the response is perturbative in the spin–orbit coupling. A
comparison of spin densities and spin currents in both phase space and real space is given
in table 1. In this context we also make a comment on pseudospin currents in bilayer
graphene.

The spin–orbit corrections to the collision integral make the analytical treatment
considerably more complicated. For the case |N | = 1 but not for the case |N | �= 1 this
complication is necessary even for a qualitatively correct understanding of the vanishing
SHE. In appendix B we discuss the failure of the relaxation time approximation, that in
many other problems is useful for a simple qualitative understanding and as a starting
point for deriving real space equations, for example describing thermoelectric effects.
In particular, we contrast with the derivation of the Dyakonov–Perel spin relaxation
mechanism.
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2. The model—intrinsic versus extrinsic

For a semiclassical Boltzmann description (see e.g. [30]–[34]) one needs the Wigner
transformed one-particle Hamiltonian. For the spin–orbit (SO) coupled electrons we are
going to study, it is

H(x, p, t) = a(k) + σ · b(k) + eφ(x, t) (1)

with e < 0 and k(x, p, t) = p − eA(x, t). We want to describe a 2D system with x and
p chosen to lie in the x, y-plane. Throughout the paper � = 1. In the absence of spin–
orbit coupling the dispersion is given by a ∝ kζ , typically a = k2/2m. For the Rashba

interaction b := |b| = λk and b̂ := b/b = θ̂, with λ parametrizing the strength of the
coupling. However, we want to consider an arbitrary odd-integer winding number N in
b = b(k)b̂(θ) (with b̂x + îby = eiθ0+iNθ). The energy bands are εs

k = a + sb with s = ±
giving the sign of the spin along the spin quantization axis b̂, i.e. σ · b̂|b̂s〉 = s|b̂s〉.

The total Hamiltonian Htot = H +Himp also includes an impurity potential Vimp(x) =∑
n U(x − xn) of charged, non-magnetic impurities at positions xn. Including the spin–

orbit coupling experienced at impurities one has

Himp = Vimp + λextσ · k × ∇Vimp. (2)

H and Himp are treated very differently in the Boltzmann approach. H enters to linear
order in the kinetic equation, whereas Himp is in the Keldysh machinery turned into an
impurity averaged self-energy to appear to quadratic order in the collision integral.

A spin–orbit coupling enters both through the intrinsic (i.e. band related) term σ · b
and in the extrinsic (i.e. impurity related) term λextσ · k ×∇Vimp, and the consequences
of the two are usually studied separately in the literature. This paper deals only with the
intrinsic contribution to the SHE.

3. Semiclassical description of a spin–orbit coupled system

In a Boltzmann description of an electron system with spin, the spatial degrees of
freedom are treated semiclassically, whereas the treatment of the spin remains quantum
mechanical. The state of the system is given by the 2 × 2-matrix-valued distribution
function fσσ′(x, p, t), here with the spin index σ =↑z, ↓z. It is related to the equal time

density matrix ρσσ′(x1, x2)|t2=t1 = 〈Ψ†
σ′(x2, t1)Ψσ(x1, t1)〉 by a Wigner transformation (see

e.g. [30]–[33]). In the absence of scattering one can derive the Boltzmann equation for f
by applying Heisenberg’s equation of motion on ρ(x1, x2), then identifying t2 = t1, Wigner
transforming the result and gradient expanding it to first order. The approximation to
stop at first order in gradient expansion is the semiclassical approximation, which relies
on the external perturbations, such as electromagnetic potentials, changing negligibly on
length and timescales of the de Broglie wavelength λB and time τB = λB/vF.

From the matrix elements of the distribution function f one extracts the densities
and current densities of charge and spin. The matrix elements are most conveniently
expressed in the decomposition f = 1f0 + σμfμ = f0 + σ · f in Pauli matrices (with
μ = x, y, z). (Throughout this paper we use the convention of summation over repeated

indices.) Furthermore, we find it convenient to decompose the vector f = fb̂b̂+ fĉĉ+ fzẑ
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into its components along the basis vectors b̂(θ), ẑ and ĉ(θ) = ẑ × b̂(θ), analogous to the

cylindrical basis vectors k̂(θ) := k/k, ẑ and θ̂(θ) := ẑ × k̂(θ).
The charge density en and current density ej in phase space are derived from

en = Tr(f∂H/∂φ) and ej = −Tr(f∂H/∂A), which yields

n(x, k, t) := Tr f = 2f0 = n+ + n−

ji(x, k, t) := Tr(vif) = 2f0∂ki
a + 2f · ∂ki

b = n+v+
i + n−v−

i +
2Nb

k
fĉθ̂i

(3)

with i = x, y. Here we introduced the velocity matrices vi := ∂ki
H = ∂ki

a + σ · ∂ki
b.

The spin-independent part of the velocity is ∂ka =: v0. The band velocities are
vs := ∂kεs = 〈b̂s|v|b̂s〉 = vsk̂. The intra-band elements n± := 〈b̂ ± |f |b̂±〉 = f0 ± fb̂ give

the density of each spin band s = ±. The inter-band elements 〈b̂ ± |f |b̂∓〉 = fz ± ifĉ

are important for the coherent treatment of spin and are, for example, present in the last
term of (3)1, containing the zitterbewegung of the spin–orbit coupled electrons.

The real space densities are obtained by integrating the phase space densities over
momentum, e.g.

j(x, t) =

∫
d2k

(2π)2
j(x, k, t). (4)

When not otherwise stated, densities in this paper are always assumed to be phase space
densities.

The spin density, i.e. the polarization, is given by sμ = (�/2) Tr(σμf) = fμ (with
� = 1). There is not a unique way to define the spin current because spin polarization is
not a conserved quantity. (For a proposal for a conserved spin current, see [35]. For its
implications for the SHE, see [18].) When band velocities coincide, i.e. vs = v0, then it is
clearly jμ = fμv0. For the general case we choose the common definition

jμ
i = 1

4
Tr σμ{vi, f} = fμ∂ki

a + f0∂ki
bμ (5)

(with {A, B} = AB + BA). The SHE is a real space current of z-component spins

jz =

∫
d2k

(2π)2
fzv0 =

1

e
σSHẑ × E (6)

perpendicular to an applied electric field E along the plane. σSH is the spin Hall
conductivity.

