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Theoretical considerations

Mean-field description of the charge-density wave

We resort to a phenomenological mean-field description. We start with a generic Fröhlich-

type Hamiltonian describing electrons coupled to phonons,1

H =
∑
k

εkc
†
kck +

∑
q

ωqb
†
qbq +

∑
k,q

gq(bq + b†−q)c†k+qck. (S1)

Here, ck annihilates electrons with momentum k and energy εk, bq annihilates a phonon

with wavevector q and frequency ωq, and gq denotes the strength of the electron-phonon

coupling. Within mean-field theory, we assume that certain phonon modes (denoted by Q)

go soft due to their coupling to the electronic system and develop a finite expectation value.

Restricting to the lowest Fourier components and neglecting phonon dynamics beyond the

static charge-density wave (CDW) distortions, we find the mean-field Hamiltonian

H =
∑
k

εkc
†
kck +

∑
k

∑
Q

gQ〈bQ + b†−Q〉c
†
k+Qck (S2)

for the electronic degrees of freedom. Within this approach, the CDW acts on the electrons

as a periodic potential V (r). Indeed, the electron-phonon interaction term can also be

expressed in real space as

Hel−ph =

∫
drV (r)ψ†(r)ψ(r), (S3)

where the mean-field CDW potential takes the form

V (r) =
∑
Q

e−iQ·rgQ〈bQ + b†−Q〉. (S4)
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To find the vectors Q, we consider a triangular lattice of Nb atoms with lattice vectors

a1 = a(1, 0), (S5)

a2 = a(1/2,
√

3/2) (S6)

and bond length a = 3.445 Å. The corresponding reciprocal lattice vectors bi satisfying

ai · bj = 2πδij are

b1 =
4π√
3a

(
√

3/2,−1/2), (S7)

b2 =
4π√
3a

(0, 1). (S8)

The unit cell of the CDW has a linear dimension which is approximately three times larger

than the unit cell of the atomic lattice, acdw ≈ 3ai (for i = 1, 2). Correspondingly, the

reciprocal lattice vectors of the CDW are approximately a factor of three smaller, bcdw
i ≈

bi/3. Then, the first harmonics of the CDW have wavevectors

Q1 = q(1− δ)(
√

3/2,−1/2),

Q2 = q(1− δ)(0, 1), (S9)

Q3 = q(1− δ)(−
√

3/2,−1/2) = −(Q1 + Q2),

where q = 4π
3
√
3a

, and δ � 1 accounts for the fact that the CDW is not exactly commensurate

with the lattice.

Tight-binding model

To illustrate the effect of the CDW on the YSR state wavefunction, we perform model

calculations within an effective tight-binding description. Specifically, we implement a model

for the NbSe2 band structure first introduced in Ref.2 and later used in Refs.3–7. The model
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uses that the relevant states near the Fermi energy have mostly Nb character and therefore

focuses on one atomic d-orbital per niobium atom. (The model neglects an additional band

centered at the Γ point which predominantly derives from Se orbitals and has strongly three-

dimensional character.8) Reducing the band-structure problem to the triangular Nb lattice

makes it necessary to include hopping up to fifth nearest neighbors to reproduce the NbSe2

band structure. The resulting band structure

E(k) = t0 + t1(2 cos ξ cos η + cos 2ξ) + t2(2 cos 3ξ cos η + cos 2η) + t3(2 cos 2ξ cos 2η + cos 4ξ)

+ t4(cos ξ cos 3η + cos 5ξ cos η + cos 4ξ cos 2η) + t5(2 cos 3ξ cos 3η + cos 6ξ)

(S10)

is sixfold symmetric about the Γ point. Here, we defined ξ = kx/2 and η =
√

3ky/2. The

Table S1: Values of the fitting parameters tn in Eq. (S10) in meV.

t0 t1 t2 t3 t4 t5
band 1 10.9 86.8 139.9 29.6 3.5 3.3
band 2 203.0 46.0 257.5 4.4 -15.0 6.0

hopping strengths tn are used as fitting parameters to reproduce the NbSe2 band structure.

The values of the parameters tn are given in Table S16 for the two bands. The parameters

for band 1 reproduce the inner cylindrical bands of NbSe2, while the parameters for band 2

reproduce the outer bands. Figure S1a shows the Fermi surfaces of the two bands, with the

Brillouin zone outlined in gray.

While this model accounts for the symmetries of the band structure and the approximate

shapes of the Fermi surfaces, it is limited in other ways. The model neglects interlayer

coupling which, however, is expected to be weak compared to the intralayer couplings. In

this approximation, it suffices to consider a single (tri)layer of 2H-NbSe2, consisting of a Nb

layer sandwiched between two Se layers with equal orientations of the triangles. The model

also neglects spin-orbit coupling.9 This precludes a one-to-one identification of the two sets
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of bands in Fig. S1a with specific spin directions.

