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Topological superconducting phase in helical Shiba chains
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Recently, it has been suggested that topological superconductivity and Majorana end states can be realized in
a chain of magnetic impurities on the surface of an s-wave superconductor when the magnetic moments form a
spin helix as a result of the RKKY interaction mediated by the superconducting substrate. Here, we investigate
this scenario theoretically by developing a tight-binding Bogoliubov-de Gennes description starting from the
Shiba bound states induced by the individual magnetic impurities. While the resulting model Hamiltonian has
similarities with the Kitaev model for one-dimensional spinless p-wave superconductors, there are also important
differences, most notably the long-range nature of hopping and pairing as well as the complex hopping amplitudes.
We use both analytical and numerical approaches to explore the consequences of these differences for the phase
diagram and the localization properties of the Majorana end states when the Shiba chain is in a topological
superconducting phase.
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I. INTRODUCTION

Motivated in part by possible applications to topological
quantum computation1, there is currently much interest in
condensed-matter systems which support Majorana bound
states.2,3 Systems which are investigated in the laboratory4–11

are based on fractional quantum Hall systems,12 topological
insulators,13,14 semiconductor quantum wires,15–17 or cold
atoms.18 Starting with the seminal work of Fu and Kane,13,14

a particularly promising strategy attempts to engineer
topological superconducting phases hosting Majorana bound
states in hybrid structures involving conventional s-wave
superconductors.

Recently, it has been suggested19 (see also Refs. 20–23)
that Majorana bound states could be realized in chains of
magnetic impurities placed on an s-wave superconductor.
Magnetic impurities placed in a conventional superconductor
create localized, sub-gap Shiba states.24–27 When the magnetic
impurities are brought close to one another, the individual
localized Shiba states hybridize and may form a band.
Electrons in such a band, in turn, may hybridize with the
condensate of the bulk superconductor by Andreev reflection.
The properties of the band and the strength of Andreev
processes depend on the magnetic structure of the impurity
chain. Assuming that the impurity spins form a helix, it
is argued that the Shiba bands will effectively realize a
topological superconducting phase, akin to one-dimensional
spinless p-wave superconductors.28 Indeed, the Shiba states
are effectively spin polarized and the (spin-singlet) s-wave
Cooper pairs of the superconducting substrate can induce
p-wave superconducting correlations in the Shiba band since
neighboring impurity spins are misaligned due to the helical
spin order. A particularly attractive feature of this proposal
is that the presence of Majorana end states could be probed
directly by scanning tunneling spectroscopy.29,30

Following the original suggestion,19 some aspects of this
proposal have been investigated by a number of authors.31–34

However, a theory making the connection to the formation
and hybridization of Shiba states explicit has not yet been

given. It is the purpose of the present paper to provide such a
theoretical description. We show that for the case of deep Shiba
states, one can derive an effective tight-binding Bogoliubov-de
Gennes Hamiltonian. While this tight-binding Hamiltonian
shares important features with the paradigmatic Kitaev model
for one-dimensional spinless p-wave superconductors,28 there
are also several substantial differences: (i) Both the hopping
and the pairing terms are long range, having a 1/r-power-law
decay with distance as long as r remains small compared to
the coherence length ξ0 of the host superconductor. (ii) The
hopping terms generally involve complex phase factors which
lead to dispersions which are asymmetric under momentum
reversal k → −k. We explore the consequences of these
differences both for the phase diagram and for the localization
properties of Majorana end states present when the system is
in a topological phase.

Our approach is based on the following physical picture.
We start with a given static texture of the impurity spins
along the chain. This texture is ultimately the result of the
RKKY interaction between the impurity states as mediated
by the superconducting host.19,32–35 It seems likely that the
precise nature of the spin texture is sensitive to system-specific
details such as the ratio of the impurity spacing to the
Fermi wavelength of the superconductor or anisotropies of
the exchange interaction at the surface of the superconductor.
Hence, we consider general periodic and helical spin textures
which need not be commensurate with the underlying impurity
chain. As long as the magnetic impurities are sufficiently
dilute, each of them binds a pair of Shiba states with energies
in the superconducting gap which are symmetric about the
chemical potential pinned to the center of the gap. Overlaps
between the Shiba bound states lead to hybridization and the
formation of bands whose bandwidth grows with decreasing
spacing between the impurities. If the impurity states are
shallow, i.e., their energies are close to the superconducting
gap edges, the impurity band will in general merge with
the quasiparticle continuum and simply smear the gap edge.
Topological superconducting states can possibly still be
realized when the impurity bands at positive and negative
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energies become wide enough to overlap around the center
of the gap, i.e., when the bandwidth becomes comparable with
the superconducting gap.

Here, we focus on the opposite limit in which the Shiba
bound states are deep with energies near the center of the
gap. In this case, the bands emerging from the positive-
and negative-energy Shiba states start to overlap already
for weak hybridization. Thus, the Shiba bands remain well
separated from the quasiparticle continuum and we can derive
an effective Hamiltonian within the subspace of Shiba states.
As long as the bandwidth of the Shiba states remains smaller
than the energy of the bare Shiba states, there are two well-
separated Shiba bands and the system is in a nontopological
superconducting state. Topological superconducting phases
can occur when the Shiba bands overlap around the center
of the gap. Since the Shiba states are spin polarized, the
induced pairing amplitude within the subspace of Shiba states
is necessarily odd in momentum and hence of p-wave nature.
If the system enters such a topological phase, there will be a
p-wave gap at the chemical potential within the overlapping
Shiba bands, in addition to the original s-wave gap of the
host superconductor. However, such a p-wave gap does not
necessarily form for arbitrary parameters despite the presence
of a finite p-wave pairing amplitude and overlapping Shiba
bands. Elucidating this nontrivial phase diagram is one of the
central goals of the present paper.

The paper is organized as follows. In Sec. II, we introduce
the model and discuss the formation of the spin helix. In
Sec. III A, we review the formation of Shiba states for a single
magnetic impurity in an s-wave superconductor, employing
a technique which readily generalizes to chains of magnetic
impurities. The latter are discussed in Sec. III B, culminating
in a tight-binding Bogoliubov-de Gennes equation for deep
Shiba states. The tight-binding model is employed to analyze
the phase diagram in Sec. IV and the localization properties
of the Majorana modes in Sec. V. We conclude in Sec. VI and
defer some technical details to appendices.