The Boltzmann equation in matrix form is given by

i[H, f ] + ∂T f + 1
2
{vi, ∂xi

f} + eEi∂ki
f − εzijeBz

1
2
{vi, ∂kj

f} = J [f ] (7)

where the matrix-valued functional J is the collision integral. In components it reads
(from now on the charge e in eE and eB is absorbed into the fields)

∂tf0 + ∂xi
f0∂ki

a + ∂xi
f · ∂ki

b + Ei∂ki
f0 + εzijBz(∂ki

f0∂kj
a + ∂ki

f · ∂kj
b) = J0

2f × b + ∂tf + ∂xi
f∂ki

a + ∂xi
f0∂ki

b + Ei∂ki
f + εzijBz(∂ki

f∂kj
a + ∂ki

f0∂kj
b) = J .

(8)

1 Note also that this term is equally shared between the two bands; 〈b̂s| 1
2
{v, f}|b̂s〉 = nsvs + k−1bfĉθ̂.
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However, by virtue of definition (5) the equations (8) can be compactly written as

∂tn + ∂x · j + ∂k · (nE + j × B) = 2J0

2(s × b)μ + ∂ts
μ + ∂x · jμ + ∂k · (sμE + jμ × B) = Jμ.

(9)

The left-hand side of the first equation is the same as for charged, spinless particles in
an electromagnetic field. Apart from the spin precession term, the second equation is
of similar form. This is what one would expect, since the electromagnetic field does not
interact with the spin in the considered model but only with the charge that the spin sits
on. The spin enters in a nontrivial way only through the precession term and through the
collision integral.

4. Derivation of the collision integral in the Keldysh formalism

The presence of, for example, two-body interactions or disorder averaged impurity
interaction is described in the Boltzmann approach by the collision integral J . It is
assumed that one is in the kinetic regime, where the de Broglie wavelength λB = 1/kF

is much shorter than the scattering length �. Like [19] we use the Keldysh formalism
(see e.g. [30]–[33]), but among other general methods we can mention the non-equilibrium
statistical operator formalism [30]. For disorder averaged impurities, see also the compact
derivation in [21].

The Keldysh derivation of the semiclassical equations starts with relating f to the
Wigner transformed Keldysh Green’s function

f(x, p, t) =
1

2
+

∫
dΩ

4πi
GK(x, p, t, Ω). (10)

The equation of motion for GK is given by the Dyson equation. Integrating the equation
over the frequency Ω results in the semiclassical Boltzmann equation with a collision term.
This should be contrasted with the quasiclassical Boltzmann approach (see e.g. [33]) where
the integration is instead performed over |k| to obtain a distribution function f(x, p̂, t, Ω).
This is the approach for example in [19] and [20].

The Keldysh equation derived from the Dyson equation can be written in two
equivalent forms

1̂ = (i∂t − H − Σ) G or 1̂ = G (i∂t − H − Σ) . (11)

The product involved here is the convolution product, the identity stands for 1̂ :=
1δ(x1 − x2)δ(t1 − t2) and quantities are written in Keldysh matrix space with

G =

(
GR GK

0 GA

)

and i∂t − H − Σ =

(
i∂t − H − ΣR −ΣK

0 i∂t − H − ΣA

)

. (12)

Each element in these matrices is an infinite-dimensional matrix in real space indices, and
in our case also a 2 × 2 matrix in spin indices.

The two equations in (11) contain the same information. To derive kinetic equations
one takes the difference of them, which for the Keldysh component yields

(i∂t − H)GK − GK(i∂t − H) = ΣRGK − GKΣA − GRΣK + ΣKGA. (13)
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The right-hand side is going to give the collision integral, which we only treat to lowest
order in impurity concentration and impurity strength (the first Born approximation),

Σp = nimp

∫
d2p′

(2π)2
|U(|p − p′|)|2G0

p′, (14)

with G0 = G(Σ = 0). (Σ is diagonal in momentum space due to the disorder averaging of
the impurity interaction.) According to the self-consistent Born approximation we replace
G0K by GK. A crucial approximation comes with choosing the generalized Kadanoff–Baym
ansatz [36]

GK = i(GRh − hGA) + · · · (15)

where h := GK|t2=t1 , which generalizes the quasiparticle approximation GK =
h(x, p, t)δ(Ω − ε) for spinless electrons. The approximation can be considered to be an
expansion in relaxation times of the system and corresponds to a Markov approximation.

The convolution product takes after Wigner transformation A(x1, t1, x2, t2) →
A(x, p, t, Ω) the form AB = Ae(i/2)DB with the Poisson-bracket-like gradient D. In a
gauge invariant treatment valid when the electromagnetic fields are weak and vary slowly
(see e.g. p 344, vol 1 in [30] or ch 7 in [34]), one introduces k(p, x, t) = p − A and
ω(Ω, x, t) = Ω − φ and lets {x, k, t, ω} become the new set of independent variables
(i.e. ∂xi

k = 0). This changes the gradient into

D =
←−
∂ xi

−→
∂ ki

−←−
∂ ki

−→
∂ xi

+
←−
∂ ω

−→
∂ t −

←−
∂ t

−→
∂ ω + Ei(

←−
∂ ω

−→
∂ ki

−←−
∂ ki

−→
∂ ω) + εijlBi

←−
∂ kj

−→
∂ kl

(16)

with X
←−
∂ Y := (∂X)Y and X

−→
∂ Y := X(∂Y ). Gradient expanding the left-hand side

of (13) to first order and integrating over the frequency yields the left-hand side of (7). The
right-hand side, the collision part, is usually taken to zeroth order in gradient expansion.
Inserting (15) into (13), and using that combinations such as

∫
dω GR[. . .]GR vanish, one

arrives at the collision integral (with Wkk′ := 2πnimp|U(|k − k′|)|2)

J = −
∫

k′

Wkk′

2π

∫
dω

2π
(GR

kΔfGA
k′ + GR

k′ΔfGA
k)

= −
∫

k′

Wkk′

2π

∫
dω

2π
(G0R

k ΔfG0A
k′ + G0R

k′ ΔfG0A
k ) + · · · (17)

where in the last row only terms of second order in the interaction strength were kept.
The shorthand notations Δf = f(k, x, t) − f(k′, x, t) and

∫
(d2k′/(2π)2) =:

∫
k′ were

introduced.
In the expression (17) we also need the retarded and advanced components. For this

one should take the sum of the two equations (11), which for GR(Σ = 0) after Wigner
transformation leads to

2 = (ω+ − H0)e(i/2)DG0R + G0Re(i/2)D(ω+ − H0), (18)

with ω+ := ω + iη (to take care of the boundary conditions provided by the imaginary
part of ΣR when Σ �= 0) and with H0 := H − φ. To zeroth order in gradient expansion it
is solved by

G0R =
∑

s=±

Sb̂s

ω+ − εs
Sb̂s := 1

2
(1 + σ · sb) (19)
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where S is the spin projection operator. With this zeroth order G0R, the last line in (17)
can be reformulated to be identical to the result derived in [21] and essentially also to the
one derived in [19].