The elementary layer of bulk 2H-NbSe2 consists of two trilayers with the orientations of

the Se lattices rotated by 180◦ with respect to one another. Neglecting interlayer coupling,

the band structure of the second trilayer is identical to the first (but differs in the spin

assignments). Thus, the bulk crystal has twofold degenerate bands, consistent with the fact

that it has an inversion center located between the trilayers. The adatom predominantly

couples to one of the trilayers and the band structure in Eq. (S10) should be a good starting

point. In the following, we follow Ref.7 in neglecting the splitting between the two sets

of bands and model the system either by band 1 or band 2, taking these bands as spin

degenerate.

Superconductivity is included by incorporating the tight-binding Hamiltonian into a

Bogoliubov-deGennes Hamiltonian with conventional (isotropic) s-wave pairing. We choose

the pairing strength to be ∆ = 1 meV. In experiment, one finds multiple coherence peaks for

2H-NbSe2. Since we focus on YSR states far from the gap edge, we choose a representative

value for ∆ which falls into the range of the peak distribution (0.7 − 1.4 meV) found in

experiment.

The multiple coherence peaks originate from multiband or anisotropic superconductivity,

or both. Our modeling does not account for these effects. In principle, an anisotropic gap

function affects the wavefunction patterns of the YSR states. However, the (observable)

spatial extent of YSR states is smaller than the coherence length through which effects of

the pairing function would enter. We thus expect that the effect of an anisotropic pairing

function on the YSR wavefunctions is weak and therefore account for superconductivity via

an isotropic pairing function.

Coupling to the magnetic impurity

While the origin of the magnetic moment and the resulting exchange coupling can be un-

derstood starting with an Anderson model and its mapping to a Kondo Hamiltonian in the
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x10 4(b)(a) band 1, E=0.59meV x10 4(c) band 2, E=0.49meV
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Figure S1: (a) Fermi surfaces of bands 1 and 2 (see Eq. (S10) and Table S1). (b,c) Electronic
probability density |u(r)|2 of the YSR state in the absence of the CDW for JS/2 = 120 meV,
K = 0 and a lattice of size 504× 504 with periodic boundary conditions for band 1 (b) and
band 2 (c). The region shown includes 40× 40 lattice spacings.

absence of valence fluctuations (see Ref.10 for an extensive pedagogical discussion), YSR

states are typically well described within a model which treats the impurity spin in the

Kondo model as classical.11–13 For YSR states in NbSe2, this model was previously used in

Ref.7. Following this reference, we model a magnetic impurity as a classical spin S which

interacts with the substrate electrons through the exchange interaction JSσz/2 and accom-

panying potential scattering K. In our experiment, we focus on magnetic impurities located

above the center of a Nb triangle (hollow-centered, see Fig. 1b of the main text). The im-

purity induces not only separate exchange and potential couplings to its three neighbors,

but also nonlocal exchange couplings which scatter electrons between the three sites via the

impurity. It is essential to retain the latter to ensure that the impurity induces only one pair

of YSR resonances. If we assume identical hopping amplitudes between the three sites and

the impurity and assume that the impurity spin is aligned along the z-direction, we obtain

the exchange coupling

Hexch = −JS/2
3

∑
i,j

∑
s,s′

c†isσ
z
ss′cjs′ (S11)
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and potential scattering terms

Hpot =
K

3

∑
i,j

∑
s

c†iscjs. (S12)

Here, the sums over i and j run over the three nearest-neighbor Nb sites of the impurity, σz

denotes a Pauli matrix, and cis annihilates an electron on site i with spin s.

Figures S1b and c show the probability densities of the YSR states for (a spin-degenerate

version of) bands 1 and 2, respectively, for a specific choice of impurity parameters. The

spatial distribution of the probability density is threefold symmetric in both cases. Due to

the more isotropic character of band 1, the corresponding YSR state is also more spatially

isotropic than its band 2 counterpart, which exhibits a more pronounced anisotropy. In a

more realistic modeling including the effects of spin-orbit coupling on the band structure

(but within the approximation that the impurity is coupled only to a single trilayer), the

YSR states would be simultaneously coupled to spin-textured, but polarized versions of both

bands. While this implies that our results for the YSR wavefunctions are only qualitative,

the symmetry of the YSR wavefunctions should not be affected by this approximation.

Similarly, we expect that the qualitative variation of the YSR energies with the location of

the adsorption site relative to the CDW would also be unaffected.

We note that in our approximation, there is only a single pair of YSR states for a classical

magnetic impurity. In fact, this conclusion would remain valid even when spin-orbit splitting

of the bands was taken into account. On the one hand, it is known that even in multiband

situations, a classical magnetic impurity induces only a single pair of YSR states. In fact, if

we write the matrix of exchange couplings Jαα′ between bands α and α′, it rather robustly

satisfies the relation J11J22 = J12J21. With this relation, a classical magnetic impurity

generates only a single pair of YSR states. For instance, this was shown explicitly for a

generic model motivated by the multiband superconductor MgB2
14 and for a quantum dot

coupled to multiple superconducting leads.15 In the presence of spin-orbit coupling, the same
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conclusions can be shown to remain valid. This can be seen by expressing the Hamiltonian

in terms of creation and annihilation operators for Kramers pairs of electron states rather

than conventional spin states.