II. MODEL

Our starting point is the Bogoliubov-de Gennes Hamil-
tonian (BdG) of an s-wave superconductor. We assume that
the superconductor is in the clean limit but hosts a chain of
magnetic impurities placed at locations rj ,

H = ξpτz − J
∑

j

Si · σ δ(r − rj ) + �τx. (1)

Here, p and r denote the electron’s momentum and po-
sition, ξp = p2/2m − μ with the chemical potential μ, �

is the superconducting gap, and J denotes the strength of
the exchange coupling between the magnetic impurity with
spin S and the electrons in the superconductor. The Pauli
matrices σi (τi) operate in spin (particle-hole) space. The BdG
Hamiltonian is written in a basis which corresponds to the
four-component Nambu operator � = [ψ↑,ψ↓,ψ

†
↓, − ψ

†
↑] in

terms of the electronic field operator ψσ (r). In this basis, the
time-reversal operator takes the form T = iσyK , where K

denotes complex conjugation. The BdG Hamiltonian (4) obeys
the symmetry {H,CT } = 0, with C = −iτy . Thus, if ψ is an

eigenspinor of H with energy E, CT ψ is an eigenspinor of
energy (−E).

We assume that the magnetic moments are classical and
arranged along a linear chain with lattice spacing a. We
can parametrize the impurity spins Sj through spherical
coordinates, using the angles θj and φj in addition to S,

Sj = S(sin θj cos φj , sin θj sin φj , cos θj ). (2)

In the BdG equation (1), we take the spins as frozen into a
given spin texture Sj . We also assume the impurity spacings
a � 1/kF so that the bandwidth of the Shiba bands is small
compared to the gap of the host superconductor.

The spin texture will in general be governed by the RKKY
interaction between the impurity spins, as mediated by the
superconducting host.19,32–35 Magnetic impurities interact with
each other via exchange by virtual electron-hole excitations
in the host metal. If the host is in the normal state, this
exchange leads to the familiar RKKY interaction between
the impurities36 whose sign alternates as a function of in-
terimpurity distance rij and which is of magnitude J (i − j ) ∼
(Jν0)2vF /(k2

F r3
ij ). Here, J denotes the exchange coupling

between magnetic impurity and electrons, ν0 is the electronic
density of states at the Fermi energy, and vF and kF denote
the Fermi velocity and wave vector, respectively. There is
some evidence for normal-metal substrates37 that the RKKY
interaction between impurity spins can lead to the formation
of a spin helix when the impurities form an ordered chain.38

In a clean system, the RKKY interaction between two
magnetic impurities a distance rij apart involves virtual
electron-hole pairs with characteristic energy h̄vF /rij . On the
other hand, superconductivity prohibits pairs with energy less
than the gap �. As a result, J (i − j ) is substantially affected by
superconductivity if rij � ξ0, where ξ0 is the coherence length
of the host superconductor. A perturbative treatment of the
exchange interaction indicates36,39 that the correction to the
normal-state value of J (i − j ) caused by superconductivity
is antiferromagnetic. The magnitude of the correction is of
the order of δJ (i − j ) ∼ �/(kF rij )2 and thus small at any
rij � ξ0. The presence of deep Shiba states enhances the
correction;40 in the limit α → 1, its absolute value reaches
a maximum of the order of �/(kF rij ). [This estimate may
be obtained from a consideration of the total energy of a
superconductor containing a pair of impurities which create
Shiba states according to Eqs. (23), (32), and (33) below.] Still,
the “normal-state” RKKY wins over the correction at kF rij �
(kF vF /�)1/2. For a typical superconductor, the right-hand side
gives a relatively mild limitation ∼102 which is compatible
with the assumption kF a � 1. Note that at the border of that
region, kF rij ∼ (kF vF /�)1/2, the energy scale important for
the observation of Majorana states, �eff , is already small,
�eff ∼ �3/2/(kF vF )1/2. Placing the magnetic impurities closer
to each other makes both the band of Shiba states and the
induced gap wider. At the same time, superconductivity of the
host will hardly affect the mutual orientation of the magnetic
moments.

In general, one would expect that the specifics of the spin
helix such as the overall spin orientation or the pitch depend
sensitively on the details of the system. Important parameters
are the ratio of the impurity spacing and the Fermi wavelength
of the host superconductor, the single-ion magnetic anisotropy,
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as well as the spatial structure and isotropy of the exchange
interaction between the magnetic moments. For this reason,
we consider a general class of helical spin textures of the form

θj = θ ; φj = 2khxj (3)

with a constant opening angle θ and pitch π/kh; here xj = ja

denotes the position of the j th impurity along the chain.
The possible values of kh are determined by the maxima

of the Fourier transform of J (i − j ).32–35 Thus, for a simple
isotropic model of the superconductor and at kF a � 1, the
RKKY interaction J (i − j ) results in a helix wave vector
2kh = (2kF a − 2πn)/a with a single value of n such that
|kha| � π . While we investigate this simple case in some
detail below, we will first discuss the phase diagram and the
Majorana bound states for arbitrary spin helices as defined in
Eq. (3). The reason is that the details of the band structure of
the superconductor as well as possible spin-orbit coupling may
allow for other relations between the Fermi wave vector kF and
the helix wave vector kh. Note also that if the Hamiltonian of
the magnetic system is dominated by the exchange interaction
with an isotropic exchange integral J (i − j ),39 the spin helix
is planar with θ = π/2. In general, the value of the single-ion
anisotropy depends strongly on the orbital moment of the
magnetic ion and the coordination of the host lattice.41–43

III. SHIBA STATES

A. Single magnetic impurity

To provide necessary background and to fix notation, we
briefly derive the Shiba states for a single magnetic impurity in
a form which can be generalized to a chain of impurities. For a
single impurity placed at the origin, the BdG Hamiltonian (1)
simplifies to

H = ξpτz − JS · σ δ(r) + �τx. (4)

We can choose the impurity spin S to point along the z

direction. In this case, the 4 × 4 Hamiltonian in Eq. (4)
separates into independent 2 × 2 HamiltoniansH± for spin-up
(+) and spin-down (−) electrons,

H± = ξpτz ∓ JSδ(r) + �τx. (5)

To solve for the bound-state spectrum of these Hamiltonians,
we write the BdG equations in a way which isolates the
impurity term on the right-hand side,

[E − ξpτz − �τx]ψ(r) = ∓JSδ(r)ψ(0), (6)

and pass to momentum space using ψ(r) =∫
[dp/(2π )3]eip·rψp

[E − ξpτz − �τx]ψp = ∓JSψ(0). (7)

Multiplying by [E − ξpτz − �τx]−1 from the left, we obtain

ψp = ∓JS

E2 − ξ 2
p − �2

[E + ξpτz + �τx]ψ(0). (8)

We can now turn this into an equation for the spinor ψ(0)
evaluated at the position of the impurity only,

ψ(0) =
∫

dp
(2π )3

∓JS

E2 − ξ 2
p − �2

[E + ξpτz + �τx]ψ(0).