To the knowledge of the author, one always finds in the literature the zeroth order
solution for G0R, maybe because in the common cases like spinless electrons or Zeeman
coupled electrons (with a constant magnetic field) the first order contribution to (18) (and
thus to G0R) vanishes. However, for a spin–orbit coupled system it does not. We find the
first order contribution

δG0R = σzNb
Eθ̂b − Bz(ω − a)∂kb

k(ω+ − ε+)2(ω+ − ε−)2
= [Bz = 0]

= σzN
Eθ̂

4k

∑

s

(−sb−1 − ∂ω)
1

ω+ − εs
, (20)

with Eθ̂ := E · θ̂ in the polar decomposition E = Ek̂k̂ + Eθ̂θ̂. In section 10 we show
how the contribution (20) modifies the collision integral. We will also investigate whether
the corresponding correction could be an alternative source to the SHE not relying on the
precession term2.

5. The collision integral to linear order in spin–orbit coupling

In this section the Boltzmann equation is expanded to first order in spin–orbit coupling,
as done in [19] and [21], hence assuming b(kF) � εF. The subscript F indicates the value
of the corresponding quantity at the Fermi surface determined by a = εF, where εF = μ
at low temperatures kBT � εF.

The collision integral is taken to the habitual zeroth order in gradient expansion,
meaning (17) with (19). To slim down the often lengthy expression for collision integrals,
some more shorthand notation is introduced. x′ means that the quantity x depends on
primed variables such as k′, s′ etc, whereas x correspondingly depends on k, s. For
example, S ′ = 1

2
(1 + σ · s′b̂k′). Also, Δx := x − x′; for example Δε = εs

k − εs′
k′ or

Δ(sb) = sb − s′b′.

Inserting (19) into (17) gives

J0 = −
∫

k′
Wkk′

1

2

∑

ss′

δ(Δε)

[
1 + ss′b̂ · b̂′

2
Δf0 +

sb̂ + s′b̂′

2
· Δf

]

+ X0

J = −
∫

k′
Wkk′

1

2

∑

ss′

δ(Δε)

[
1 + ss′Bkk′

2
Δf +

sb̂ + s′b̂′

2
Δf0

]

+ X

(21)

2 Note that if in contrast to equation (18) one takes the difference of the equations (11), the equation for G0R is
identical to (13) with Σ = 0. This equation does not determine G0R, but given (18), the precession term (in the
equation for G0R) implies the presence of (20) to first order in electromagnetic fields.
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with the matrix Bkk′ := b̂(b̂′)T + b̂′(b̂)T − b̂ · b̂′.3 Not written out in equation (21) are the
principal part terms

X =

∫

k′
Wkk′

1

2π

∑

ss′

P
(

1

Δε

) [
ss′b̂ × b̂′

2
· (Δf − σΔf0) − σ · Δ(sb̂)

2
× Δf

]

(22)

which are not considered to be part of the elastic collision integral but to be related to
renormalization corrections. Such terms can usually left out if one is interested in the
interaction only to lowest order (however, see [38]) and it is beyond the scope of the
present paper to discuss them. (See [39] for a lucid treatment on how to interpret and
handle them in the case of spinless electrons interacting through a two-body interaction.
See also the derivation of Bloch spin relaxation equations in [40].)

The delta functions δ(εs
k − εs′

k′) connecting Fermi surfaces at different |k| make it
difficult to find an analytical solution. However, in the considered limit b(kF) � εF one
can use the expansion

δ(Δε) = δ(Δa) + Δ(sb) δ′(Δa) + O(λ2) (23)

after which one is left with the spin-independent delta function δ(ak − ak′) implying
|k′| = |k|. With this expansion the collision integral reads

J0 = −
∫

k′
Wkk′

⎡

⎢
⎣δ(Δa)Δf0 +

O(λ2)
︷ ︸︸ ︷
δ′(Δa)Δb · Δf

⎤

⎥
⎦

J = −
∫

k′
Wkk′ [δ(Δa)Δf + δ′(Δa)ΔbΔf0] .

(24)

The terms with δ′(Δa) = −∂a′δ(Δa) are made sense of by integration by parts.
If f = O(λ) (i.e. if the polarization vanishes as λ → 0), the term indicated as of order

O(λ2) can be neglected to linear order in λ. This resulting collision integral is essentially
the one found in [21] and is similar to the one in [19]4. For a physical interpretation of
spin–orbit coupling dependent contributions, see [19].

In section 10 we discuss corrections to the collision integral when one goes beyond
zeroth order in gradient expansion.

6. Solving the Boltzmann equation

We now set out to solve the uniform, steady state Boltzmann equation

2σ · f × b + E · ∂kf = −
∫

k′
Wkk′ [δ(Δa)Δf + δ′(Δa)Δb · σΔf0] (25)

3 The structure of B is relevant for graphene (one Dirac cone). Not surprisingly, an equivalent structure is found
in [37] We note that one gets a different matrix B if one instead uses the non-equilibrium statistical operator
method, used for example in [38]. This difference, to be discussed elsewhere [47], has no influence on the present
paper since the term involving B does not contribute to first order in spin–orbit coupling.
4 The quasiclassical approach of [19] makes a straightforward comparison not obvious, but it seems like there is
no analogue of the term containing ∂a′Δf0 that we obtain after integration by parts.
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without implementing the assumption of perturbativeness in λ, to be discussed in
section 8. The distribution function f = f eq + f (E) is linearized only in the electric
field and not in the spin–orbit coupling.

The distribution n± = f0 ± fb̂ of the respective spin band is in equilibrium given by
the Fermi–Dirac (FD) distribution. The equilibrium distribution is therefore given by

f eq
0 ± f eq

b̂
= fFD

(
ε± − μ

)
i.e. f eq =

∑

±
Sb̂±fFD

(
ε± − μ

)
, (26)

with vanishing inter-band elements f eq
ĉ = f eq

z = 0. Time reversal symmetry requires the
real space equilibrium polarization f eq =

∫
k
f eq(k) to be zero, which also follows trivially

from the vanishing angular part of the integral. The real space spin current, on the other
hand, need not vanish since it is even under time reversal symmetry. For |N | �= 1 the real
space spin current is trivially zero, but for N = ±1 we find jx

y = ∓jy
x = −m2λ3/2π+O(λ5)

for a quadratic dispersion a = k2/2m.
The equilibrium distribution is from now on taken to linear order in λ, i.e.

f eq
0 =

∑
±

fFD(ε±−μ)
2

= fFD (a − μ) + O(λ2)

f eq

b̂
=

∑
±±fFD(ε±−μ)

2
= b∂afFD (a − μ) + O(λ2)

=⇒ f eq
0 = fFD

f eq = b∂afFD
(27)

where from now on fFD ≡ fFD(a−μ). From (27) one sees that a small spin–orbit coupling
does not change the charge density but induces a small polarization at the Fermi surface.
The distribution f eq = fFD + σ · b∂afFD satisfies (25) for E = 0.