Coupling to the charge-density wave

As explained above, the effect of the CDW on the electrons of the substrate can be described

through a periodic potential. Within the tight-binding model, we include the CDW as a

modulation of the on-site potential,

Hcdw =
∑
r,σ

c†rσV (r)crσ, (S13)

where the sum runs over the lattice sites of the triangular Nb lattice. The CDW potential

V (r) is constructed from the main Fourier components of the CDW [see Eq. (S9)],

V (r) = V0 [cos(Q1 · r + φ1) + cos(Q2 · r + φ2) + cos(Q3 · r + φ3)] , (S14)

where V0 denotes the amplitude of the CDW potential. Except for φ1 = φ2 = φ3 and similar

fine-tuned cases, typical choices of the phases φi yield CDW potentials with the desired

symmetry and shape, exhibiting an absolute maximum, an absolute minimum, and a local

minimum/saddle point. For definiteness, we choose φ1 = φ2 = 0.

Due to the small deviations from commensurability, the CDW shifts slowly as a function

of position relative to the underlying atomic lattice. On the scale of the YSR states, these

shifts can be considered constant so that the CDW potential can be written as

V (r) = V0

[
2 cos

(√
3
q

2
(x− x0)

)
cos
(q

2
(y − y0)

)
+ cos (q(y − y0) + φ3)

]
, (S15)

where q = 4π/3
√

3. The offsets x0 and y0 originate from the deviation δ from commen-

surability, and describe the local shift of the CDW relative to the atomic lattice. In the
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experiment, the measured maxima of the CDW correspond to regions where the lattice de-

formation compresses the ions, creating an attractive potential for the electrons. For this

reason we choose the potential V (r) to have minima where the measured tunneling density

of states has maxima, i.e., position I of the adatom corresponds to a minimum of V (r) and

position III corresponds to a maximum. In principle, the CDW may also modulate the hop-

ping parameters of the tight-binding model, but the effective long-range hopping processes

of the model make this cumbersome to include.

We note that this model also includes configurations of the CDW relative to the atomic

lattice which are not observed experimentally (see Fig. S18). Theoretical results for these

unobserved configurations are only included for completeness. The results for observed

configurations are not affected since the Moire-like variations occur on relatively large scales.

Numerical results

Within this model, we can study how the wavefunction and the energy of YSR states depend

on the adatom position relative to the CDW. As discussed above, the model cannot reproduce

the experimental results quantitatively as it neglects various relevant effects. Nevertheless,

the model is expected to capture the symmetries of the YSR wavefunctions and to provide

insights into the qualitative dependence of the YSR energy on the adsorption site relative

to the CDW. Figure S2 shows the probability density of the YSR wavefunction for the six

different positions of the adatom relative to the CDW, as discussed in the main text. The

results are obtained for the parameters of band 2. The adatoms in positions I and III are at

the maximum and the minimum of the CDW, respectively, i.e., at points with a threefold

symmetric environment. Consequently, the corresponding density plots (Fig. S2a and c)

present threefold symmetry. Positions II, IV, and V exhibit reflection symmetry about an

axis that passes through the adatom. For the corresponding plots shown in Fig. S2b, d, and

e, this axis is aligned along the vertical direction. Finally, position VI has no symmetries

with respect to the CDW and consequently, the state shown in Fig. S2f also exhibits no
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x10 4(a) Position I,  E=0.44meV x10 4(b) Position II,  E=0.42meV x10 4(c) Position III,  E=0.55meV

x10 4(d) Position IV,  E=0.46meV x10 4(e) Position V,  E=0.45meV x10 4(f) Position VI,  E=0.51meV
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Figure S2: Electronic probability density |u(r)|2 of the YSR state in the presence of the
CDW potential for band 2 and for adatoms located at positions equivalent to those studied
experimentally as presented in the main text. For all plots, the parameters are JS/2 =
120 meV, K = 0, V0 = −30 meV, φ = π/3 and a lattice of size 504 × 504 with periodic
boundary conditions. The region shown includes 40 × 40 lattice spacings. The white lines
outline the CDW, with crossing lines indicating a maximum of the CDW.

symmetries. Interestingly, the YSR state seems to retain the original threefold symmetry

(without CDW) to some degree (compare with Fig. S1c).

Figure S3 shows equivalent plots for band 1. Due to the more isotropic character of

band 1, the threefold symmetry is less pronounced in these plots. Remarkably, position VI

(Fig. S3f) does not preserve any of the original threefold symmetry in the vicinity of the

adatom. More generally, a comparison between Figs. S2 and S3 shows that the detailed YSR

wavefunctions depend quite sensitively on the band structure parameters.

