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Universal spectral statistics in quantum graphs
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We prove that the quantum spectrum of individual chaotic quantum graphs shows universal
correlations, as predicted by random–matrix theory. The stability of these correlations with regard
to non–universal corrections is analyzed in terms of the linear operator governing the classical
dynamics on the graph.
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Fluctuations in the spectra of individual complex
quantum systems (e.g. classically chaotic systems) are
universal and can, typically [1], be described by the Gaus-
sian ensembles of random–matrix theory (RMT). This
statement, promoted to a conjecture by Bohigas, Gi-
annoni and Schmit [2], has been empirically confirmed
in numerous experimental and numerical analyses [3, 4].
However, never so far has it been possible to demon-
strate the fidelity of spectral fluctuations of an individ-
ual chaotic system to RMT statistics analytically [5]. The
aim of this work is to present such a proof for a prototyp-
ical class of chaotic quantum systems, quantum graphs.

Quantum graphs differ from generic Hamiltonian sys-
tems in two important aspects: a.) they are semiclassi-
cally exact (The density of states can be represented in
terms of an exact semiclassical trace formula.), b.) the
corresponding classical dynamics is not deterministic and
cannot be obtained from a formal limit ~ → 0. Intro-
duced by Kottos and Smilansky[9], graphs are attractive
theorists model systems inasmuch as they display much
of the behavior of generic hyperbolic quantum systems
but are not quite as resistant to analytical approaches
than these.

In previous work, Berkolaiko et al. [10] developed a
perturbative diagrammatic language to analyze the semi-
classical periodic–orbit representation of spectral corre-
lation functions beyond the leading (’diagonal’) approx-
imation. However, in spite of the full knowledge of its
building blocks [10, 11] a complete resummation of the
perturbation series has so far been elusive (not to men-
tion that such expansions cannot reproduce the notori-
ous essential singularities of the spectral correlation func-
tions). In contrast, our present approach avoids diagram-
matic resummations altogether. We rather build on two
alternative pieces of input, both of which have been dis-
cussed separately before: i.) the exact equivalence of
an average over the spectrum of a large quantum graph
with incommensurate bond lengths to an ensemble av-
erage over certain scattering phases [9, 12, 13], and ii.)
the so–called color-flavor transformation [18], which is an
(equally exact) mapping of the phase–averaged spectral

correlation function onto a variant of the supersymmetric
σ-model. A subsequent stationary phase analysis then di-
rectly leads to the RMT correlation function correspond-
ing to the symmetry of the graph. Finally, the spectrum
of the massive fluctuations around the saddle point con-
tains quantitative information on the stability of RMT
spectral statistics with regard to non–universal correc-
tions. Although the above program can be applied for
all symmetry classes we will focus on spin–rotation and
time–reversal invariant graphs throughout (i.e. the sym-
metry class of the Circular Orthogonal Ensemble COE.
The case of broken time–reversal invariance then follows
as a straightforward corollary.).

Let us begin by introducing our basic setting. A quan-
tum graph consists of V vertices j connected by B bonds
b. We assume that pairs of vertices are connected by
at most one bond and that no bond starts and ends at
the same vertex. (While simplifying the technicalities of
our analysis below, we believe both assumptions to be
physically immaterial.) To account for the two different
directions of wave function propagation on each bond, we
introduce 2B double indices (b, d), where d = 1, 2 deter-
mines the (arbitrarily defined) direction of propagation
along b. Boundary conditions on the graph are set by
the fixed 2B–dimensional unitary matrix S = {Sbd,b′d′}
which describes the scattering of an incoming wave func-
tion on bond b to an outgoing wave function on bond
b′. (Of course, Sbd,b′d′ is non–vanishing only for bonds b
and b′ connecting at a common vertex j.) Time–reversal
invariance (T –invariance) implies that ST = σdir

1 Sσdir
1 ,

where σdir
i = (σdir

i )dd′ are Pauli matrices in the space of
directional indices.

The discrete quantum time evolution in the sys-
tem is described by the 2B × 2B bond scattering
matrix S(k) = T (k)ST (k). Here, the matrices
T (k) contain the dynamical quantum phases picked
up during propagation along the bonds: T (k) =

diag(ei
kL1
2 , . . . , ei

kLB
2 , ei

kL1
2 , . . . , ei

kLB
2 ), where Lb is the

length of bond b and the two–fold replication in direc-
tion space expresses the independence of the dynamical
phases on the direction of propagation. The concise for-
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mulation of this fact reads as T : S(k) = σdir
1 ST (k)σdir

1 .
Finally, the spectrum of the graph is determined by the
zeros of the spectral determinant ξB(k) = det (1−S(k)).