The charge part of (25) does not depend on the polarization. When a uniform, static

electric field is applied, one finds the usual solution f
(E)
0 = −τtrEk̂∂kfFD where τtr is the

transport relaxation time. Gathering the known terms on the left-hand side one can write
the polarization part of the equation as

E · ∂kf eq +

∫

k′
Wkk′δ′(Δa)ΔbΔf

(E)
0 = 2b × f (E) −

∫

k′
Wkk′δ(Δa)Δf (E). (28)

It turns out (see the appendix) that the equation can be written in the form

F (Ek̂b̂ − Eθ̂ĉ) + G(Ek̂b̂ + Eθ̂ĉ) = 2b × f (E) −
∫

θ′
KΔf (E)|k′=k, (29)

with the shorthand
∫

θ′ :=
∫

dθ′

2π
. The functions F and G depend on k and are proportional

to λ. They do not depend on θ, on E, on the impurity concentration nimp or on the overall
strength of the impurity potential U . However, they depend on the range of the potential
through dimensionless fractions of the Fourier components of the functions5.

K(k, Δθ) := D(a)Wkk′|k′=k =:
∑

m

eimΔθKm

K̃(k, Δθ) := D(a)kv0[∂a′Wkk′]k′=k =:
∑

m

eimΔθK̃m.
(30)

5 For comparison with [19], note that ∂a′Wkk′ |k′=k = (v0k)−1 tan2(Δθ/2)∂θ′Wkk′ |k′=k.
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In particular, for N = 1 we find for a general dispersion a ∝ kζ that

F = λ

[
∂afFD

2

(
(ζ − 2)τ−1

tr + ζτ−1
12 − 2τtrτ

−1
12 τ̃−1

01 − τ̃−1
01 + τ̃−1

12

)
τtr

+
k∂k∂afFD

2

(
1 + τtrτ

−1
12

)
]

G = 0

(31)

with τ−1
tr = K0 − K1 and introducing shorthands τ−1

12 := K1 − K2, τ̃−1
01 := K̃0 − K̃1 and

τ̃−1
12 = K̃1 − K̃2. We also find that G = 0 when b is not proportional to k. The vanishing

of G is going to imply the vanishing of the SHE for Rashba coupling.
The combination Ek̂b̂∓Eθ̂ĉ has a winding N ± 1. In particular, for the Rashba case

b̂ = θ̂ (i.e. N = 1) one has

Ek̂b̂ − Eθ̂ĉ =
(
b̂(k̂)T − ĉ(θ̂)T

)
E =

(
− sin 2Δθ cos 2Δθ
cos 2Δθ sin 2Δθ

)

E

Ek̂b̂ + Eθ̂ĉ =

(
0 −1
1 0

)

E, (32)

i.e. the left-hand side of (29) has an angle independent term.

The solution can be found by Fourier decomposition in the basis {b̂, ĉ, ẑ}

f (E) =
∑

n

einθ(b̂fb̂n + ĉfĉn + ẑfzn) =
∑

n

einθ
(
b̂ ĉ ẑ

)
⎛

⎝
fb̂n

fĉn

fzn

⎞

⎠ (33)

where the Fourier coefficients {fb̂n, fĉn, fzn} of course only depend on k and not on θ.

With E := Ex + iEy one has 2(Ek̂b̂ ± Eθ̂ĉ) = eiθE∗(b̂ ± iĉ) + e−iθE(b̂ ∓ iĉ) and therefore
the left-hand side of (29) can be written as

1
2
eiθE∗ (

b̂ ĉ ẑ
)
⎛

⎝
F + G
iG − iF

0

⎞

⎠ + c.c., (34)

which contains only the n = 1 Fourier component and the complex conjugate n = −1
component. This is going to imply that fb̂n, fĉn, fzn = 0 for |n| �= 1. (Choosing a Cartesian
basis in (33), in contrast, couples the equation for component n with the components
n±N .) This fact has some direct implications for the electric field induced contributions

to the real space densities. For example, the real space density of z-spins f
(E)
z is trivially

zero. For |N | �= 1 the in-plane components f
(E)
x and f

(E)
y also vanish trivially in real

space, whereas for |N | = 1 they can be nonzero. The real space spin Hall current jz can
be nonzero for all N , whereas the contribution to jx and jy vanishes trivially for all N .

On the right-hand side of (28) we find

−
∫

θ′
KΔf |(E)

k′=k = −
∑

n

einθ

(

b̂

(

fb̂n

∫

θ′
K(1 − cos NΔθ cos nΔθ)

+ ifĉn

∫

θ′
K sin NΔθ sin nΔθ

)
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+ ĉ

(

fĉn

∫

θ′
K(1 − cos NΔθ cos nΔθ) − ifb̂n

∫

θ′
K sin NΔθ sin nΔθ

)

+ ẑfzn

∫

θ′
K(1 − cos nΔθ)

)

.

Here, b̂′ = b̂ cos NΔθ− ĉ sin NΔθ was used and terms odd in Δθ were left out, using that
K is even in Δθ. Including the precession term 2b(ẑfĉ − ĉfz) the equation for the n = 1
Fourier components of f (E) becomes

E∗

2

⎛

⎝
F + G
iG − iF

0

⎞

⎠ = −

⎛

⎝
τ−1
cos iτ−1

sin 0
−iτ−1

sin τ−1
cos 2b

0 −2b τ−1
tr

⎞

⎠

⎛

⎝
fb̂1

fĉ1

fz1

⎞

⎠ (35)

where

τ−1
cos :=

∫

θ′
K(1 − cos NΔθ cos Δθ) = K0 − (KN−1 + KN+1)/2

τ−1
sin :=

∫

θ′
K sin NΔθ sin Δθ = (KN−1 − KN+1)/2

(36)

(possibly negative) were introduced.
With the λ-dependent b, the matrix and hence the solution will be inhomogeneous

in λ. For |N | �= 1 the solution nonetheless goes to zero when λ → 0. For point-like
impurities (τ−1

cos = τ−1
tr = K0 and τ−1

sin = 0) we find

fz1 = i
NE∗λ2k∂afFD

4k2λ2 + K2
0

=⇒ jz =

∫

k

v0fz =
Nk2

Fλ2

2π(4k2
Fλ2 + K2

0 )
(−Ey, Ex) (37)

for the real space spin current. As in [19] one recovers in the clean limit τ−1
tr = K0 � kFλ

a universal spin Hall conductivity σSH = (N/8π), whereas σSH decreases to zero in the
opposite (dirty) limit.