(9)

The integral is readily evaluated (see Appendix A) and we
obtain a linear set of equations for the BdG spinor at the
position of the impurity,{

1 ∓ α√
�2 − E2

[E + �τx]

}
ψ(0) = 0. (10)

Here we introduced the dimensionless impurity strength α =
πν0JS in terms of the normal-phase density of states ν0.

One readily finds from Eq. (10) that H± has a subgap
solution at energy ±E0 with24–27

E0 = �
1 − α2

1 + α2
. (11)

The energies of the two Shiba states cross at α = 1 where the
ground state changes from even to odd electron number.

The corresponding eigenspinors (written in the four-spinor
form of the original 4 × 4 BdG Hamiltonian)

ψ+(0) = 1√
N

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ ; ψ−(0) = 1√

N

⎛
⎜⎜⎝

0
1
0

−1

⎞
⎟⎟⎠ . (12)

Here, the normalization factor N = (1 + α2)2/2πν0�α

follows from the normalization condition 1 =∫
dr

∑
n |ψn(r)|2 = ∫

[dp/(2π )3]
∑

n |(ψp)n|2. Note that
the solution starting out at positive energies for small
exchange coupling corresponds to quasiparticles made up
from spin-up electrons and spin-down holes, while the one
which starts at negative energies consists of spin-down
electrons and spin-up holes.

For later reference, it is useful to generalize these spinors
to impurity spins pointing in arbitrary directions. Param-
eterizing the impurity spin in spherical coordinates, S =
S(sin θ cos φ, sin θ sin φ, cos θ ), the corresponding spin-up
and spin-down Pauli spinors are

| ↑〉 =
(

cos(θ/2)
sin(θ/2)eiφ

)
; | ↓〉 =

(
sin(θ/2)e−iφ

− cos(θ/2)

)
. (13)

In terms of these Pauli spinors, the BdG spinors in Eq. (12)
generalize to

ψ+(0) = 1√
N

( | ↑〉
| ↑〉

)
; ψ−(0) = 1√

N

( | ↓〉
−| ↓〉

)
. (14)

Note that the Pauli spinors are related by time reversal
symmetry, | ↓〉 = T | ↑〉, so that the BdG spinors satisfy the
relation ψ−(0) = CT ψ+(0) in accordance with the general
symmetries of the BdG Hamiltonian.

B. Chain of magnetic impurities

1. General formulation

We now generalize the approach of the previous section to a
chain of magnetic impurities Sj at sites rj as described by the
Hamiltonian in Eq. (1). As for a single impurity, we start by
isolating the impurity terms on one side of the BdG equation
and passing to momentum space. This yields

[E − ξpτz − �τx]ψp = −J
∑

j

Sj · σe−ip·rj ψ(rj ). (15)
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Multiplying from the left by [E − ξpτz − �τx]−1 and evaluat-
ing ψ(ri) yields a closed set of equations for the BdG spinors
at the positions of the impurities,

ψ(ri) = −J
∑

j

∫
dp

(2π )3

eip(ri−rj )

E − ξpτz − �τx

Sj · σψ(rj ).

(16)

We are searching for subgap states so that we need to evaluate
the momentum integral on the RHS for energies E < �. This
integral is performed in Appendix A and we find

ψ(ri) = −
∑

j

JE(ri − rj )Ŝj · σψ(rj ), (17)

where we defined the unit vector Ŝj = Sj /S and

JE(r) = − α√
�2 − E2

e−r/ξE

kF r

(
E sin kF r + √

�2 − E2 cos kF r � sin kF r

� sin kF r E sin kF r − √
�2 − E2 cos kF r

)
(18)

in terms of ξE = vF /
√

�2 − E2.

2. Tight-binding model for deep impurities

We now specify to deep impurities with impurity strength
α close to unity so that the energy ε0 
 �(1 − α) of the
individual Shiba states is close to the center of the gap.
Moreover, we assume that the impurities are sufficiently dilute
that the resulting impurity band remains well within the
superconducting gap. In this limit, we can expand to linear
order in E [and hence in (1 − α)] as well as in the coupling
between impurity sites.

We start by writing Eq. (17) as

ψ(ri) + JE(0)Ŝi · σψ(ri) = −
∑
j �=i

JE(rij )Ŝj · σψ(rj ), (19)

with the shorthand rij = ri − rj . The RHS is already linear
in the coupling between Shiba states so that we can evaluate
it for E = 0 and α = 1. The LHS is readily expanded using
Eq. (18), so that we obtain

{1 − [E/� + ατx]Ŝi · σ }ψ(ri)

=
∑
j �=i

e−rij /ξ0

kF rij

[τz cos kF rij + τx sin kF rij ]Ŝj · σψ(rj ).

(20)

Multiplying by Ŝi · σ and using the identity (Ŝi · σ )(Ŝi · σ ) =
1 yields

{Ŝi · σ − [E/� + ατx]}ψ(ri)

=
∑
j �=i

e−rij /ξ0

kF rij

[τz cos kF rij + τx sin kF rij ]

× (Ŝi · σ )(Ŝj · σ )ψ(rj ), (21)

We can now project this equation to the set of Shiba states in
Eq. (14) localized at the impurities. If there are N impurities,
the resulting equation is a tight-binding model with a 2N × 2N

Hamiltonian which takes the form of a BdG equation,

H̃effφ = Eφ, (22)

with an effective Hamiltonian

H̃eff =
(

h̃eff �̃eff

�̃
†
eff −h̃T

eff

)
. (23)

Here, h̃T
eff denotes the time reverse of h̃eff . Taking matrix

elements of Eq. (21), the entries of the effective Hamiltonian
H̃eff take the form

(h̃eff)ij =
{

ε0 i = j

−�
sin kF rij

kF rij
e−rij /ξ0〈↑ ,i| ↑ ,j 〉 i �= j,

(24)

and

(�̃eff)ij =
{

0 i = j

�
cos kF rij

kF rij
e−rij /ξ0〈↑ ,i| ↓ ,j 〉 i �= j.