Universal spectral statistics in quantum systems can
be expected if the corresponding classical system is fully
chaotic. What is the equivalent condition on a quan-
tum graph? An answer has been formulated by Tan-
ner [13] (see also [14]) in terms of the classical probability
Fbd,b′d′ ≡ |Sbd,b′d′ |2 = |S(k)bd,b′d′ |2 to get from (b′, d′) to
(b, d). Notice that the ’classical propagator’ F has one
eigenvalue λ1 = 1, corresponding to a fully equilibrated
distribution in bond space. The dynamics is mixing if,
for large times, any initial probability distribution con-
verges to this distribution, or limn→∞(Fn)bd,b′d′ = 1

2B .
This condition is met if all other eigenvalues |λ2,...,B | < 1
lie inside the complex unit circle.

However, even a graph with mixing dynamics does
not necessarily display universal spectral behavior[15].
Tanner rather conjectured that a stronger (and then
sufficient) condition is that the spectral gap ∆g =
maxb∈{2,...,B}(1 − |λb|) is constant or vanishes slow
enough in the limit B → ∞. Observing that the diagonal
approximation to the form factor is consistent with RMT

if B∆g
B→∞
→ ∞ he estimated that the gap should vanish

slower than 1
B .

In the sequel we will verify this conjecture, and give a
stronger lower bound for the gap condition. Our analysis
will be based on the assumption that all bond lengths
Lb are rationally independent. Under this condition,

k 7→
{

ei
kL1
2 , . . . , ei

kLB
2

}

defines an ergodic flow on the
B-torus implying that the average over the parameter
k may be replaced by an average over B independent

phases ei
kLb
2 7→ eiφb [9, 12, 13]. This latter average is

implemented by setting

lim
K→∞

1

K

∫ K

0

dkF [T (k)] = 〈F [T (φ)]〉φ, (1)

where F is a smooth function and 〈·〉φ = 1
(2π)B

∫ 2π

0
dBφ (·).

Throughout we will focus attention on the phase–
averaged spectral determinant

ξ(z+
b
, z−

b
, z+

f
, z−

f
)=

〈

det

(

1 − z+
f
S(φ)

)(

1 − z−
f
S(φ)†

)

(

1 − z+
b
S(φ)

)(

1 − z−
b
S(φ)†

)

〉

φ

. (2)

Quantities such as the two–point correlation function or
the spectral form factor can then be obtained by straight-
forward differentiation w.r.t. the parameters z+

b
, . . . , z−

f
.

The determinant ξ affords the Gaussian integral rep-
resentation ξ = sdet−1(z+z−)

∫

d(ψ̄, ψ) exp(−S[ψ̄, ψ]),
where [16]

S[ψ̄, ψ]= ψ̄+

[

1 T
T S†z−1

+

]

ψ++ψ̄−

[

1 T †

T † z−1

− S

]

ψ−. (3)

Here, z± = diag(z±
b
, z±

f
) are 2 × 2–supermatrices and

ψ = {ψa,s,x,d,b} is a 16B-dimensional supervector, where

a = ± distinguishes between the retarded and the ad-
vanced sector of the theory (determinants involving S
and S†, resp.), s = f ,b refers to complex commuting
and anti–commuting components (determinants in the
denominator and numerator, resp.), and x = 1, 2 to the
internal structure of the matrix kernel appearing in (3).
Using that det(1−zS) = det(zS) det

(

1 T
T z−1S†

)

, one ver-
ifies that the Gaussian integration over all components
of ψ yields the determinant ξ.

As a second step, we subject the phase–averaged ψ–
functional to a duality transformation known as the
color–flavor transformation [18]. In a variant adapted to
the present context [17], the transformation states that

〈exp(−S[ψ̄, ψ])〉φ = 〈exp(−S
′[Ψ̄,Ψ])〉Z , (4)

where 〈·〉 ≡
∫

dZdZ̃ sdet (1 − ZZ̃)(·) and (matrix struc-
ture in advanced/retarded space)

S
′[Ψ̄,Ψ] = Ψ̄1

[

1 Z

Zτ̃ 1

]

Ψ1 + Ψ̄2

[

S†z−1

+
Z̃τ̃

Z̃ z−1

− S

]

Ψ2. (5)

Referring for a short discussion of the underlying tech-
nicalities to [17], we here briefly explain the notation
and the physical meaning of the transformation (4). In
(5), Ψ1,2 = {(Ψ1,2)a,s,t,b,d} are 16B–dimensional inde-
pendent supervectors, where the index, t = 1, 2 ac-
counts for the time–reversal symmetry of the model.
Presently, all we need to know about the variables Ψ
and Ψ̄ is that they contain elements of ψ and ψ̄ as
their components, and depend on each other through
Ψ̄1,2 = ΨT