For the case N = ±1 one has for arbitrary impurity range that τcos = ±τsin =: 2τ02.
The determinant 4b2τ−1

cos + τ−1
tr (τ−2

cos − τ−2
sin ) of the matrix in (35) becomes singular at b = 0.

For N = 1 we find the solution

fb̂1 = −E∗
(

τ02(F + G) +
G

4τtrb2

)

fĉ1 = −iE∗ G

4τtrb2

fz1 = −iE∗ G

2b
.

(38)

The z-component of the real space spin density
∫

k
fz must vanish trivially as noted

after equation (34), the in-plane spin components resulting in a electric-field-induced
polarization in real space

s =

∫

k

(b̂fb̂ + ĉfĉ) = −ẑ × E

∫

da D

(

τ02(F + G) +
G

2τtrb2

)

. (39)

Remember that the contribution from the equilibrium polarization is zero in real space.
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According to (31), G = 0 for N = 1 for arbitrary dispersion and an arbitrary range
of impurities. Thus, fz = 0 for Rashba coupling, implying a zero spin Hall current. A
similar analysis applies to N = −1, e.g. for linear Dresselhaus coupling, since a model of
winding −N is related to one of winding N through reflection (say along the x-axis).

If for Rashba coupling there was a nonzero SHE, i.e. G �= 0, then fz and consequently
the spin Hall current would be independent of λ (since in general, G ∝ λ). Furthermore,
the in-plane components fx and fy of the polarization would diverge as λ−1 as λ → 0,
i.e. one would not recover an unpolarized distribution when sending the spin–orbit
coupling to zero. However, in the derivation of the Boltzmann equation there were only
assumptions of λ and f being small enough, and no assumptions of them not being
too small. Therefore, to the extent that a diverging polarization in such a case is an
unthinkable result, the vanishing of the SHE for the Rashba case is a natural implication.

7. General arguments for a vanishing SHE

The vanishing of the SHE for the Rashba case has been found by numerous previous
studies (see section 1). To the author’s knowledge it has not been related to the finiteness
of the in-plane polarization as done in the argument above. In linear response studies
general arguments have been given in the case of quadratic dispersion a ∝ k2 [27, 28],
where it is noted from [σy, λ(p × σ)z] = 2iλpyσz that for Heisenberg operators

d

dt
σ̂y = −i[σ̂y, Ĥ + V̂imp] = 2λp̂yσ̂z = 2λmĵz

y (40)

for non-magnetic impurities. The steady state condition 〈(d/dt)σ̂y〉 = 0 forces the spin

Hall current 〈ĵz
y〉 to be zero. A similar argument applies to ĵz

x.
The analogue to this argument in the Boltzmann approach can be established for the

real space densities. In phase space, (s × b)y = bxs
z = jz

ybx/v0y. Only for N = ±1 and
for b/v0 independent of k is it possible for bx/v0y to be a constant, here ∓λm. According
to (9) one has ∂ts

y = −2(s × b)y − E · ∂ksy + J in the uniform case. In the integration
over momentum the last two terms vanish, resulting in ∂ts

y = ±2λmjz
y in real space for

N = ±1. Likewise, ∂ts
x = −2λmjz

x. In a steady state, ∂ts = 0 implies jz = 0.
In phase space, on the other hand, the steady state condition 0 = ∂ts

y = −2(s ×
b)y − E · ∂ksy . . . does not imply a vanishing jz

y . We could have had G �= 0 as long as∫
da Dv0G/b = 0 guaranteed the vanishing in real space. However, in section 6 we found

that jz = 0 also in phase space.

8. Assumption of a linear response in the spin–orbit coupling

We are now going to study the implications of a basic assumption, namely that the steady
state response of a spin–orbit coupled system in an electric field is perturbative in the
small parameter λ (vF is kept constant), analogously to the usual assumption of a linear
response in the electric field strength E. The latter assumption means that one can
expand the solution f eq + f (E) + f (E2) + · · · in non-negative powers in the electric field
and solve the equation iteratively by solving equations that are homogeneous in orders of
E (see e.g. equation (28)). With the assumption now to be studied, the same is expected
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to apply also for the spin–orbit coupling parameter λ (vF is kept constant), in which case
the solution can be expanded in powers of E and λ

f =
∑

m,n≥0

f (λm,En) (41)

assuming that the solution is analytic both in λ and E.
The equations are going to be solved order by order in both parameters, as illustrated

in (45). In the expansion of the Boltzmann equation in a small spin–orbit coupling there
is in this case no ambiguity about which terms to include in a given equation. This should
be contrasted with the previous section, where we chose to include the precession term
2b × f—a term of order O(λ2)—though we discarded other terms of the same order, for
example in (24). The reproduced results seem to be based on hand-picking terms with
physical insight.

9. Boltzmann equation without the precession term

Due to the assumption in section 8, not only the equation but also the solution is linearized
in the spin–orbit coupling. Together with the habitual linearization in the electric field
this means that we consider

f = f (0) + f (λ) + f (E) + f (λ,E) (42)

where the superscripts denote the order in λ and E, respectively (e.g. f (E) ∝ λ0E1). The
equilibrium distribution is f eq = f (0) + f (λ), where f (0) = 1fFD.

The left-hand side of the Boltzmann equation (8) is in the static, uniform case

df

dt
= E · ∂kf + 2σ ·

O(λ2)
︷ ︸︸ ︷
f × b (43)

where the precession term must be neglected to order λ. However, leaving out the
precession term leads to some formal trouble in the case when N = ±1. The
derivative E · ∂k = eiθ(Ex − iEy)(∂k + ik−1∂θ) + c.c. comes with a winding number
±1. For a spin–orbit coupled system the equilibrium polarization f eq = f (E = 0) also
has a winding number, here N . Thus, the combination E · ∂kf comes with terms of
winding N ± 1. For N = 1 (e.g. Rashba) or N = −1 (e.g. linear Dresselhaus) the left-
hand side therefore contains terms without angular dependence, as seen in (32). Such
terms cannot be matched by the collision integral, essentially because an equation like
1 =

∫
dθ′ (f(θ) − f(θ′)) has no solution. (A collision integral cannot be a source/drain.)