(25)

In these expressions, the electronic spin states |σ,i〉 correspond
to spin σ =↑ , ↓ with respect to the direction of the ith
impurity spin. Parameterizing these impurity spin directions
through angles θi and φi , we have

〈↑ ,i| ↑ ,j 〉 = cos
θi

2
cos

θj

2
+ sin

θi

2
sin

θj

2
ei(φj −φi ) (26)

〈↑ ,i| ↓ ,j 〉 = e−i(φi+φj )/2

[
cos

θi

2
sin

θj

2
e−i(φj −φi )/2

− sin
θi

2
cos

θj

2
e−i(φi−φj )/2

]
. (27)

Note that the pairing terms involve a site-dependent phase
factor exp{−i(φi + φj )/2}. It is convenient to eliminate this
phase factor by a gauge transformation

U =
(

eiφ/2 0
0 e−iφ/2

)
, (28)

where φ denotes a matrix in site space with matrix elements
φij = δijφj . Performing this unitary transformation, we find
the effective Hamiltonian

H = UH̃U† =
(

heff �eff

�
†
eff −hT

eff

)
(29)

with

(heff)ij =
{

ε0 i = j

−�
sin kF rij

kF rij
e−rij /ξ0

[
cos θi

2 cos θj

2 ei(φi−φj )/2 + sin θi

2 sin θj

2 e−i(φi−φj )/2
]

i �= j
(30)
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and

(�eff)ij =
{

0 i = j

�
cos kF rij

kF rij
e−rij /ξ0

[
cos θi

2 sin θj

2 ei(φi−φj )/2 − sin θi

2 cos θj

2 e−i(φi−φj )/2
]

i �= j.
(31)

Finally, we specify the Hamiltonian to a spin helix as defined in Eq. (3) and find

(heff)ij =
{

ε0 i = j

−�
sin kF rij

kF rij
e−rij /ξ0

[
eikhxij cos2 θ

2 + e−ikhxij sin2 θ
2

]
i �= j

(32)

as well as

(�eff)ij =
{

0 i = j

i�
cos kF rij

kF rij
e−rij /ξ0 sin θ sin khxij i �= j,

(33)

where we use the notation xij = xi − xj . Note that in this form,
the Hamiltonian is translationally invariant. Conveniently, ε0

only enters the onsite terms and −ε0 effectively acts as a
chemical potential for the band of Shiba states. While this
BdG Hamiltonian is reminiscent of the Kitaev chain,28 there
are several characteristic differences:

(i) The Hamiltonian involves long-range hopping terms.
This is a consequence of the fact that the wave functions of the
Shiba states fall off as 1/r with distance from the magnetic
impurity as long as r is small compared to the superconducting
coherence length.

(ii) In general, the hopping terms involve complex phase
factors. This reflects that there are (spin) supercurrents flowing
in response to the spatially varying Zeeman field of the mag-
netic impurities, similar to the magneto-Josephson effect.44,45

These supercurrents induce a spatially varying phase of the
effective p-wave paring strength which we then eliminated
by the unitary transformation at the expense of introducing
complex phase factors into the hopping terms.46

(iii) The hopping amplitudes are real for a strictly planar
spin helix with θ = π/2 due to the additional reflection
symmetry present in this case. This simplifies the site-off-
diagonal hopping and pairing terms of the tight-binding
Hamiltonian in Eqs. (32) and (33), which become

(heff)ij = −�
sin kF rij

kF rij

e−rij /ξ0 cos khxij (34)

as well as

(�eff)ij = i�
cos kF rij

kF rij

e−rij /ξ0 sin khxij . (35)

(iv) While the pairing is odd and hence p-wave, it also
involves long-range contributions which fall off as 1/r as
long as r is small compared to the superconducting coherence
length.

In the following, we explore the consequences of these
differences for the phase diagram and the splitting of Majorana
end states using both analytical and numerical approaches.

IV. PHASE DIAGRAM

We first consider an infinite chain of Shiba states and
qualitatively explore the phase diagram of the effective tight-
binding model. For an infinite chain, the Hamiltonian defined

by Eqs. (32) and (33) is translationally invariant and can be
solved by passing to momentum states. This yields the 2 × 2
BdG Hamiltonian

H =
(

hk �k

�∗
k −h∗

−k

)
. (36)

Here, we introduced the Fourier transforms

hk =
∑

j

(heff)ij e
ikxij (37)

and

�k =
∑

j

(�eff)ij e
ikxij . (38)

As detailed in Appendix B, the Fourier transforms can be
performed explicitly and we find

hk = ε0 + �

kF a

[
F (k + kh) cos2 θ

2
+ F (k − kh) sin2 θ

2

]
(39)

in terms of the function

F (k) = −
[

arctan
e−a/ξ0 sin(kF + k)a

1 − ea/ξ0 cos(kF + k)a

+ arctan
e−a/ξ0 sin(kF − k)a

1 − ea/ξ0 cos(kF − k)a

]
, (40)

as well as

�k = � sin θ

4kF a
[f (kF + kh + k) − f (kF + kh − k)

− f (kF − kh + k) + f (kF − kh − k)] (41)

in terms of

f (k) = − ln
[
1 + e−2a/ξ0 − 2e−a/ξ0 cos ka

]
. (42)

Both hk and �k depend sensitively on the superconducting
coherence length. For ξ0 small or of order a, the hopping and
pairing amplitudes are essentially local. In contrast, the slow
power-law decay with rij becomes relevant for large ξ0 � a.
In the following, we discuss these two limits separately.

A. Small coherence length

We first specify the problem to the limit of small coherence
lengths ξ0/a � 1. While this limit is presumably not very
relevant experimentally, it is helpful in understanding the more
realistic case ξ0/a � 1 discussed in Sec. IV B. For simplicity,
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we also assume kha � 1 which allows us to expand both hk

and �k to linear order in this parameter.47 This yields

hk 
 ε0 − 2�

kF a
e−a/ξ0 sin kF a[cos ka − kha cos θ sin ka],

(43)

as well as

�k = 2�

kF a
e−a/ξ0 (kha) sin θ cos kF a sin ka. (44)

There are several noteworthy features of hk and �k: The scale
of the effective bandwidth of the band of Shiba states is set by
t = (�/kF a)e−a/ξ0 . By comparison, the corresponding scale
δ = 2t(kha) for the pairing strength is parametrically smaller
by a factor of kha. It is important to note that hk is asymmetric
under k → −k unless θ = π/2 and that the magnitude of the
antisymmetric term is of the same order as the pairing. This
asymmetry breaks the resonance between k and −k states and
hence suppresses Cooper pairing.

Diagonalizing the BdG equation (36), we thus find the
subgap spectrum,

Ek,±
= δ sin kF a cos θ sin ka

±
√

(ε0−2t sin kF a cos ka)2+(δ cos kF a sin θ sin ka)2.