Finally, we discuss the correlation of the energy of the YSR state with the modulation of

the local density of states by the CDW, as shown in Fig. 4 in the main text. Within a simple

model of a classical magnetic impurity, the energy of YSR states depends on the strength
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x10 4(a) Position I,  E=0.37meV x10 4(b) Position II,  E=0.42meV x10 4(c) Position III,  E=0.66meV

x10 4(d) Position IV,  E=0.69meV x10 4(e) Position V,  E=0.61meV x10 4(f) Position VI,  E=0.6meV
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Figure S3: Analogous plots to those in Fig. S2 for band 1. Parameters: JS/2 = 120 meV,
K = 0, V0 = −30 meV, φ = π/3 and a lattice of size 504 × 504 with periodic boundary
conditions. The region shown includes 40× 40 lattice spacings.

of the exchange coupling as measured by the dimensionless parameter α = πν0JS/2, where

ν0 is the density of states, J the exchange coupling, and S the impurity spin. Thus, one

indeed expects the energy of the YSR state to depend on the density of states ν0. The

direction of the energy shift depends on whether the impurity is weakly or strongly coupled,

corresponding to unscreened or (partially) screened impurity spins, respectively. The energy

of the positive-energy YSR state decreases (increases) with the density of states, depending

on whether the impurity spin is unscreened (screened). Variations in the local density of

states due to the CDW should thus be reflected in the energy of the YSR states. Within

this picture, the observed correlations suggest that in our experiment the impurity is in the

strong-coupling limit.

This interpretation is consistent with our theoretical results. However, we find that in

general the CDW affects the energy of the YSR state through two mechanisms. In addition
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to the density of states effect, the CDW potential has a second effect which can be roughly

rationalized as the CDW affecting the strength of potential scattering from the impurity and

thereby shifting the YSR energy. Including potential scattering within the simple model,

the energy of a YSR state is given by11,13,16

E = ±∆
1− α2 + β2√

4α2 + (1− α2 + β2)2
, (S16)

where β = πν0K is a dimensionless measure of the strength of the potential scattering K.

The transition between weak and strong coupling takes place at α2 = 1 + β2 where the

energy of the YSR state passes through zero. Roughly, the CDW potential V seems to shift

K to K + V (r0), where r0 denotes the adsorption site of the impurity. For comparison with

experiment, it is important to note that an increase in the CDW potential decreases the

density of states. This can be seen in e.g. Fig. S4g, which shows numerical results for the

average local density of states of the three sites coupled to the impurity (orange) in the

presence of the CDW potential (blue) as obtained from a straight-forward band structure

calculation. Thus, the experiment implies an anticorrelation between the CDW potential V

and the energy of the YSR states.

To illustrate these two effects of the CDW potential, we calculate the YRS energy for

different adatom positions and various values of K. Consider first the results for weak

coupling. We find that depending on the strength K of potential scattering, the CDW

potential is correlated or anticorrelated with the energy of the YSR state. For K = 180 meV

and K = 0, the energy is correlated with the CDW potential, see Fig. S4c and d. In contrast,

we find anticorrelations for K = −180 meV, see Fig. S4b. The correlations observed at K = 0

are consistent with the effect of the CDW potential on the density of states. At this K, the

energy shift of the YSR state due to the change in potential scattering, K to K + V (r0), is

weak since the energy of the YSR states is only weakly dependent on K near the minimum

at K = 0. This is illustrated in Fig. S4a which shows the dependence of the energy of the
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Figure S4: Tight-binding calculations for the energy of the YSR state as a function of the
position of the adatom relative to the CDW, for various potential scattering strengths K.
Panels (a) and (e) show the energy of the YSR state E vs. K for the weakly and strongly
coupled regimes, respectively [as obtained by averaging over different positions of the adatom
relative to the CDW (black) and as given by Eq. (S16) for an appropriately chosen ν0 (red)].
Panels (b)-(d) show E vs. adatom position in the weakly coupled regime for three different
K. The plots show the local density of states (LDOS, orange) to anticorrelate with the CDW
potential V (blue). Panels (c) and (d) show the energy to correlate with the CDW potential
V (anticorrelate with the LDOS). For K = −180 meV shown in panel (b) the correlation
inverts due to the shift of K to K + V (r0) (see text). Panels (f)-(h) show equivalent plots
for the strongly coupled regime, where the effect of K is less relevant. The energy E is
correlated with the LDOS as expected from Eq. (S16). For all plots, the parameters are
V0 = −30 meV, φ = π/3, and a lattice size of 750× 750.

YSR state on K in the weak-coupling regime. Specifically, the black curve averages data for

the energy of the YSR state over different adatom positions. The red curve corresponds to

Eq. (S16) with the same values for JS and K and an appropriately chosen density of states

ν0. Both curves exhibit similar ‘parabolic’ behaviors.

For the strongly coupled regime, we find anticorrelations between the CDW potential

and the energy of the YSR state – and thus correlations between the local density of states

and the YSR energy – for all values of K, see Fig. S4f,g and h. These correlations between

the density of states and the YSR energy are consistent with experiment. To start with, the

anticorrelations at K = 0 are consistent with the expected density of states effect according
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to Eq. (S16). For strong coupling, the dependence of the YSR energy on K is generally

weaker compared to the weak coupling case, see Fig. S4e. For this reason, the shift of K

by the CDW potential no longer overcomes the density-of-states effect. Thus, unless the

impurity is a surprisingly strong potential scatterer, we conclude that in experiment the

impurity is in the strong coupling limit.