1,2τ̃ . Here, the fixed supermatrix τ̃ ≡ σdir
1 ⊗ τ ,

where τ ≡ (Ebbσ
tr
1 − iEffσ

tr
2 ) (σ

tr/dir
i are Pauli ma-

trices in time–reversal space (t)/direction space (d),
and Ebb/ff are projectors on the bosonic/fermionic sec-
tor of the theory). The newly introduced integration
variables, Z = bdiag (Z1, . . . , ZB) are 8B–dimensional
block–supermatrices with 8–dimensional entries Zb =
{Zb,ss′,dd′,tt′}. Finally, Z τ̃ ≡ τ̃ZT τ̃−1 is in a generalized

way transposed to Z, while Z and Z̃ are independent.

1+

1- 2- 1-

2+ 1+

... ...

S
†

T T

S
† †

T T

ψ

ψ

ψ

ψ

ψ
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Z Z
τ

Z̃
τ

Z̃

FIG. 1: On the physical interpretation of the color-flavor
transformation. Explanation, see text.

What is the physical significance of the transformation
(4)? Fig. 1 shows a cartoon of the retarded (upper line)
and advanced (lower line) wave function dynamics in the
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system. During propagation, both states pick up random
scattering phases T (indicated by vertical dashed lines)
and suffer scattering from one bond to the other (S–
matrix). The rapid succession of these events implies wild
fluctuations of the wave function amplitudes. Within the
field theoretical context, this translates to uncontrollable
fluctuations of the bilinears ψ̄+,s,x,d,be

iφbψ+,s,x,d,b cen-
tral to the action (3). In contrast, the field Z enters the
theory as ∼ Ψ̄+,s,t,d,bZb,ss′,tt′,dd′Ψ−,s′,t′,d′,b, i.e. through
structures that couple retarded and advanced field am-
plitudes (the ’vertical’ ovals in the figure). These ampli-
tudes generally interfere to form slowly fluctuating enti-
ties (the basic principle behind the formation of universal
correlations.) This indicates that the Z–integral will be
comparatively benign and, foreseeably, amenable to sta-
tionary phase approximation schemes.

To promote this expectation to a quantitative level, we
integrate out the Ψ’s, thus arriving at the exact repre-
sentation ξ =

∫

dZdZ̃ exp(−S[Z, Z̃]),

S[Z, Z̃] = − str ln
(

1 − Z̃Z
)

+
1

2
str ln

(

1 − Z τ̃Z
)

+
1

2
str ln

(

1 − S†z−Z̃z+SZ̃
τ̃
)

.

(6)

As a first step towards a better understanding of the
physics of this expression, let us consider its quadratic
expansion,

S
(2)[Z, Z̃]=str

(

Z̃Z −
1

2
Z τ̃Z −

1

2
S†z−Z̃Sz+Z̃

τ̃

)

. (7)

Void of non–linearities (terms of O(Z4)), the action S
(2)

describes the un–interrupted propagation of two ampli-
tudes along the same path in configuration space, i.e. the
level of approximation underlying the diagonal approxi-
mation in semiclassical periodic–orbit theory.

This connection is made quantitative by noting that
the action S

(2) possesses a family of approximately (up to
corrections of O(B−1)) ’massless’ configurations, or ’zero
modes’ identified by δZS

(2) = δZ̃S
(2) = 0. Upon substi-

tution of the ansatz Zdd′ = δdd′Zd (configurations not
diagonal in direction space do not qualify as solutions,
see the discussion of deviations below) these equations
assume the form

Z̃ = Z τ̃ , (1 − F̂ )Z = 0, (8)

where we have set the external parameters z±
b,f = 1[19].

Owing to the fact that on a chaotic quantum graph,
the ’classical propagator’ F̂ has only one eigenvalue
1, Eq. (8) possesses the unique solution Zbd,b′d′ =
B−1/2δbd,b′d′Y , proportional to the invariant equidistri-
bution. Notice that Y τ̃ = Y τ ≡ τY T τ−1, where the
matrix τ differs from τ̃ by the absence of the (now re-
dundant) matrix σdir

1 . Technically, the relation Ỹ = Y τ

identifies (Y, Ỹ ) as generators of the orthosymplectic al-
gebra osp(4|4). Having identified the zero mode, let us

explore the significance of other field configurations. A
glance at Eq. (7) shows that deviations from the first of
the two equations in (8) are penalized by a large action
S

(2) = O(1). Upon integration, these modes produce
no more than a factor unity to the spectral determinant.
(Similarly, modes that are off–diagonal in direction space
can be integrated out to give a factor unity — due to our
technical assumptions on the connectivity of graphs the
term strS†z−Z̃z+SZ̃