(45)

As the energy ε0 of the Shiba states is reduced, the Shiba bands
start to overlap and undergo a phase transition into a topologi-
cal superconducting phase for appropriate parameters. Specif-
ically, the Shiba bands cross the chemical potential at ±k0

determined by ε0 = 2t sin kF a cos k0a. The pairing term opens
p-wave gaps at ±k0 of magnitude δ| cos kF a sin θ sin k0a|.
However, these gaps are shifted in energy by the shift
term δ sin kF a cos θ sin ka arising from the asymmetry of the
dispersion hk . The shifts are equal to ±δ| sin kF a cos θ sin k0a|
at the two Fermi points. The system enters a topological
superconducting phase only as long as these shifts do not
close the gap:

(i) At θ = 0, i.e., a ferromagnetic arrangement of the
impurity spins, the p-wave gap vanishes, and the system is
gapless and nontopological.

(ii) At θ = π/2, i.e., when the spin helix of the impurity
spins has zero average magnetization, the shift vanishes and
the system always enters a topological superconducting phase
as the Shiba bands start to overlap at the chemical potential.

(iii) For intermediate θ ∈ (0,π/2), the system becomes
gapless when the shift term becomes larger than the pairing
term, i.e., when | sin kF a cos θ | − | cos kF a sin θ | > 0. This
happens for θ < kF a < π − θ (mod 2π ). Thus there are
alternating topological and nontopological phases as a function
of the Fermi momentum kF of the superconductor.

This scenario is illustrated by the numerical results for the
dispersion, the gap function, and the excitation spectrum in
Fig. 1 and for the phase diagram in Fig. 2.

B. Large coherence length

The general Eqs. (39) and (41) for hk and �k can also
be specified to the limit of large ξ0 � a. The dispersion hk

FIG. 1. (Color online) Numerical results for hk and �k vs momen-
tum k (upper panels) and the corresponding quasiparticle excitation
spectra Ek (lower panels) for a short coherence length ξ0/a = 0.2,
ε0 = 0, θ = π/4, kha = π/8. The plots are for kF a = 4π + π/8 in
(a) and kF a = 4π + 3π/8 in (b), illustrating the transitions between
topological and gapless phases as a function of kF . All energies are
measured in units of �.

follows from Eq. (39) with

F (k) = −
[

arctan

(
cot

(kF + k)a

2

)

+ arctan

(
cot

(kF − k)a

2

)]
(46)

Thus, the dispersion becomes steplike, reflecting the 1/r

dependence of the hopping amplitudes, with bandwidths of
the order of �/kF a. Depending on the Fermi wave vector kF

and the helix wave vector kh, there are two cases which need
to be distinguished. Representative dispersions hk (referred to
as type 1 and type 2 in the following) are shown in Fig. 3. Note
that the sharp steps appear only in the limit ξ0 → ∞. For large
but finite ξ0, the steps are smoothened on the scale of 1/ξ0.
In addition to the dispersions shown in Fig. 3, dispersions of
type 1 and type 2 also include the case in which the dispersion
differs by an overall minus sign. Then, the dispersion is of type
1 when nπ + kha < kF a < (n + 1)π − kha for some integer
n and of type 2 when nπ − kha < kF a < nπ + kha.

The pairing strength follows from Eq. (41), where f (k)
simplifies to

f (k) = − ln

[
4 sin2 ka

2

]
(47)

in the limit ξ0 → ∞. Thus, the paring strength develops loga-
rithmic singularities which occur at those positions where the
dispersion hk develops steps as shown in Fig. 3. Specifically,
the pairing strength becomes large and positive near the jumps
in hk which are associated with the cos2 θ/2 term in Eq. (39)
(shown as large jumps in Fig. 3), and large and negative near the
jumps which are associated with the sin2 θ/2 term in Eq. (39).
Note that also for the pairing strength, the strict logarithmic
divergences are cut off for large but finite ξ0 on a scale of 1/ξ0.

In the following, we discuss the phase diagram separately
for dispersions of type 1 and type 2. To start with, whenever the
positive- and negative-energy Shiba bands are nonoverlapping
and the chemical potential falls in between the Shiba bands, the
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FIG. 2. (Color online) Numerical results for the energy minimum
of the upper band (color scale) vs kF a and ε0 for a short coherence
length ξ0 = a/5, kha = π/8, � = 1, and (a) θ = π/2, (b) θ =
π/5. The color scale has been chosen to highlight zeros of the
band minimum (black regions), which indicate topological phase
transitions. The light blue regions correspond to gapped phases,
while yellow regions mark the gapless phase (G). We have identified
the topological (T) and nontopological (N) gapped phases using the
arguments in the main text as well as by checking that a single
Majorana bound state exists at both ends of the wire. In (a) the
band is symmetric under k → −k and the band minimum is always
nonnegative. The topological phase is centered around ε0 = 0 and
the transition to the nontopological phase is approximately described
by ε0 = ±2 sin kF a e−a/ξ0 cos kha/kF a. The topological phase is split
in half by a vertical metallic line (�k = 0) at kF a 
 nπ + π/2. At
kF a = nπ all hopping terms vanish and there can be no topological
phase. In (b), the asymmetry of the spectrum expands the metallic
line into a gapless phase.

system is nontopological, with a large s-wave band gap of the
host superconductor and a trivial gap between the positive- and
negative-energy Shiba bands. The specifics of the dispersion
become relevant once the positive- and negative-energy Shiba
bands are overlapping (though still well separated from the
continuum excitations).

Type 1.—As indicated in Fig. 3(c), the dispersion has
three characteristic regions. Depending on the energy ε0 of
the Shiba states of the individual impurities, the chemical
potential (center of the gap of the host superconductor) can

be located in any of these regions. In regions I and III, the
dispersion hk is symmetric under k → −k, with one pair of
Fermi points. Thus, when the chemical potential falls into
these regions, the effective p-wave pairing �k will open a
gap at the chemical potential and the Shiba chain enters into
a topological superconducting phase. In contrast, when the
chemical potential falls into region II, pairing is suppressed by
the fact that the dispersion (and hence the two Fermi points)
are asymmetric under k → −k. Thus, the overlapping Shiba
bands will remain gapless despite the effective p-wave pairing
�k . In fact, dispersions of type 1 are always gapless in region
II. To see this, we again compare the gap to the asymmetric
energy shift. Since invariably, there are additional zeros of �k

for some pair ±k �= 0,π [see Fig. 3(c)], the shift term always
exceeds pairing for particular wave vectors, yielding a gapless
spectrum at these points. These findings are illustrated by
numerical results for the excitation spectra for various values
of ε0, as shown in Fig. 4.