Experimental details

Superconducting tip

In order to increase the energy resolution beyond the Fermi-Dirac limit, all measurements

presented in the manuscript were performed using a superconducting Pb tip fabricated by

indenting a W tip into a clean Pb(111) surface until the tip exhibits a bulk-like supercon-

ducting gap. Details of the preparation procedure for tip and sample are described in Ref.17.

The tunneling current is proportional to the convolution of the density of states of the sample

ρS and tip ρt and can be expressed as:18

I(V ) ∝
∫ +∞

−∞
dE ρt(E − eV, T )ρs(E, T )[f(E − eV, T )− f(E, T )]|Mµ,ν |2 . (S17)

Here, f(E, T ) is the Fermi-Dirac-distribution function accounting for the thermal occupation

of the states in the tip and the sample, and |Mµ,ν | is the tunneling matrix element between

the initial state µ and final state ν.

This leads to the differential conductance:

∂I

∂V
∝
∫ +∞

−∞
dE

∂ρt(E − eV )

∂V
ρs(E, T )[f(E − eV, T )− f(E, T )]

+

∫ +∞

−∞
dE ρt(E − eV )ρs(E, T )

∂f(E − eV, T )

∂V
. (S18)

Before investigating the NbSe2 sample, the tip was characterized on a clean Pb(111) sample.
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Figure S5: Constant-height spectrum taken with a Pb tip on a bare Pb(111) crystal (set
point: 4 mV, 200 pA; T = 1.1 K). The fit (shown in green) is performed as described in
Ref.19.

A spectrum taken on bare Pb(111) after preparation of the Pb tip is shown in Fig. S5.

The two superconducting energy gaps of the substrate are well resolved.19 The Pb tip was

characterized by the fit procedure described in detail in Ref.19 where a BCS-like density of

states is assumed for the tip:

ρt(E) = sgn(E)<

(
E − iΓ√

(E − iΓ)2 −∆2
t

)
. (S19)

From this fitting procedure we determine the values for the superconducting energy gap ∆t

and the depairing factor Γ of the tip. The size of the energy gap ∆t ≈ 1.35 meV does not vary

for bulk-like tips, whereas the depairing factor was found to vary between Γ ≈ 10-20 µeV

for different tips.

Numerical deconvolution of the dI/dV spectra

In order find the exact position of the YSR energies on the NbSe2 sample, all data was

numerically deconvolved as described in the following (similar to the procedure described in

Ref.20). Equation (S18) can be discretized into matrix form and then reads:

−−→
∂I

∂V
(V ) ∝ K(E, V, T )−→ρs (E) . (S20)
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The vector on the left hand side contains the differential conductance data, −→ρs (E) is the

local density of states of the sample. The matrix K can be determined by comparing Eq.

(S18) and Eq. (S20) to

Kij(Ej, Vi, T ) = dE
∂ρt(Ej − eVi)

∂V
[f(Ej − eVi, T )− f(Ej, T )]

+dE ρt(Ej − eVi)
∂f(Ej − eVi, T )

∂V
. (S21)

Thus, with the knowledge of the depairing factor and the energy gap of the tip, ρs (E) can be

calculated by finding the pseudoinverse of K. In order to assure that the tip properties did

not change during sample exchange from Pb to NbSe2, we checked the accurateness of the

tip’s energy gap by deconvolution and recalculation of spectra on several Fe adatoms. If an

inaccurate value of the energy gap is assumed for the tip, the energies of the thermally excited

YSR resonances are found in a wrong position in the recalculated trace. Before deconvolving

all spectra are normalized and smoothed using a Savitzky-Golay filter. Deconvolved spectra

of atoms I-VI (cf. Fig. 2 in the main text) are shown in Fig. S6.
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Figure S6: Deconvolved data of atom I-VI (substrate data is shown in grey). Offsets are
indicated by the numbers on the right of each trace.
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Identification of adsorption sites

A dilute coverage of Fe atoms (≈ 50 atoms/(100× 100 nm2)) was deposited by evaporation

on the NbSe2 sample in the STM at temperatures below 12 K and a base pressure of 1 ·

10−10 mbar. Two distinct apparent heights of the Fe atoms are observed (Fig. S7 and Fig.

1c,d in the main text). Furthermore, the two adatom types differ in the d-level resonances

(see blue and orange data in Fig. S8a). Here, only minor differences arise within different

atoms of one species.

10 nm

0.1 nm

0

Figure S7: Overview image of the NbSe2 surface after deposition of Fe adatoms (set point:
500 mV, 80 pA).

To identify the precise adsorption site of the two species, we recorded atomic-resolution

images as shown in Fig. S8c,d. With the atomic lattice superposed on the STM images we

find that all Fe atoms reside in hollow sites of the terminating Se layer. The Fe atoms with

large apparent height solely occupy hollow sites, where the neighboring Se atoms form a

triangle pointing in one direction, while the atoms with low apparent height are enclosed by

a Se triangle rotated by 180◦. Inspection of the atomic structure of NbSe2 shows that there

are two distinct hollow sites which differ by the presence or absence of a Nb atom beneath

(metal-centered, MC, or hollow-centered, HC).