τ̃ exactly vanishes for such modes.)
To explore the more interesting role played by devia-
tions from the equation (1 − F̂ )Z = 0, let us expand

a general configuration Zbd =
∑2B

m=1 Ymξm,bd in the ba-

sis of eigenfunctions ξm of the operator F̂ . Here, Ym

are four–dimensional supermatrices obeying the symme-
try Ỹm = Y τ

m and the identification Y1 ≡ Y is understood.
Substituting this expansion into the quadratic action we
obtain

S
(2)[Y, Ỹ ] =

1

2

2B
∑

1

str (YmỸm − λmYmz−Ỹmz+),

and, upon quadratic integration over the Y ’s,

ξ(2) =

2B
∏

m=1

(1 − λmz
+
f
z−
b

)2(1 − λmz
+
b
z−
f

)2

(1 − λmz
+
f
z−
f

)2(1 − λmz
+
b
z−
b

)2
. (9)

Intending to probe correlations on the scale of the mean
level spacing, we set z±

b,f = exp(iπǫ±
b,f/B) (ǫ±

b,f = O(1))

and expand Eq. (9) in powers of B−1. While the
zero–mode factor corresponding to λ1 = 1 evaluates to
(ǫ+

f
+ǫ−

b
)2(ǫ+

b
+ǫ−

f
)2

(ǫ+
f

+ǫ−
f

)2(ǫ+
b

+ǫ−
b

)2
+ O(B−2) all other factors equal unity

up to a correction of order λmǫ2

B2(1−λm)2 . (In the two-point

correlation function each of these corrections leads to
an additive constant of order λm

B2(1−λm)2 .) There being

2B − 1 such factors, we conclude that the cumulative
contribution of the massive modes can be neglected pro-

vided that B∆2
g

B→∞
→ ∞, which is a slightly stronger

condition than Tanner’s. For higher order correlation
functions the same condition applies (unless the order of
the correlation function is of order B).

Going beyond the level of the quadratic approximation,
we note that the saddle point equations δZS = δZ̃S = 0
of the full action (6) are still solved by the zero mode
configurations (8). While deviations from the zero modes
continue to be negligible (as long as B2∆g → ∞), the
action of the latter now reads

S[Y, Ỹ ]=
B

2
str

(

ln(1 − z−Ỹ z+Y ) − ln(1 − Ỹ Y )
)

, (10)

where we have rescaled Y → (2B)1/2Y . Eq. (10)
defines an exact representation of the COE spectral
determinant[18]. To represent this result in a perhaps
more widely recognizable form, let us define z± = 1 +

iδ
ǫ±

2 (δ = πB−1 is the level spacing), and the 8 × 8–
matrix

Q =
(

1 Y
Ỹ 1

) (

1 0
0 −1

) (

1 Y
Ỹ 1

)−1
.
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It is then straightforward to verify that the leading order
expansion of (10) in powers of B−1 obtains Efetov’s[8]
action for the GOE correlation function

S[Q] =
i

2
str (Qǫ̂), (11)

where ǫ̂ = diag(ǫ+
b
, ǫ+

f
, ǫ−

b
, ǫ−

f
).

Finally, let us discuss the crossover to the case of uni-
tary symmetry. Time–reversal invariance can be broken
either by lifting the symmetry S = σdir

1 STσdir
1 , or by

perturbing the phase balance between the left and right
moving states on the bonds. Either way, the symmetry
T : S = σdir

1 STσdir
1 of the full scattering operator gets

lost. Within our field theoretical setting, a lack of T –
invariance implies the formation of mass terms for the
components of the generators Y off–diagonal in time–
reversal space. Referring for a more detailed discussion
of the crossover physics to [20], we note that even a
miniscule violation S − σdir

1 STσdir
1 ∼ O(B−1) induces

a crossover to CUE spectral statistics. (The exact CUE
correlation function is obtained upon neglecting the off–
diagonal components — the Cooperon modes in the jar-
gon of mesoscopic physics — altogether.)

Summarizing, we have proven Tanner’s conjecture on
universal spectral statistics (on the scale of the mean level
spacing) in large chaotic quantum graphs. The correc-
tions to universality turn out to be of order 1

B∆2
g

(or

smaller) which gives a more conservative lower bound

∆g > constB− 1
2 on the spectral gap ∆g in the limit

B → ∞ than Tanner’s estimate ∆g > constB−1. An
interesting direction of future research may be the anal-
ysis of correlations at moderately high energies ǫ > B∆g

where aspects of non–ergodic dynamics begin to play a
role.
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