Type 2.—In this case, the dispersion has two characteristic
regions as indicated in Fig. 3(d). When the chemical potential
falls into region I, there are two symmetric pairs of Fermi
points. This is effectively analogous to a two-channel spinless
p-wave superconducting wire and hence, the system is in a
gapped nontopological phase. When the chemical potential
falls into region II, the dispersion becomes strongly asym-
metric under k → −k. Correspondingly, pairing is suppressed
and the system can enter a gapless nontopological phase. In
contrast to type-1 dispersions, a dispersion of type 2 can still
lead to a gapped (but nontopological) excitation spectrum
in region II with asymmetric Fermi points, since �k has
no additional zeros. These conclusions are illustrated by
numerical results in Fig. 5.

Thus, we find a topological superconducting phase only
for dispersions of type 1. The range of parameters over
which the gapped topological phase extends becomes maximal
for θ = π/2 for which the hopping amplitudes (heff)ij are
real, resulting in a dispersion which is symmetric under
k → −k. The resulting phase diagram is plotted in Fig. 6
showing the alternation of topological and gapless phases
as well as topological phase transitions as the dispersion
changes between type 1 and type 2. This alternation between
topological and nontopological phases is similar to the case of
small ξ0.

For a simple isotropic model of the superconducting host,
the RKKY interaction results in a spin helix whose wave
vector kh is directly related to kF , as discussed at the end
of Sec. II. Remarkably, this relation implies that in this
case the system is right at the critical point between type-1
and type-2 dispersions! We will discuss the behavior of the
subgap states in the vicinity of this transition in the next
section.

V. MAJORANA BOUND STATES

Whenever the chain of Shiba states is in the topological
phase, one expects localized Majorana bound states to form
at the ends of finite chains. In a semi-infinite chain, the
Majorana bound state has strictly zero energy. In a finite
wire segment, Majorana bound states form at both ends
and overlap in the interior of the wire, thereby acquiring
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FIG. 3. (Color online) (a),(b) Schematic plot of the two representative classes of dispersions hk in the limit of large coherence length ξ0 � a

as given by the analytical expression in Eqs. (39) and (46). In the main text, the two classes are referred to as (a) type 1 and (b) type 2. The form
of the dispersion depends qualitatively on the value of the Fermi and the helix wave vector kF and kh. (All wave vectors labeling the arrows in
(a) and (b) should be understood within the reduced-zone scheme.) The dispersion is fully symmetric under k → −k only for θ = π/2. (c),(d)
Dispersions hk and pairing strengths �k of both classes for ε0 = 0, kF a = 4.25π , θ = 3π/8, and (c) kha = π/8, (d) kha = 3π/8 (energies are
measured in units of �). A nonzero ε0 would lead to an overall shift of the dispersion in energy which causes the chemical potential to pass
through various regions as follows: In (c) (type-1 dispersion), there are two regions (I and III, green area) with a symmetric dispersion, for
which a topological phase forms. In contrast, in region II (yellow area) hk is asymmetric and the excitation spectrum Ek becomes gapless. In (d)
(type-2 dispersion), hk has two pairs of symmetric Fermi points in region I (gray area) and the system effectively behaves like a (nontopological)
p-wave superconducting chain with two channels. In region II, the spectrum may be gapless or trivially gapped. Both classes are shown in
the limit of ξ0 → ∞. A large but finite ξ0 would smoothen the jumps in the dispersion and cut off the logarithmic divergences in the pairing
strength on the scale of 1/ξ0. In addition to these cases, the dispersions hk can also differ by an overall minus sign, with analogous conclusions
for the phase diagram.

a finite energy splitting. The overlap and hence the energy
splitting is controlled by the decay of the Majorana wave
functions.

We now turn to a numerical analysis of the decay of the
Majorana wave function and the corresponding energy split-
ting for the model given in Eqs. (32) and (33). In conventional
models of 1d topological superconductors such as the Kitaev
chain, the Majorana states decay exponentially into the bulk as

controlled by the gap of the topological phase. This leads to an
energy splitting which is exponentially small in the length of
the chain. The Shiba chain differs in that hopping and pairing is
long range, exhibiting a power-law decay for distances which
are small compared to the coherence length ξ0 of the underlying
superconductor. This raises the question of the nature of the de-
cay of the Majorana wave functions on scales short compared
to ξ0.

FIG. 4. (Color online) Type-1 dispersions hk and gap functions �k together with the corresponding excitation spectra [cf. Fig. 3(c)].
(a) Chemical potential lies outside the bands of Shiba states (ε0 = 0.1, gapped nontopological phase). (b) Chemical potential is inside region
I (ε0 = 0.02, gapped topological phase). Analogous results are obtained when the chemical potential is located in region III. (c) Chemical
potential is in region II (ε0 = −0.04, gapless nontopological phase). For all panels, the remaining parameters are ξ0 = ∞, kF a = 4π + π/4,
θ = 3π/8, and kha = π/8. Energies are measured in units of �.
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FIG. 5. (Color online) Dispersions hk , gap functions �k , and
excitation spectra for dispersions of the form shown in Fig. 3(d)
(type 2). (a) Chemical potential lies inside region I in the band of
Shiba states (gapped nontopological phase). (b) Chemical potential
is in region II (gapless nontopological phase). The parameters are
chosen as ξ0 = ∞, kF a = 4π + π/4, θ = 3π/10, kha = 3π/8, and
(a) ε0 = −0.04, (b) ε0 = 0.04. Energies are measured in units of �.

This issue is mute in the case of a short coherence length
ξ0 � a in which the Shiba chain reduces to a Kitaev chain
(with an additional phase gradient for general opening angles θ

of the spin helix). Thus, one expects the conventional behavior
in this case and indeed, in the topological phase, this model
supports exponentially localized Majorana states whose decay
length is determined by the parameters of the Kitaev chain in
the usual way.

A. Type-1 dispersions

We now turn to the more interesting (and more realistic)
case of large coherence lengths, ξ0 � a, and parameters such
that the dispersion is of type 1. Also in this case, the Majorana
bound state decays exponentially on scales large compared to
ξ0. Indeed, given the effective bandwidth of the Shiba bands
of order �/kF a [cf. Eqs. (32)] and the smoothing of the steps
in hk of order 1/ξ0, we have an effective Fermi velocity of
order �ξ0/kF a. Combining this with the effective strength of
the p-wave pairing of order �/kF a [cf. Eqs. (33)], we find
that the characteristic length scale (analogous to the relation
ξ0 = h̄vF /�) is indeed of the order of ξ0. Note that this is
only a rough order-of-magnitude estimate which neglects the
dependence on the opening angle θ , the energy ε0 of the Shiba
bound states, etc.