As discussed in the main text, the CDW is incommensurate with the lattice (acdw '

3.05a21) which implies that the CDW smoothly shifts along the atomic lattice of the surface

(see Fig. 1a of the main text and Fig. S11). Hence, the maxima of the CDW can be found at

different sites with respect to the atomic lattice. Some striking motifs occur when the CDW
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Figure S8: (a) Constant-current (I = 100 pA; Vrms = 5 mV) spectra of NbSe2 (black) and
on Fe adatoms in different hollow sites (blue, orange). (b) Constant-height spectra (set
point: I = 500 pA, V = −500 mV; Vrms = 2 mV) of NbSe2 (black) and on Fe adatoms in
different hollow sites (blue, orange). (c) Atomic-resolution STM image showing one adatom
of each species (set point: 4 mV, 200 pA). The atomic lattice of the top Se layer is overlaid
in grey. (d) The same topography and atomic lattice as shown in (c) with an inverted color
code such that only the center of the atoms is visible. The orange and blue triangles point
out the two different adsorption sites.

maximum coincides with a hollow site (HC) or with a chalcogen site (CC) as illustrated in

Fig. 1a of the main manuscript. Interestingly, the configuration with a CDW maximum on a

Nb atom (MC) is not observed.22,23 This local configuration is energetically unfavored.22–26

To avoid the MC structure smooth grain boundaries are built into the CDW modulation.

As illustrated in Fig. S9a,b Fe atoms with small apparent height can be found exactly in the

minimum and maximum of the CDW. Hence, this species is assigned to adsorption in the

HC position. Consequently, atoms with large apparent height are adsorbed in the MC sites.
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(a) (b)

hi

lo

Figure S9: Atomic-resolution STM images of two adatoms with small apparent height,
located on the maximum (a) and minimum (b) of the CDW (set point: 4 mV, 200 pA,
8 × 8 nm2). The intersections of the yellow grid correspond to maxima, the dots to the
minima of the CDW.

Determination of Fe-atom adsorption sites relative to the charge-

density wave

The adsorption site of Fe atoms relative to the CDW was determined for a set of approx-

imately 90 atoms (used for the data compilation in Fig. 4a of the main manuscript). The

center of the Fe atoms as well as the location of the CDW can be determined from the STM

images (see superposed CDW grid on the STM topographies in Fig. S10). The error in

placing the CDW grids is estimated as δx = ± 0.05 acdw, which accounts for the inaccuracy

in placing the CDW grid, possible drift effects and for the inaccuracy in finding the center

of the atom.
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(a)

2 nm

2 nm

2 nm

(b) IV IV

(c) VV

hilo hilo

Figure S10: (a-c) The left panels show atomic-resolution topographies overlaid with the
CDW lattice (set point: 4 mV, 200 pA). The intersections of the yellow grid correspond to
maxima of the CDW, the dots correspond to minima. In the right panel the center of the
atoms can be identified (same images as in the left panel with reversed color code). (a)
shows both atoms of Fig. 1c. (b) and (c) show atoms IV and V of the main manuscript. Red
dashed lines in (b) and (c) indicate the symmetry axis (cf. Fig. 3 in the main text).
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Pinning of the charge-density wave

(a) (b)

hi

lo

HCCC

HC

CC

Figure S11: (a,b) Constant-current STM images of two HC adatoms (set point:
4 mV, 200 pA; 9 × 7 nm2). A stretched color code is used to resolve the atomic corruga-
tion. Dashed circles indicate pure HC and CC domains. In the bottom left of (a) there is a
defect pinning the CC structure.

It has been shown that the CDW can be pinned by crystal defects.26–30 Therefore, the

phase of the CDW is dictated by the complex interplay of lattice defects and long-range

order of the CDW. One such example of a local modification of the CDW in the presence of

a defect can be seen in Fig. S11a in the bottom left, where the CC structure of the CDW

is pinned around a defect (visible as depression). Hence, one may argue that the Fe atoms

can affect the CDW. However, a pinning of the CDW by the adatoms is not observed in the

experiment. The adatoms seem not to favor a specific CDW domain as can be seen in Fig.

S11a and b. Here, pure HC and CC domains are marked. The adatoms are located in the

smooth transition region.

Spatial variation of dI/dV spectra

Figure S12 shows false-color plots of the dI/dV spectra taken along high-symmetry directions

of the YSR patterns across atoms I and IV of the main text. The YSR states exhibit long-

range intensity oscillations with no detectable variations in energy within our experimental

resolution.