This lack of a solution might be related to the discarding of the principal part terms
X in (21), but we have not been able to investigate this. As a simple remedy, we introduce
instead a small spin relaxation term, which could come from spin relaxation processes not
related to the spin–orbit coupling. The Boltzmann equation then reads

σ · τ−1
S f + E · ∂kf = −

∫

k′
Wkk′ [δ(Δa)Δf + δ′(Δa)σ · ΔbΔf0] (44)

where it is assumed that τ−1
S is much smaller than τ−1

tr , is independent of λ and is a
number, though in general it could be a matrix.
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We now solve the Boltzmann equation (44) order by order in λ and E as shown in
equation (45)

λ0E0: 0 = −
∫

k′
Wkk′δ(Δa)Δf (0)

λ1E0: σ · τ−1
S f (λ) = −

∫

k′
Wkk′

[
δ(Δa)Δf (λ) + δ′(Δa)σ · ΔbΔf

(0)
0

]

λ0E1: E · ∂kf (0) = −
∫

k′
Wkk′δ(Δa)Δf (E)

λ1E1: σ · τ−1
S f (λ,E) + E · ∂kf (λ)

= −
∫

k′
Wkk′

[
δ(Δa)Δf (λ,E) + δ′(Δa)σ · ΔbΔf

(E)
0

]
.

(45)

Note that terms known to be zero were left out6. We are out to find f (λ,E), which is of
order λ1E1 and therefore the first contribution that incorporates the combined effects of
an electric field and spin–orbit coupling7. However, to solve the λ1E1 equation one needs
to solve the previous equations to find out f (λ) and f (E).

The λ0E0 equation is consistent with f (0) = 1fFD from (27). The spin relaxation
term in the λ1E0 equation decreases the equilibrium polarization in (27) into f (λ) =
γσ · b∂afFD with γ := (1 + τ−1

S τtr)
−1 ≈ 1. The λ0E1 equation is solved by f (E) =

−1τtrEk̂∂kfFD. So finally at the λ1E1 equation one already knows the terms E · ∂kf (λ)

and
∫

k′ Wkk′δ′(Δa)Δb · σΔf
(E)
0 . Collecting these contributions on the left-hand side we

get an equation of the same form as (29), but with the spin precession term replaced by
the spin relaxation term, and with F and G modified due to the factor γ in E · ∂kf (λ).
The equation for the n = 1 Fourier coefficients turns into

E∗

2

⎛

⎝
F + G
iG − iF

0

⎞

⎠ = −

⎛

⎝
τ−1
S + τ−1

cos iτ−1
sin 0

−iτ−1
sin τ−1

S + τ−1
cos 0

0 0 τ−1
S + τ−1

tr

⎞

⎠

⎛

⎝
fb̂1

fĉ1

fz1

⎞

⎠ . (46)

For N = ±1 one has τcos = ±τsin for a general impurity potential, leading the determinant
of the matrix to be zero unless τ−1

S �= 0. (With τ−1
S = 0 there is either no solution when

G �= 0 or multiple solutions when G = 0.) For |N | �= 1 one has τcos �= τsin for realistic
impurity potentials, in which case τ−1

S �= 0 is not needed.
It is important to remember that the matrix does not depend on λ. The polarization

f (λ,E) is therefore proportional to λ. It is also clear that fẑ = 0 and the spin Hall current
jz are zero—for an arbitrary spin–orbit coupling.

For N = ±1 we can adopt the derivation in section 7 to show that ∂tsy =
±mλjz

y − τ−1
S sy in real space. For our steady state case we therefore find sy ∝ jz

y = 0
in real space for N = ±1. Likewise, sx = 0. For |N | �= 1 the real space polarization
is trivially zero (see under equation (34)). Summarizing we have that for no N in the
perturbative case does the electric field alter any real space densities to lowest order in

6 For example f (E) = 0 since the electric field alone leads to no polarization, therefore τ−1
S f could be left out in

the equations of order λ0Ex.
7 Note that f (λ2) or f (E2) cannot contribute to the SHE. Therefore we do not need consider them, though one of
them need not be subleading to f (λ,E).
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λ. The only nonzero real space densities are the equilibrium spin currents jx and jy for
|N | = 1. From f eq = fFD+γσ ·b∂afFD for N = ±1 we find jx

y = ∓jy
x = (1/4π)(γ−1)bFkF.

Table 1 gives a summary and offers a comparison of the different cases considered in
this paper. In this paper we do not consider the case N even, but we note that for |N | = 2
an electric-field-induced contribution to the real space spin currents jx and jy is not forced
to be zero by simple angular considerations. (This is analogous to sx(E) and sy(E) being
allowed to be nonzero only for |N | = 1.) The case N = 2 is relevant for pseudospin
currents for one valley in bilayer graphene. Note that this is not the SHE pseudospin
current jz discussed in [41]. Actually, with the definition (5) a nonzero (pseudo)spin
current jz is not possible when a = 0, the latter being the case in single and double layer
graphene.

10. Electric field induced corrections to the collision integral

The precession term has so far seemed like the only term that could involve the fz

component and lead to nonzero spin current jz. In this section we are going to see that
the electric field E modifies the collision integral in a way that involves the fz component.
However, the correction turns out to be of order λ2.

In trying to incorporate in our Boltzmann equation all terms present to first order
in our parameters we have so far left out terms by gradient expanding the right-hand
side of the Dyson equation (13) for GK only to zeroth order and not to first order in the
electric field. First order corrections have been accounted for, for example, in the case of
electron–phonon renormalization of the ac conductivity [42] (see also [33]) and have also
been discussed in the SHE and AHE literature (see e.g. [18] or [43]). However, a derivative

such as 2E · ∂kSb̂s = sk−1Eθ̂∂θb̂ · σ, which occurs in the derivation of these corrections,
gives a vector that remains in the plane. The collision integral becomes more complicated
but does not involve the fz component.