The decay of the Majorana bound states on length scales
shorter than ξ0 can be readily investigated numerically. To
do so, we take the model defined by Eqs. (32) and (33)
and formally set ξ0 = ∞. As one readily checks numerically,
the resulting model correctly reproduces the behavior of the
Majorana bound states of the more complete model with finite
ξ0 on scales smaller than ξ0. Numerical results for the ξ0 = ∞
model and for parameters such that the system is in the topo-
logical phase are shown in Fig. 7. We find that asymptotically,
the Majorana bound state decays approximately as a power
law with logarithmic corrections. Indeed, the envelope of
the Majorana wave function can be fit quite accurately by
a decay of the type 1/[x ln2(x/x0)] for a variety of parameter

FIG. 6. (Color online) Numerical results for the energy minimum
of the upper band (color scale) vs kF a and ε0 for a long coherence
length ξ0 = 50a, kha = π/8, � = 1, and (a) θ = π/2, (b) θ = π/5.
Color scale and labels are as in Fig. 2. The topological phase
transitions at the boundaries of regions I and III in Fig. 3(c) appear
as diagonal black lines ε0 = −(kF a mod 2π )�/kF a in the phase
diagram. The almost vertical transition lines between T and N in
(a) are associated with the transition between type-1 and type-2
dispersions at kF a = 4π + kha = 4.125π (white dashed line) and
kF a = 5π − kha = 4.875π . As discussed in Sec. V, this transition
becomes infinitely sharp for ξ0 → ∞. For this reason the gap closing
is hardly visible at this numerical resolution in some regions of
parameter space. As in the short-ξ0 limit, the topological phase for
the symmetric spectrum in (a) is split in half by a metallic line.
At this line, the chemical potential meets the middle plateaux in the
dispersion hk which are at the same height for θ = π/2 [see Fig. 3(a)].
The excitation spectrum has two simultaneous gap closings at ±k0.
For θ < π/2 the spectrum becomes asymmetric and the energy at
these two points is shifted in opposite directions. Thus, the metallic
line is expanded into the gapless region marked by G in panel (b).

sets, cf. Fig. 7. While similar, this decay is faster than the
decay of the hopping and pairing amplitudes. Interestingly,
this implies that in a finite wire of length L � ξ0 (as may
well be the case in an experiment) the energy splitting of the
two Majorana bound states is not exponentially but merely
power-law suppressed in L (with logarithmic corrections).
This is illustrated numerically in Fig. 7(c).
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FIG. 7. (Color online) (a) Spatial profile of the lowest-energy wave function |ψ1| = (φ2
1 + χ 2

1 )1/2, where φ1 and χ1 are the electron and hole
components of the Nambu spinor ψ1. All curves are for a chain length L = 70, and we have set ξ0 = ∞, � = 1, and θ = π/2. The remaining
parameters are kha/π = 0.25; 0.1; 0.26, ε0 = −0.01; −0.13; 0, and kF a/π = 4.5; 4.8; 4.3 for the green, blue, and red curve, respectively. Inset:
Semi-log plot of the first 100 sites of |ψ1| in chain of length L = 10000. The parameters are the same as for the green curve in the main panel.
The wave function initially decays exponentially and then crosses over to a much slower decay. The crossover point depends sensitively on
the point in parameter space. (b) Log-log plot of the left Majorana wave function |γL| for a chain of length L = 10000. (The first 100 sites
are not shown.) The three curves are for the same set of parameters as in (a) and shifted vertically for clarity. The black solid lines represent
1/[x ln2(x/x0)] fits to the envelopes of the curves. The dashed lines shows a 1/x power law for comparison. The Majorana wave functions can
be obtained from the lowest energy wave function by a rotation in Nambu space (Ref. 48) γL/R = χ1 ± iφ1. The obtained fit parameters are
x0/a ∼ 0.17,0.30,0.55 for the three curves. (c) Log-log plot of the Majorana energy splitting vs chain length for the same parameters as the
green curve in (a) and (b). Similar to the wave function decay, the envelope of the energy splitting fits a 1/[x(ln(x/x0))2] law (black line) with
x0/a ∼ 0.22.

B. Type-2 dispersions

In the discussion of the phase diagram for large coherence
length in Sec. IV B, we showed that there is no topological
phase for dispersions of type 2. Nevertheless, when the
chemical potential is in region I [see Fig. 3(d)], the spectrum
is analogous to that of a two-channel p-wave superconductor.
Each of the channels individually supports one Majorana
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FIG. 8. (Color online) Spatial wave function profile |ψ | of the
first three positive-energy states of a chain with 70 sites with a type-2
dispersion in region I [see Fig. 3(d)]. There are two states localized
at the ends of the chain. Inset: excitation spectrum of a finite chain
as a function of chain length L. The plot shows that the two end
states remain at a nonzero subgap energy for large L. This is the
expected behavior of a two-channel p-wave superconducting chain
with two coupled Majorana bound states at each end. The third state
is a bulk state which defines the edge of the quasiparticle continuum.
The parameters are: � = 1, ε0 = 0.05, θ = π/2, kha = π/8, kF a =
4.08π .

bound state at each end. The hard-wall boundary introduces
scattering between the two channels and the Majoranas acquire
a finite energy splitting, which is usually of the order of
but smaller than the gap. Numerically, we indeed find two
positive-energy subgap states in this regime, one for each end
of the chain, as seen in Fig. 8. Their energy as a function
of length is shown in the inset. The two states are clearly
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FIG. 9. (Color online) Spectrum of subgap states (limited to
positive energies in units of �) vs Fermi wave vector kF near the
phase transition from type 2 to type 1 at kF a = 4.1π (dashed line).
The plot is for ξ0 → ∞ and chemical potential in region I so that at the
transition, the system changes from a two-channel to a single-channel
p-wave superconductor. The parameters are chosen as kha = 0.1π ,
ξ0 = ∞, and ε0 = 0.03. The colored lines represent the two subgap
states for various chain lengths (see legend) and the black line marks
the lowest continuum excitation (which is indistinguishable for the
different chain lengths). Just before the phase transition on the type-2
side, the two subgap states split. While one state is absorbed into
the continuum at the transition, the second state drops to near-zero
energies and becomes a Majorana bound state.
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separated from the continuum, but they remain at a finite
energy even at very large chain lengths. The energy depends
on the boundary-induced coupling of the two channels. For
long chains, the two subgap states become degenerate as the
two ends of the chain are decoupled.