We note that in close vicinity to the atom (Figure S13), the intensity variations are par-

ticularly strong and some YSR states are accompanied by a negative value of the differential
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Figure S12: (a,b) Topography of atoms I and IV of the main text (set point: 4 mV, 200 pA).
(c,d) Stacked dI/dV spectra (set point: 4 mV, 200 pA; Vrms = 15 µeV) taken along the
arrows indicated in (a,b).

conductance (NDC) at their high-bias flank. The NDC results from the convolution of YSR

states with the tip density of states and can lead to a strong suppression of conductance.

In an extreme case, an additional (weak) YSR resonance may be hidden in this part of the

spectrum. Examples, where YSR resonances are suppressed below zero are shown by arrows

for atom IV, V and VI in Fig. S13. The local variation of the NDC also affects the spatial

appearance of the YSR states in the dI/dV maps as is discussed in the following section.
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Figure S13: (a-f) Topography (left, 5 × 5 nm2) and dI/dV spectra (right) taken on and in
close vicinity of atoms I-VI of the main text. Colored crosses indicate the location of the
spectra (set point: 4 mV, 200 pA; Vrms = 15 µeV). Corresponding substrate data are shown
in black for each atom. Black arrows highlight YSR states that are strongly affected by the
NDC due to a close-by YSR resonance.
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Additional dI/dV maps of YSR resonances (both bias polarities and

thermal excitations)

Figure S14 shows the complete set of the dI/dV maps of atoms I-VI (the positive bias voltage

was presented in the main manuscript). dI/dV maps at negative bias polarity are depicted

in the lower two rows. Opposite bias polarities image the |u|2 and |v|2 components of the

YSR states, respectively.13

As expected, the |u|2 and |v|2 components lead to distinct scattering patterns. As dis-

cussed above, the convolution of tip and sample density of states may lead to distortions of

the intensity of individual YSR states, culminating in their suppression in the NDC region

of a nearby state. Consequently, also the dI/dV maps at the energy of a specific YSR state

may be affected by a close-lying YSR state.

In particular, the ±β-states of atom II, IV and V are affected by the NDC of the α-

resonances, which are close in energy (Fig. S14). One trick to determine and eliminate the

effect of NDC is to investigate the dI/dV maps of thermally excited YSR states. Thermal

excitation of quasiparticles leads to additional resonances within the energy gap of the tip (cf.

grey shaded area in Fig. 2b,c in the main text). Whereas the original resonances are found

at a bias of eV±α,±β = ±|∆t + Eα,β|, the thermally excited states are found at eV±α?,±β? =

∓|∆t −Eα,β|.17 The thermally excited YSR states are of much less intensity and, therefore,

exhibit a small or negligible region of NDC. Figure S15 shows the dI/dV maps recorded at

the corresponding voltages of the thermally excited YSR states for atoms I-VI. In these maps

the similarity of the ±β? states of atoms I, II and IV is more striking than in the original

maps of ±β. To illustrate the impact of the NDC from the ±α-YSR resonances on the ±β

state, we simulate the map of ±β by subtracting a fraction of the ±α maps (mimicking the

NDC) from the ±β? maps. The result is compared to the maps at the energies corresponding

to ±β (Fig. S16) and shows remarkable similarity, illustrating the impact of NDC.
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Figure S14: Constant-contour dI/dV maps (9.5 × 9.5 nm2) of the YSR (±α,±β) states of
HC atoms I-VI (set point: 4 mV, 200 pA; Vrms = 15-25 µeV; Vbias as indicated in the images).
The insets show a 2 × 2 nm2 close-up view around the center of the atoms. Black dashed
circles (diameter 1 nm) outline the atoms’ position. The grey dashed lines in the bottom
map of each atom indicate the crystal’s symmetry axes. Thick lines indicate mirror axes
present in the dI/dV map.
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Figure S15: Constant-contour dI/dV maps (9.5 × 9.5 nm2) of the thermally excited YSR
(±α,±β) states (set point: 4 mV, 200 pA; Vrms = 15-25 µeV; Vbias as indicated in the im-
ages). The insets show a 2 × 2 nm2 close-up view around the center of the atoms. The
images are arranged in the same way as in Fig. S14, i.e. the maps of the thermally excited
YSR states can be found in the same position within the array as in Fig. S14. For YSR
resonances at zero energy (i.e. eV+α = eV−α = ∆t) there are no maps of the corresponding
thermal excitations (grey area).
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+α
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Figure S16: Constant-contour dI/dV maps of (a) +β? (top) and −β? (bottom) of atom
II (same data can be found in Fig. S15), and (b) +α (top) and −α (bottom) of atom II
(same data can be found in Fig. S14). (c) Difference images: +α (−α) map subtracted with
a factor of 0.7 (1.0) from the map +β? (−β?). (d) dI/dV map of the +β (top) and −β
(bottom) resonance (same data can be found in Fig. S14). (c) and (d) are very similar.

Determination of YSR energies

To determine the YSR energies, we fit the deconvolved spectra (cf. Fig. S6) in the low-energy

region with a set of 4 Gaussians (2 pairs of peaks):

LDOS(E) = D0 + A1e
−(E−Eα)2/(2σ2) + A2e

−(E+Eα)2/(2σ2)

+B1e
−(E−Eβ)2/(2σ2) +B2e

−(E+Eβ)
2/(2σ2). (S22)

Here, D0 is an offset, Eα and Eβ are the YSR energies, A1,2 and B1,2 are four amplitudes

and σ is the width of the Gaussian peaks.