The contribution discussed in this paper comes about in a slightly subtler way, and
has to the author’s knowledge not been discussed previously. It comes from gradient
expanding the equation of motion also for the retarded Green’s function G0R, which results
in the correction δG0R given by (20). With Bz = 0 one obtains

δJ = −
∫

k′

Wkk′

2π

∫
dω

2π
(δG0R

k ΔfG0A
k′ + G0R

k ΔfδG0A
k′ + G0R

k′ ΔfδG0A
k + δG0R

k′ ΔfG0A
k )

= −
∑

ss′

∫

k′

Wkk′

8
[(σzΔS ′ + S ′Δfσz)Eθ̂(∂a − sb−1)δ(Δε)

+ (σzΔS + SΔfσz)Eθ̂
′(∂a′ − s′b′

−1
)δ(Δε)]

= σ · 1
2

∫

k′
δ′′(Δa) (Wkk′ [ẑM · Δf + MΔfz ]) (47)

where for the last line the expansion (23) was used and where

M(k, k′) := k−1Eθ̂b
′ + k′−1

E
θ̂
′b. (48)

Note that δJ0 = 0, i.e. there is no contribution to the charge part of the equation only
to the polarization part. Note particularly that δJz �= 0, which would give a nontrivial
equation for fz. However, since M ∝ λE and f ∝ λ this correction contributes to order
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λ2E as announced, in which case the result fz = 0 in section 9 is not changed to lowest
order.

One can ask if this correction could change the result fz = 0 for the Rashba case in
the nonperturbative scenario of section 6 where homogeneity in λ was not an issue. The
correction would then enter as an imaginary element of order λ2E replacing the zero in
the bottom of the vector with F and G in (35). However, since τ−2

cos − τ−2
sin = 0 for N = 1,

the inverse matrix has a zero zz-element. Therefore, the correction cannot contribute to
fz1 in the Rashba case. In this respect the contributions discussed in the beginning of
this section, on the other hand, could contribute, but we have not investigated them in
a systematic way. The real space spin current jz would in any case remain zero, at least
for a quadratic dispersion, due to the arguments in section 7.

11. Conclusions

This paper studied the intrinsic contribution to the spin Hall current in a spin–orbit
coupled 2DEG by deriving a Boltzmann equation in the Keldysh formalism and solving
it in the uniform steady state case. The vector b determining the spin–orbit coupling
was assumed to be of the form b = b(k)b̂(θ) with b = λk and b̂x + îby ∝ eiθ0+iNθ. We
reproduced the common result that SHE vanishes for N = ±1 (e.g. for Rashba coupling)
but not for other N . We were able to give a new perspective to this vanishing by pointing
out that a nonzero result leads the in-plane components of the polarization to diverge
when λ → 0.

The mentioned treatment does not assume the response to be perturbative in λ. We
therefore found it interesting to study the implications of assuming the response to be
perturbative not only in the electric field but also in λ. The precession term—previously
the prerequisite for the spin Hall current—must then be left out to first order in spin–
orbit splitting. The out-of-plane polarization fz becomes trivially zero and there seems
to be zero SHE for any winding. We also saw that all other real space densities have zero
electric field induced contributions.

Leaving out the spin precession term gives a Boltzmann equation for in-plane
polarization (fx, fy) that is unsolvable for N = ±1. The unsolvability might be related
to the left out principal parts, the inclusion of which would have been beyond the scope
of the present study. As an ad hoc remedy the precession term was replaced by a small
spin relaxation term. This could suggest that if the response is perturbative in λ, then
non-magnetic impurities are not enough for the existence of a steady state solution for
the polarization.

To cover all contributions to first order in electric field, in spin–orbit splitting and in
impurity strength and concentration, we considered corrections to the collision integral
that come from going to first order in electric field in the gradient expansion of the self-
energy side of the Dyson equation. One of the corrections, to our knowledge not discussed
before, actually involves the fz component. However, this contribution is of order λ2.
Thus, the vanishing of the spin Hall current to lowest order in λ in the perturbative case
is not changed by these corrections.

Finally, the paper includes a detailed discussion of why a relaxation time
approximation fails and a comment on pseudospin currents in bilayer graphene.
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Appendix A. Left-hand side of equation (29)

For b = λk and b̂x + îby = eiθ0+iNθ and f = γb∂afFD one has

E · ∂kf =

(

Ek̂∂k +
1

k
Eθ̂∂θ

)

γλkb̂∂afFD = γλ(Ek̂b̂ + NEθ̂ĉ) ∂afFD + γλk Ek̂b̂ ∂k∂afFD.

(A.1)

The term
∫

k′ Wkk′δ′(Δa)Δb · σΔf
(E)
0 is here for brevity only evaluated for a point-like

impurity potential, i.e. Wkk′ = W constant, and constant density of states D(a) = m/2π.
Hence

τ−1
tr =

∫

k′
δ(Δa)Wkk′(1 − cos(Δθ)) = DW. (A.2)

With δ′(Δa) = ∂aδ(Δa) = −∂a′δ(Δa) a partial integration gives
∫

k′
Wδ′(Δa)ΔbΔf

(E)
0 =

∫

da′dθ′

2π
δ(Δa)∂a′(DWΔbΔf

(E)
0 )

= λ

∫

da′δ(Δa)

[

k∂a∂kfFD

∫
dθ′

2π
Ek̂′Δb̂ + ∂a′(k′)∂kfFD

∫
dθ′

2π
b̂′ΔEk̂′

]

= −δ|N |,1
λ

2
(Ek̂b̂ + NEθ̂ĉ)(k∂a∂kfFD + ∂afFD)

= −δ|N |,1
λ

2
(Ek̂b̂ + NEθ̂ĉ)(k∂k∂afFD + ζ∂afFD) (A.3)

where it was used that b̂′ = b̂ cos NΔθ − ĉ sin NΔθ and k̂′ = k̂ cos Δθ − θ̂ sin Δθ. In the
last line it was used that ∂a∂k = ∂a((da/dk)∂a) = (∂av0)∂a + v0∂

2
a = ((ζ − 1)/k)∂a + ∂k∂a

for v0 ∝ kζ−1. For a non-constant D (i.e. for ζ �= 2) the result in (A.3) is modified.
Note also that it is only for point-like impurities that the contribution (A.3) vanishes for
|N | �= 1.

Adding up (A.1) and (A.3) one obtains for N = 1 that F = 1
2
λ(ζ − 2)∂afFD +

1
2
λγk∂k∂afFD and G = λ(γ − 1)(∂afFD + 1

2
k∂k∂afFD). For |N | �= 1 the contribution (A.3)

vanishes and one gets for example G − F = Nλγ∂afFD, needed for the result (37).

Appendix B. Failure of a relaxation time approximation

A useful approximation for the collision integral found in standard applications of the
Boltzmann equation is the relaxation time approximation (RTA)

J [fk] = −
∫

k′
δ(Δε)Wkk′(fk − fk′) −→ −δfk

τ
, (B.1)
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where the relaxation time τ depends only on the absolute value k of the momentum. It
expresses that the role of the collision integral is to relax the deviation from equilibrium
δfk := fk − f eq

k . For angle independent (i.e. momentum independent) Wkk′ it can be
derived from the collision integral to the left in (B.1). Thus RTA should be a good
approximation for weakly momentum dependent impurity potentials.