C. Vicinity of the transition between
type-1 and type-2 dispersions

We now turn to a closer look at the transition point
kF a = kha + nπ and its immediate vicinity, as this is the
relevant point of the phase diagram for sufficiently simple host
superconductors. When the chemical potential is in region I
of a type-2 dispersion and the dispersion changes from type
2 to type 1, say by tuning kF a across kha + nπ , the system
undergoes a phase transition from an effective two-channel to
a single-channel p-wave superconducting chain. For ξ0 = ∞,
this transition is abrupt and the bulk gap does not approach
zero on either side of the transition. This can be seen by
comparing Figs. 3(a) and 3(b). The transition from type 1
to type 2 involves shrinking, flipping, and extending again the
central plateau in hk near k = 0. This rather abrupt behavior is
manifested in the color-scale plot of the bulk gap in Fig. 6(a),
where the vertical transition lines become very fine indicating
a sharp transition. For finite ξ0, the bulk gap closes smoothly
as |kF a − (kha + nπ )| → 0 on a scale of 1/ξ0.

The behavior of the subgap spectrum in the vicinity of the
transition is illustrated numerically in Fig. 9. As the transition
is approached from the side with the type-2 dispersion (two-
channel side), the coupling of the two channels and hence the
energy splitting of the end states depends on the difference
of the Fermi momenta ±(kF − nπ ) ± kh of the channels. The
inner pair of Fermi momenta approaches zero continuously
at the transition and the coupling between the two channels
becomes weak. Simultaneously, the closing of one channel is
associated with a delocalization of one of the Majorana modes,
such that at the transition, the corresponding end state merges
with the continuum spectrum. In contrast, the second end
state becomes a bona fide zero-energy Majorana bound state.
Interestingly, for finite-length chains, Fig. 9 shows that right
at the transition point, there is just a single almost-zero-energy
subgap state. Thus, phenomenologically, the chain effectively
behaves as if it was in the topological phase.

VI. CONCLUSIONS

Chains of magnetic impurities placed on a conventional
s-wave superconductor constitute a promising venue for
Majorana physics. Assuming that the magnetic impurities form
a spin helix, the bands of Shiba states formed in the host
superconductor can enter into a topological superconducting
phase. In this paper, we considered the limit of dilute impurities
inducing deep Shiba states in which the bands of Shiba states
do not overlap with the quasiparticle continuum. Starting
with the individual Shiba states, we derived an effective
tight-binding Bogoliubov-de Gennes Hamiltonian. While this
Hamiltonian has close similarities with the Kitaev model, it
differs in important ways: (i) Both hopping and pairing are
long range, falling off as 1/r for distances small compared to
the superconducting coherence length ξ0. (ii) For generic spin

helices, the hopping amplitudes are complex (or, equivalently,
the pairing amplitude involves a spatially varying phase).
These differences have significant consequences, both for
the phase diagram and for the decay (and hence the energy
splitting) of Majorana bound states. Most importantly, the
long-range nature of hopping and pairing implies that over a
wide range of length scales, the spatial decay of the Majorana
bound states is well fit by a power law with logarithmic
corrections rather than an exponential dependence. Moreover,
the complex hopping amplitudes tend to suppress topological
superconductivity; they result in asymmetric dispersions under
momentum reversal which suppresses Cooper pairing. As a
result, fully planar spin helices whose additional reflection
symmetry results in purely real hopping amplitudes, are
optimal for realizing topological superconductivity.

Our approach can be extended in several directions. For
instance, it might be relevant for experiment to include spin-
orbit coupling within the superconducting host or to extend
our approach based on Shiba states to the limit of shallow
impurities.
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APPENDIX A: SOME INTEGRALS

In this Appendix, we evaluate and discuss the integral

I =
∫

dp
(2π )3

eipr

E − ξpτz − �τx

, (A1)

which is used in Secs. III A and III B. Note that we are
interested in subgap energies E < �. Explicitly inverting the
matrix and changing integration variables to ξp and x = cos θp
with the polar angle θp measured relative to r, we have

I = ν0

2

∫
dξp

∫ 1

−1
dxeiprx E + ξpτz + �τx

E2 − ξ 2
p − �2

. (A2)

Here, ν0 denotes the normal-state density of states per spin
direction of the superconductor. Thus, we need to evaluate the
integrals

I0 = ν0

2

∫
dξp

∫ 1

−1
dx

eiprx

E2 − ξ 2
p − �2

, (A3)

I1 = ν0

2

∫
dξp

∫ 1

−1
dx

ξpe
iprx

E2 − ξ 2
p − �2

ω2
D

ξ 2
p + ω2

D

. (A4)

Note that we introduced a convergence factor ω2
D/(ξ 2

p + ω2
D)

into I1. While the integral I0 is automatically dominated by
the vicinity of the Fermi surface, this is not the case for I1 in
the absence of the convergence factor. In that case, we need
to account for the fact that the BCS model underlying the
calculations is restricted to energies smaller than the Debye
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frequency ωD . We will ultimately restrict attention to r �
vF /ωD . In this limit, we can formally eliminate the cutoff
from the result by taking the limit EF ,ωD → ∞ while keeping
ωD/EF � 1. Note that an accurate theory for r � vF /ωD

would require one to develop a more microscopic theory of
the underlying superconductor.

To evaluate the integrals, we first perform the integral
over ξp and subsequently the x integration. Writing p =
pF + ξp/vF , this can be done straightforwardly for I0 and
we obtain

I0 = − πν0√
�2 − E2

sin kF r

kF r
e−√

�2−E2r/vF . (A5)

Similarly, we can evaluate the integral for I1. Taking the limit
described above, we find

I1 = −πν0
cos kF r

kF r
e−√

�2−E2r/vF . (A6)

More explicitly, the corrections to this result either decay
exponentially with r on the scale vF /ωD or are suppressed
as powers of ωD/EF , and thus vanish after taking the limit.

APPENDIX B: MOMENTUM-SPACE BOGOLIUBOV-DE
GENNES HAMILTONIAN

In this Appendix, we sketch the derivation of Eqs. (39)
and (41). Inserting Eq. (32) into Eq. (37), we readily find

Eq. (39) with

F (k) = −�Im
∞∑

j=1

1

kF aj
e−aj/ξ0 [ei(kF +k)aj + ei(kF −k)aj ].

(B1)

Here, we have dropped the trivial term involving the Shiba
energy ε0 of the individual impurities. The sum over j can be
readily performed by the identity

− ln(1 − x) =
∑
j=1

xj

j
, (B2)

which yields

F (k) = �

kF a
Im

[
ln(1 − e−a/ξ0+i(kF +k)a)

+ ln(1 − e−a/ξ0+i(kF −k)a)
]
. (B3)

Finally, we use the identity Im ln z = i arctan(Imz/Rez) to
obtain the result given above in Eq. (40).

Similarly, inserting Eq. (33) into Eq. (38), we find Eq. (41)
for �k with

f (k) =
∞∑

j=1

e−ja/ξ0

j
[eikaj + e−ikaj ]. (B4)

Performing the sum over j using Eq. (B2) yields Eq. (42) of
the main text.
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