The top panel of Fig. S17c shows the extracted energies of the YSR states of approx-

imately 90 atoms with respect to their location relative to the CDW. The error bar in

x-direction results from the inaccuracy in finding the exact position relative to the CDW as

discussed along with Fig. S10. The error margins of the YSR energy include the uncertainty

in the exact value of the tip’s energy gap ∆t, the lock-in modulation of the bias voltage and

the standard deviation of the fit routine. Additionally, an error of ±σ/2 was added to the

energy uncertainty if the peaks are not well separated (i.e. Eα − Eβ ≤ 2σ). This is mainly
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the case for atoms close to the CDW minimum, where we cannot distinguish the α- and

β-resonances as they are both very close to zero energy (e.g. atom III in the main text).

Some of these atoms can be fitted with only one pair of Gauss peaks as the YSR states

overlap. In this case both energies have the same value (Eα = Eβ).

As discussed in the main manuscript, we find a correlation of the YSR energy with

position along the CDW symmetry axis. Eα and Eβ are largest at the maximum of the

CDW and decrease with distance from the maximum. By default, the fit outputs for Eα and

Eβ are positive. Assuming that Eα and Eβ should follow a similar trend, we suggest that the

α-resonance crosses zero energy, i.e. undergoes the quantum phase transition.31 Therefore,

Eα < 0 was assumed for the atoms in close vicinity to the CDW minimum (cf. atom III, the

set of atoms with Eα < 0 is marked in orange and grey). Having passed the minimum (cf.

atom IV) the α- and β-states can be separated and identified again in the dI/dV maps (see

Fig. 3 in the main manuscript and Figs. S14, S15, S16), i.e. Eα > 0.

The top panel of Fig. 4a in the main manuscript is obtained from the data in Fig. S17c by

averaging over all atoms that are found within an interval of ±0.05 acdw. This corresponds

to the uncertainty in the determination of the atoms’ position with respect to the CDW (see

above). The error margins in energy are the standard deviations of the averaging including

the average of the errors shown in Fig. S17c.

As seen in Fig. S17 and Fig. 4 of the main text, some regions along the CDW cannot be

probed by Fe adatoms (grey areas). To understand the absence of data in these regions, we

illustrate the phase change of the CDW (black rhombi) with respect to the atomic lattice

(grey lattice) along the main symmetry axis in detail in Fig. S18. A HC adsorption site

of an Fe atom is marked by a colored triangle on the atomic lattice. The green triangles

indicate observed lattice sites, whereas the red triangles indicate that we did not find these

adsorption sites relative to the CDW. The latter cases correspond to configurations, where the

maximum of the CDW is located on top of a Nb atom. These so-called MC configurations are

energetically disfavored as shown by DFT calculations and do not occur on the surface.22–26
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Figure S17: (a) Constant-height dI/dV map taken at T = 8 K and Vbias = 0 (set point:
4 mV, 200 pA; Vrms = 100 µeV; some z-drift is visible). (b) FFT-filtered data of (a) (already
presented in Fig. 4 in the main text). The signal averaged over the radius of influence of
125 pm, which is approx. the covalent radius of a Fe atom (dashed orange arrow) is plotted
in the bottom panel of (c) for one complete period of the CDW. (c) Evaluation of YSR
energies Eα, Eβ of approximately 90 atoms measured on several samples with several Pb tips
by fitting the deconvolved spectra as described in the text. Error bars are also discussed in
the text. Black and grey show the evolution of Eβ. Red and orange data points correspond
to Eα. For the orange data points a negative Eα was assumed. Corridors with no datapoints
are marked in gray.
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Hence, the corresponding Fe adsorption sites cannot be found either. This explains the

absence of data points in the grey areas with only one exception. The third high symmetry

position, where an atomic HC adsorption site would sit exactly in the local minimum of the

CDW (marked with the red arrow in Fig. S18b), was also not found in experiment. We may

speculate that the energy landscape of the CDW can be affected by the Fe adatoms for this

specific adsorption site.

HC CC MC HC CC MC HC CC MCx xx x x
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0.0 0.5 1.0 1.5
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0.9
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1.1

dI
/d
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(a) (b)
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III IV VIII

Figure S18: (a) FFT-filtered topography already presented in Fig. S17b and inset of Fig.
4 in the main text. (b) Atomic lattice in grey and CDW lattice in black. Crossing of the
atomic lattice represent Se atoms, Nb atoms of the second layer are indicated by the grey
dots. Crossings of the CDW lattice correspond to CDW maxima, the black dot indicates the
CDW minimum. One HC hollow site is marked in color. Green/red indicates if the relative
orientation both lattices relative to each other can be found in experiment. (c) Connection
to linecut along the symmetry axis of the CDW (see bottom panel of Fig. S17b and Fig. 4b
in the main text).
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