A prerequisite for the RTA is that it is consistent with the conserved quantities. In
particular, the momentum integral of the Boltzmann equation should give the continuity
equation ∂tn + ∂x · j = 0 expressing the conservation of particle number. The right-
hand side (given Wkk′ = Wk′k) indeed vanishes identically

∫
k
J [fk] = 0, expressing

that the collision term cannot in real space act as a source (or drain) of particles. For
the RTA particle conservation is not automatic, since

∫
k
δfk/τ would be nonzero if δf

contained an angle independent component. However, in typical applications the deviation
δf =

∑
n δfn exp(inθ) contains to lowest order only angle dependent terms.

The RTA can be implemented also in the case of spin in the same way as in (B.1), or
more generally by letting τ−1 be a matrix acting on δf to allow for different relaxation
times for different spin components of f . The RTA has been useful for example for the
derivation of the Dyakonov–Perel spin relaxation (DPSR) mechanism [44] (see also [45]
and [46]), found by deriving for initially polarized electrons the Bloch equations from the
uniform, time-dependent Boltzmann equation for a Rashba-type spin–orbit interaction.
In that problem the electric field is absent.

The general collision integral (17) still satisfies
∫

k
J = 0 for all components, expressing

that not only particle number but also spin is conserved in collisions with non-magnetic
impurities. Thus, a sensible RTA must still satisfy

∫
k
δfk/τ = 0. That is to say δf

cannot contain an angularly constant term. In the derivation of the DPSR this is satisfied
although n = 0 components are present and essential. The RTA is only needed in the
part of the Boltzmann equation that is of first power in λ, and f (λ) is by simple inspection
seen to only contain the angular components n = ±1.

We note that in the SHE setup studied in this paper the situation is very different
compared to the DPSR problem. It turns out that a RTA always implies a nonzero SHE.
For N = ±1 we therefore do not even qualitatively reproduce the correct spin current.
For |N | �= 1 the SHE is on the other hand nonzero and can be captured by a RTA. In the
N = ±1 case the nonzero SHE is intimately related to the RTA failing to conserve spin.
With the simple RTA J [f ] → −δf/τ the real space equations for the Rashba/Dresselhaus
case in section 7 get modified to

∂ts
y = ±2mλjz

y − δsy/τ. (B.2)

A steady state no longer implies jz
y = 0 but instead jz

y = ±δsy/2mλτ . Thus, if a
polarization in real space is induced by the electric field, then there is a nonzero SHE.
The result in (39) shows that such a polarization is actually induced. Thus, the collision
integral transformed into RTA form would enter as a nonzero spin source, simultaneously
allowing for a nonzero SHE. Therefore, in contrast to the DPSR problem with Rashba
coupling, the RTA fails when applied to the SHE problem with Rashba coupling.

For N = ±1 in the perturbative case, a RTA and equation (B.2) do not lead to the
same contradiction since sx = sy = 0 in real space (see table 1). In the rest of this
appendix we give some further details on the nonperturbative case.
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In the SHE problem we look at a steady state situation and the expansion is done
around the equilibrium distribution instead of an initial polarization as in the DPSR
problem. The Boltzmann equation is expanded in powers of E rather than in powers of λ.
The lowest order deviation f (E) (from the equilibrium polarization f eq) will now contain
angle independent terms, causing the non-vanishing of

∫
k
f (E) in (39). Contrast this with

ordinary steady problems with an electric field, where constant terms are not present in
f (E) ∼ τE ·v∂εf

eq since f eq is independent of θ and E ·v comes with angular components
n = ±1. In the SHE problem on the other hand f eq ∝ b comes with angular components
±N , and in the Rashba/Dresselhaus case in particular N = ±1. In the Rashba case f (E)

can therefore contain angular components n = ±1 ± 1 = −2, 0, 2 in the Cartesian basis.
(In the rotating basis given by {b̂, ĉ, ẑ} used in this paper this translates into the Fourier
components n = ±1.) In particular, the presence of the n = 0 term means that a RTA
would be inconsistent with the impurity scattering having to conserve spin.

The other side of the coin—as displayed in (B.2)—is that the RTA allows for fz1 �= 0
and consequently a nonzero SHE. The analogue of equation (35) is with a general matrix
τ−1 with constant elements is given by

E∗

2

⎛

⎝
∂kf eq

b̂

i 1
k
f eq

b̂
0

⎞

⎠ = −

⎛

⎝
τ−1
bb τ−1

bc τ−1
bz

τ−1
cb τ−1

cc 2b + τ−1
cz

τ−1
zb −2b + τ−1

zc τ−1
zz

⎞

⎠

⎛

⎝
fb̂1

fĉ1

fz1

⎞

⎠ . (B.3)

Note that now the left-hand side derives only from the term E · ∂kf eq, whereas the left-

hand side of (35) had an additional contribution from the term
∫

k′ Wkk′δ′(Δa)ΔbΔf
(E)
0

as seen in (28). This latter term cannot be captured by a RTA. However, this term was
essential for giving the left-hand side in (35) the crucial structure that all the components
of the vector are proportional to each other, i.e. linearly dependent, as followed with G = 0.
This structure makes it possible to find a solution fz1 = 0 for suitable matrix elements in τ .
(In (35) we had τcos = ±τsin.) In the vector of the left-hand side of (B.3), on the other hand,
the components ∂kf eq

b̂
and k−1f eq

b̂
are linearly independent. There is no natural choice

of matrix elements of τ−1 that with such a left-hand side can result in the cancellations
needed to make fz1 vanish. (The elements of τ−1 are assumed to be at the most weakly
dependent on k and should certainly not contain factors of Fermi–Dirac distributions.)
For the same reasons also a simple collision integral like J =

∫
k′ Wkk′δ(Δa)Δf fails

to reproduce the vanishing SHE because it gives a Boltzmann equation with the same
left-hand side as in (B.3).

For the case |N | �= 1 the term
∫

k′ Wkk′δ′(Δa)ΔbΔf
(E)
0 vanishes for W constant

(corresponding to τ constant), as seen in appendix A. The collision integral enters the
Boltzmann equation only with the simple contribution

∫
k′ Wkk′δ(Δa)Δf , which for W

constant can be put in the RTA form. Therefore, the RTA can qualitatively reproduce
the correct result. Neither can there be any angularly constant terms in f (E) for |N | �= 1.
Here the RTA works well, in contrast to the |N | = 1 case.
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